UNESCO-NIGERIA TECHNICAL &
VOCATIONAL EDUCATION REVITALISATION
PROJECT-PHASE Il

)

—
——
—r—
=
=
(——]

Introduction to Digital Electronics

COURSE CODE: COM 112
PRACTICAL BOOK

YEAR I, SEMESTER |

Version 1: December 2008



WEEK 1 {Jsing Excel to convert numbers to different

NUMDEI SYSIEMS .......ooveeeceererere e eeeeeeseens 3
Convert a binary number to decimal.............coooii i 4
Convert a binary number to hexadeCimal ..o 5
Convert a binary NUMDEr t0 OCal.............uuuiiiii e e 7
WEEK 2 Converts a decimal number to binary ................... 9
Convert a decimal number to hexadecimal............ccooiiiiiiiiiiiiii e 11
Convert a decimal NUMDBEr t0 OCTaAl ..........ccoiviiiiiii e 13
Convert a hexadecimal NUMbDEr t0 DINAIY ..........ouviiiiiiiii s 15
WEEK 3 Convert a hexadecimal number to decimal......... 16
Convert a hexadecimal number to OCtal.............ooovviiiii i 18
WEEK 4 Understanding Boolean LOgIC...........ccoouuerrreenen 20
AN INtroducCtion 10 TKGALE ......uuiieeiieeeeiii e e e e e e e e e eanaanas 20
WEEK 5 The DeMorgan’s laws .........cccccoevvvviviiiniiieeeeeeeee, 24
WEEK 6 Design and Implementation of a logical circuit
WIth 4 INPULS......coocreececerce et sseeseneens 26
WEEK 7 |mplementing Boolean Logic Equations ........... 28
WEEK 8  Designing a Half-Adder to compute a 1-bit sum 30
Design of @ One-Bit FUI-AAAET: ........iii e 32
Implementing a Full-Adder with Half-Adders ...........cccoovviiiiiieeecie e 32
WEEK 9  Understanding AND Gates.........ccccevveveiveernenene, 35
Understanding OR Gates...........cccocveveeveereerrernnenns 38
NOT Gates (INVerters).........cvveververereeeersees, 39
NAND Gates ... 39
WEEK 10  Technological Advances in the Manufacture of
T 1 Z 40
WEEK 11 Understand the basic concepts of SSI, MSI, LS,
VLSI oot 41
WEEK 12 Designing a Transparent Latch.........ccocvovevon. 42
WEEK 13 Designing a D FIp-FIOD......evevememensssensenn 4
WEEK 14 COUNETS ..c.rrvrrrrmmssssmmsssmssssesmesssssssssnen 46

WEEK 15 A Binary CoUNter.......cccoooeviviicineiinicceeenens 48



Week 1 Practical

Obijectives:

1. Ability to develop formulas using Excel spredest to convert
Binary numbers, into other number systems.

2. Convert from one code to another.

Using Excel to convert numbers to different numbesystems

A number system is a systematic way to represembeus with symbolic
characters and uses a base value to convenientlp gumbers in compact
form. The most common number system is decimalgclvhas a base value
of 10, and a symbolic character set of 0, 1, 4,3, 6, 7, 8, and 9. However,
there are other number systems, and they can be efiazient to use for
some specific purposes. For example, because cerspuge Boolean logic
to perform calculations and operations, they uséthary number system,
which has a base value of 2.

Microsoft Office Excel has several functions thatiycan use to convert
numbers to and from the following number systems:

Number systen Base value Symbolic character set
Binary 2 0,1

Octal 8 0,1,2,3,45,6,7

Decimal 10 0,1,2,3,4,56,7,8 and 9

Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,ACBD, E, F



Convert a binary number to decimal
To do this task, use thi&N2DEC function.

Syntax

BIN2DEC (number)

Number is the binary number you want to conwguimber cannot contain
more than 10 characters (10 bits). The most siamti bit of number is the
sign bit. The remaining 9 bits are magnitude Ihfisgative numbers are
represented using two's-complement notation.

Remark

If number is not a valid binary number, or if numbentains more than 10
characters (10 bits), BIN2DEC returns the #NUMbenalue.

Example 1

1. Create a blank workbook or worksheet.
2. In the worksheet, select cell Al, and type =BIN2QEIDO0100).

Result
Converts binary 1100100 to decimal (100)
Example 2

Repeat steps 1 and two of example 1 but this tim@ge the argument for
the BIN2DEC function to binary 1111111111

Result

Converts binary 1111111111 to decimal (-1)

Practice with as many binary numbers as possible.



Convert a binary number to hexadecimal
To do this task, use tHIN2HEX function.

Syntax

BIN2HEX (number,places)

Number is the binary number you want to convertmiar cannot contain
more than 10 characters (10 bits). The most signifi bit of number is the
sign bit. The remaining 9 bits are magnitude Iisgative numbers are
represented using two's-complement notation.

“Places” is the number of characters to use. i¢gdas omitted, BIN2HEX
uses the minimum number of characters necessage®ls useful for
padding the return value with leading Os (zeros).

Remarks

If number is not a valid binary number, or if numlsentains more
than 10 characters (10 bits), BIN2HEX returns tN&J#¥! error
value.

If number is negative, BIN2HEX ignores places agtdims a 10-
character hexadecimal number.

If BIN2HEX requires more than places characterstiirns the
#NUM! error value.

If places is not an integer, it is truncated.

If places is nonnumeric, BIN2HEX returns the #VALU#ror value.
If places is negative, BIN2HEX returns the #NUMtarvalue.

Example 1

1. Create a blank workbook or worksheet.
2. In the worksheet, select cell A1, and type =BIN2HEA111011, 4).

Result



Converts binary 11111011 to hexadecimal with 4 atigrs (O0OFB)

Example 2

Repeat steps 1 and two of example 1 but this tim@ge the argument for
the BIN2HEX function to binary 1110

Result

Converts binary 1110 to hexadecimal (E)

Example 3

Using the above procedure convert binary 1111111d Hexadecimal. The
result will be Hexadecimal (FFFFFFFFFF)



Convert a binary number to octal
To do this task, use the BIN2OCT function.
Syntax

BIN2OCT (number,places)

Number is the binary number you want to conwguimber cannot contain
more than 10 characters (10 bits). The most sigamti bit of number is the
sign bit. The remaining 9 bits are magnitude Ifisgative numbers are
represented using two's-complement notation.

Places is the number of characters to useatigsl is omitted, BIN2OCT
uses the minimum number of characters necessage®ls useful for
padding the return value with leading Os (zeros).

Remarks

If number is not a valid binary number, or if numlsentains more
than 10 characters (10 bits), BIN2OCT returns tRe/i! error
value.

If number is negative, BIN2OCT ignores places atdms a 10-
character octal number.

If BIN2OCT requires more than places charactergtiirns the
#NUM! error value.

If places is not an integer, it is truncated.

If places is nonnumeric, BIN2OCT returns the #VAUWHEror value.
If places is negative, BIN2OCT returns the #NUMioevalue.

Example 1

1. Create a blank workbook or worksheet.
2. In the worksheet, select cell A1, and type =BIN2QQT01, 3).

Result

Converts binary 1001 to octal with 3 charactefis JO



Example 2

Repeat steps 1 and two of example 1 but this timege the argument for
the BIN2OCT function to binary 1100100

Result

Converts binary 1100100 to octal (144)

Exercise:
1. Using the above procedure convert binary 11111110 Octal
2. Convert Binary 1010 to Decimal.

3. Convert Binary 0000001 to Hexadecimal.



Week 2 Practical

Objectives:

1. Ability to develop formulas using Excel sprehdest to convert
Decimal numbers, into other number systems.

2. Convert from one code to another.

Converts a decimal number to binary
To do this task, use tHeEC2BIN function.

Syntax

DEC2BIN(number,places)

Number is the decimal integer you want to converhufmber is negative,
placesis ignored and DEC2BIN returns a 10-characterli{itObinary
number in which the most significant bit is thersigt. The remaining 9 bits
are magnitude bits. Negative numbers are repredeisiag two's-
complement notation.

Places is the number of characters to usel#icesis omitted, DEC2BIN
uses the minimum number of characters necesB&gesis useful for
padding the return value with leading Os (zeros).

Remarks

If number <-512 or if number > 511, DEC2BIN retsithe #NUM!
error value.

If number is nonnumeric, DEC2BIN returns the #VALUHEror
value.

If DEC2BIN requires more than places charactergtirns the
#NUM! error value.

If places is not an integer, it is truncated.

If places is nonnumeric, DEC2BIN returns the #VAUW#Eror value.
If places is negative, DEC2BIN returns the #NUMioevalue.



Example 1

1. Create a blank workbook or worksheet.
2. In the worksheet, select a cell, and type =DEC28N)

Result

Converts decimal 9 to binary with 4 characters (300

Example 2

Repeat steps 1 and two of example 1 but this tim@ge the argument for
the DEC2BIN function to decimal -100.

Result

Converts decimal -100 to binary (1110011100)



Convert a decimal number to hexadecimal
To do this task, use the DEC2ZHEX function.

Syntax

DEC2HEX (number,places)

Number is the decimal integer you want to converhumber is
negative placesis ignored and DEC2HEX returns a 10-character@)0-
hexadecimal number in which the most significabisthe sign bit. The
remaining 39 bits are magnitude bits. Negative nensilare represented
using two's-complement notation.

Places is the number of characters to usel#cesis omitted, DEC2HEX
uses the minimum number of characters necesB&gesis useful for
padding the return value with leading Os (zeros).

Remarks

If number < -549,755,813,888 or if number > 549,833,887,
DEC2HEX returns the #NUM! error value.

If number is nonnumeric, DEC2HEX returns the #VAU#Eror
value.

If DEC2HEX requires more than places charactergtiirns the
#NUM! error value.

If places is not an integer, it is truncated.

If places is nonnumeric, DEC2HEX returns the #VALldEor value.
If places is negative, DEC2HEX returns the #NUMbewvalue.

Example 1
1. Create a blank workbook or worksheet.

2. In the worksheet, select a cell, and type = DEC2HDR, 4)

Result

Converts decimal 100 to hexadecimal with 4 chara¢®@064)



Example 2

Repeat steps 1 and two of example 1 but this tim@ge the argument for
theDEC2HEX function to decimal -54.

Result

Converts decimal -54 to hexadecimal (FFFFFFFFCA)



Convert a decimal number to octal
To do this task, use the DEC2OCT function.
Syntax

DEC20CT(number, places)

Number is the decimal integer you want to converhumber is

negative placesis ignored and DEC2OCT returns a 10-characteb{B0-
octal number in which the most significant bithe sign bit. The remaining
29 bits are magnitude bits. Negative numbers greesented using two's-
complement notation.

Places is the number of characters to usél#cesis omitted, DEC20CT
uses the minimum number of characters necesB&gesis useful for
padding the return value with leading Os (zeros).

Remarks

If number < -536,870,912 or if number > 536,870, DEC20CT
returns the #NUM! error value.

If number is nonnumeric, DEC2OCT returns the #VALI@E&or
value.

If DEC20OCT requires more than places charactersfutns the
#NUM! error value.

If places is not an integer, it is truncated.

If places is nonnumeric, DEC20OCT returns the #VAL@Eor value.
If places is negative, DEC2OCT returns the #NUMbewralue.

Example 1

1. Create a blank workbook or worksheet.

2. In the worksheet, select a cell, and type = DEC2(B8,13)
Result
Converts decimal 58 to octal (072)

Example 2



Repeat steps 1 and two of example 1 but this timege the argument for
the DEC20OCT function to decimal -100

Result

Converts decimal to octal (7777777634)

Exercise

1. Using MS Excel, convert the Decimal number Bitary with 4
characters.

2. Convert Decimal 7 to Octal with 4 places.



Week 3 Practical

Objectives:

1. Ability to develop formulas using Excel sprehest to convert
Hexadecimal numbers, into other number systems.

2. Convert from one code to another.

Convert a hexadecimal number to binary
To do this task, use the HEX2BIN function.

Syntax

HEX2BIN (number,places)

Number is the hexadecimal number you want tovednNumber cannot
contain more than 10 characters. The most significe of number is the

sign bit (40th bit from the right). The remainindpi®s are magnitude bits.

Negative numbers are represented using two's-congpienotation.

Places is the number of characters to useatfgsl is omitted, HEX2BIN
uses the minimum number of characters necessage$ls useful for
padding the return value with leading Os (zeros).

Remarks

If number is negative, HEX2BIN ignores places agtdims a 10-
character binary number.

If number is negative, it cannot be less than FFHHHEDO, and if
number is positive, it cannot be greater than 1FF.

If number is not a valid hexadecimal number, HEXQBéturns the
#NUM! error value.

If HEX2BIN requires more than places characterstiirns the
#NUM! error value.

If places is not an integer, it is truncated.



If places is nonnumeric, HEX2BIN returns the #VALU#ror value.
If places is negative, HEX2BIN returns the #NUMtarvalue.

Example 1

3. Create a blank workbook or worksheet.
4. In the worksheet, select a cell, and type = HEX2BH\, 8)

Result

Converts hexadecimal F to binary, with 8 charadi@@901111)

Example 2

Repeat steps 1 and two of example 1 but this tim@ge the argument for
the HEX2BIN function to B7.

Result

Converts hexadecimal B7 to binary (10110111)

Exercise

Convert Hexadecimal FFFFFFFFFF to Binary

Convert a hexadecimal number to decimal
To do this task, use the HEX2DEC function.
Syntax

HEX2DEC (number)



Number is the hexadecimal number you want to conWurtnber cannot
contain more than 10 characters (40 bits). The sigsificant bit of number
is the sign bit. The remaining 39 bits are magmatbds. Negative numbers
are represented using two's-complement notation.

Remark

If number is not a valid hexadecimal number, HEXZDieturns the
#NUM! error value.

Example 1
1. Create a blank workbook or worksheet.

2. In the worksheet, select a cell, and type = HEEZ("A5")

Result

Converts hexadecimal A5 to decimal (165)

Example 2

Repeat steps 1 and two of example 1 but this tim@ge the argument for
the HEX2DEC function to "FFFFFFFF5B".

Result

Converts hexadecimal FFFFFFFF5B to decimal (-165)

Exercise:

Insert a formula in a worksheet to convert the Hexamal number
3DA408B9 to Decimal.



Convert a hexadecimal number to octal

To do this task, use the HEX2OCT function.

Syntax
HEX20OCT (number,places)

Number is the hexadecimal number you want to conWurtnber cannot
contain more than 10 characters. The most significe of number is the
sign bit. The remaining 39 bits are magnitude isgative numbers are
represented using two's-complement notation.

Places is the number of characters to useléices is omitted, HEX2OCT
uses the minimum number of characters necesB&gesis useful for
padding the return value with leading Os (zeros).

Remarks

If number is negative, HEX2OCT ignores places atdrns a 10-
character octal number.

If number is negative, it cannot be less than FIBBO00, and if
number is positive, it cannot be greater than 1HAHH-

If number is not a valid hexadecimal number, HEXAQ#€turns the
#NUM! error value.

If HEX2OCT requires more than places charactergtuirns the
#NUM! error value.

If places is not an integer, it is truncated.

If places is nonnumeric, HEX2OCT returns the #VALUldEor value.
If places is negative, HEX2OCT returns the #NUMbewvalue.

Example 1
1. Create a blank workbook or worksheet.

2. In the worksheet, select a cell, and type =HBRZ("F", 3)



Result

Converts hexadecimal F to octal with 3 charact@i3)

Example 2

Repeat steps 1 and two of example 1 but this tim@ge the argument for
the HEX2OCT function to "3B4E".

Result

Converts hexadecimal 3B4E to octal (35516)

Exercise:

1.

W hat is the worksheet function for converting Octainumbers to:
a. Binary
b. Decimal

C. Hexadecimal

Convert the following Octal numbers to Binary
a. 3
b. 777777

C. Convert the Octal number above to a Binary numeér with
three characters.



Week 4 Practical

Objectives:

1. Introduction to the digital logic simulator TK@&a
2. Introduction to Boolean logic and its relationcircuits

3. Design and implement Boolean logic equations

Understanding Boolean Logic

This lab exercise is intended to give you an intictithn to logic, and its relation to digital cirtsii
and logic gates. All computers are implementedgiéinhuge number of) logic gates. While we
will not be trying to design a computer in this lglou will first use the logic gate simulator
programTKGate to simulate a logic circuit.

Logic has only two conditions: TRUE and FALSE. TRUEoften represented by the term HIGH
or the number 1, and FALSE is represented by timee E©OW or the number 0. Boolean algebra
consists of a set of laws that govern logical retethips. Unlike ordinary algebra, where an

unknown can take any numeric value, all elementa bbolean expression are either TRUE or
FALSE.

An Introduction to TKGate
The following steps lead you through an introduttio TKGate.

Starting t kgat e

1. Click on the TKGate button to start TKGate. Thi#l bring up a window that looks like
Figurel.



[faRs LY T

I'I-l Bl Timd l]-:_ul ap-h [T T T i
e S [P L e e &|e| BiE| Ale] Gl
Tk
i
[
o i
mame-
Aray
f . § 1 =1|-
" . ks Lt T
. . =
il _ L . i i . lﬂ_;_ll LT nr:
e - 8T bl
2 2 & | | ETi |__
= J—r A 3 b 1=
E:Ilnl & 7 & 1 T I 'L =
E= P - e |
= (22 —i ‘
B B | E R
: R, i m A
Bt o=l ST B e
=k o™
get=ppa® T R .
T | | E|
[

|
W wcrms Wiy ke o

Figure 1: The TEKGate window

2. Read the information that is being displayee (fiKGate introduction). Continue with the
tutorial by clicking onCreating a G rcuit intheTutorial s box on the right. Follow
the instructions to create the simple circuit thidGate will ask you to create. This will help you
get used to the way in which gates and wires aein TKGate.

Starting the Simulator

The simulator controls can be accessed eitheh@dSimulate” menu, or the button bar.
Start a simulation by selecting "Begin Simulatidndm the "Simulate” menu, or by
pressing the "play" button on the button bar. Apgctrace window will appear when you
start the simulator, as well as text windows foy édity” devices in your circuit. If there
are any auto execute script files (see Simulatomg for details) these will be executed
too.

The simulation will be performed with the desigmhteot module at the top-level. The
simulator internally expands any module instanoggur circuit. Since the path you take
to get to a module is significant to the simulat@my cannot jump directly to submodules
but must "navigate" your way to them by selectingp@dule at the current level and by
opening it using the menu or the >' keyboard comin¥ou can leave a module you are
in with the '<' keyboard command.

Gate and wire names in sub-modules are referencedepending a dot-separated "path”
of module instance names. For instance, suppose #re two instances of a module



named "foo" in the root module with instance narfggk’ and "g2". Now suppose the
"foo" module contains a wire named "wl". These wiames are referenced by the
simulator as "gl.wl" and "g2.wl" to distinguish thw instances.

TkGate is an event-driven simulator. Time is meadun discrete units called "epochs".
Each gate has a delay of a certain number of ep&dme complex gates have multiple
delay constants. In addition, some gates suchgqstees and memories have additional
delay parameters which affect internal state chenge

The basic simulator commands are:

Function |Button Description

Enters continuous simulatiaonode. The simulation will continue
long as there are events in the event queue. téthe any cloc

Run . gates in your circuit, this will mean the simulatiavill continue
indefinately. If the circuit is combinational, th@mulation will
continue until the circuit reaches quiescence.

Pause Bl Causes a continuously running simulation to stop.

Causes the simulation to advance a fixed numbexpoths. Th
Step Epoch 3»| number of epochs to advance can be set on the atiomloption:
menu. You can also invoke this command with thespar.

Causes the simulation to advance to the rising eflgeclock. Yot
can set the number of clock cycles to simulate twednumber c

Step Cycle §§| epochs past the designated cycle tq step (to dllae for register
to change value). The default is to trigger on any clduk you ca
designate a specific clock in the simulator optiomsnu. You ca
also invoke this command with the tab key.

gir:rcwlulation Bl Causes the simulation to be terminated and allgzdb be deleted.

Other simulator commands will be discussed in thlewwing sections.

Simulator Options

Several simulation options can be set through tptows dialog box. To edit the
simulator options, select "Options..." from the I&Fi menu, and then select the
"Simulator" tab from the tab box.

The simulator options are:

+ Epoch Step SizeSpecifies the number of epochs to step each tieitulator
is stepped by using the step button or by presbieagpace bar.



Clock Cycle Step SizeSpecifies the number of clock cycles to step ¢gwh the
clock is stepped by using the clock step buttobyopressing the tab key.

Clock Overstep: Specifies the number of epochs to simulate pastlibck edge
when doing a clock step. This can be used to adv#me simulator enough for
registers to change value.

Initialization Script: Specifies a simulation script to automatically @xe when
starting the simulator. The script file specifiegtdis a global property and applys
to any circuit that has been loaded into TkGate specify scripts specific to a
particular circuit see circuit initialization sctip

Clock step stops on all clock posedgefdicates that the clock step command
should trigger on positive edges on all clockshm tircuit as.

Clock step stops on clockindicates that the clock step command should érigg
on positive edges only on the specified clock. Toygion is only useful for
circuits with multiple clocks.

Delay Files: Specifies additional files from which to load gatielay
specifications. More on writting gate delay speeafions can be found in Gate
Delay Files

General | Print | Analysis | Simulate | Color |

Clock. Cycle Step Size: I‘I

Initialization script:

Epoch Step Size: |5

Clock Overstep: |21

Browrse... |

¥ Clock step stops on all clock posedges

~s Clock step stops oh clock:

Delay Fles

Pl
o




Week 5 Practical

Objectives:
1. Implement Boolean Logic Equations

2. Implement DeMorgan’s Laws
The DeMorgan’s laws

The instructor is to assist the students in desgttie circuit shown in the figure below using
TkGate or another digital simulator program.

on B
X E off i_:;. EI]
_ E
v (R —
mas O '_.z
- 0 e
o ]
Z E :: :_'Jc

v

In addition to the gates already discussed in ¢lagspicture contains one OR gate, two AND
gates, three NOT gates (inverters), and one NANB)gthis circuit contains two additional
types of components:

i

" Switches When set to then position, the output is high (i.e. true). Whentsethe
of f position, the output is low (i.e. false).

[ LEDs (Light Emitting Diodes): when the signal connected to the LED is HIGH, the

LED glows (turns red on the screen). When the sigoianected to the LED is LOW, the LED is
off (pink on the screen).

1.2 To test this circuit, we need to activate tineutator. From thési nul at e menu,

chooseBegi n Si nmul at i on. Alternately, you can click the play icon in tle®kbar at the top
of the TKGate window.

Now from theSi mul at e menu, choos&un, or, alternately, click the play button once more.
Now the power is on. You should see little AND gatearching along in the bottom right corner.
This means we are Run mode. The switches are sending a 0 signal. The_&@s at the right
should be pink, representing a 0 signal.



The purpose of this circuit is to demonstrate ghtly extended version of one of the DeMorgan’s
laws of logic that states that

not (Xand Y and Z,= (not X) or (not Y') or (not Z2)

In the circuit, B and C both take on the value of

not (X and Y and Z) while D is (not X) or (not Yoj (not Z)

Fill in the following truth table for each possildembination of inputs (use 0 to represent OFF, a
pink LED; and use 1 for ON, a red LED). You cap #i switch from OFF to ON (or from ON to
OFF) in the simulation by clicking on it.

Once you are done filling in the table go backttht mode. Thd kgat e logo, should appear
in the lower right corner of thekgat e window.

X|Y|Z B C D
010

0O10]1

o11]|0

O11]1

1100

110]1

11110

11111

Truth table for 1abl-1.+w



Week 6 Practical

Objectives:

1. Design and implement Boolean logical equations.
2. Design and Implement a logical circuit with 4 inputs.

Design and Implementation of a logical circuit with4 inputs

In this lab exercise you will design a circuit thaill be used to choose between two
values: its input will be the two logical valuesad b, and twaontrols c1 and c2 that
determine which of a and b it should choose. liscttue, then the circuit should output a
AND b. If c1 and c2 are both false, then the cirehiould output a OR b. Otherwise the
circuit should output 1, regardless of the valulea and b. Design a circuit that achieves
this goal on a piece of paper.

Now, implement your circuit using TKGate. Your aiit should have an LED at the
output. The 4 inputs and the output should look tikis:

cn

E off
Cuatput

an

s RS —— :
con
] | = off
ozl
e 0FF

You can now add the gates needed to achieve ysigrdeand then connect them up.
Recall that to create a gate in TKGate, you shdiuddl make sure thatkgat e is in

“move/connect” mode.
Now, left-click at the location where you want tha&te; & x should appear where you
clicked. Go to the Make menu, select the Gate sabmand then select the gate you

x

want to create. It should appear where
adjust its position if necessary.

was. You can left-click on the gate and



To wire your gates up, you should hold the left seiutton down on the inputs or
outputs of the components until the soldering icorsor appears and then drag to draw
the wires. Let go of the mouse button near otheéeswvio make a connection. To add
comments to the diagram, for example to indicatéclwiexpressions are calculated by
which gates, select Comment from the Make menu. ,N&mulate your circuit, and
verify that it works as expected. Once you belithett this is the case, show both your
design on paper and your TKGate simulation to yostructor.

1.1 Exercise

The Figure below shows “chains” and “trees” of gdte five common gates.

1. Add the gates and connections for the NOR chathXOR tree.

2. For which gates do the chain and tree comp@atesdme result?

3. Which chains and/or trees compute the funct#oar(d B) or (C and D)

4. Which of the chains and/or trees compute thetfon that is true if and only if an odd
number of A, B, C, and D are true?

AND_chain OR_chain NAND chain NOR_chain XOR_chain

A 5
a[Bi | ‘ Da
5[ | Ds
"B ] o

A
} '

AND tree OF_tree NAND tree NOR_tree XOR_tree

Figure 2: Another circuit



Week 7 Practical

Objectives:
1. Implementing Boolean Logic Equations
2. Compare between the outputs of logical circuitand logical equations

Implementing Boolean Logic Equations

In Digital Electronics, circuits can be designeahfrlogical equations and vice versa. In
this lab exercise, we will use Boolean algebrangéfy a logical equation and you are
required to implement a circuit based on the equaising TKGate or any other digital
simulator package. Test your design and comparengsult with that of the Boolean
simplification.

C=(B+ (A* B)) [given fornul a]

C=B~* (:ZZTZE): [DeMorgan (A + B) = A * B
C=B* (A* B [;\:A {doubl e negative}]
C=(A*B) * B [A* B=B* A

C=A* (B* B) [(A* B) *C=A* (B* O]
C=A*0 [A* A= 0]

C=0 [O*A=O]

Using Boolean Algebra, the above formula is protecealways result in a logical O
output. No matter what A and B are, C is alwaysgchal 0.

Now simulate the circuit as shown above and sgalivays give 0.



Exercise 2:

I:
h—  B— Z:

C=((A* B + (A+B) [ gi ven fornul a]
C=((A* B + (A+B) [;\:A {doubl e negative}]
C=(A* B) * (_;:L_é)_ [DeMorgan (A + B) = A * B
C=(A* B * (A+ B [Z:A {doubl e negative}]
C=(A+B) * (A+B) [DeMorgan (A * B) = A + B
C=((A+B) *A + ((A+B * B
[A*(B+Q =(A* B + (A* O]
C=(A* (A+B)) + (B* (A+B) [A* B=B* A
C=((A*A +(A*B) + ((B* A + (B* B)
[A*(B+Q =(A* B + (A* O]
C=((0+ (A*B) +((B*A +0) _
[A* A= 0]
C=(A* B) + (B* A [0 + A = A

This formula indicates that C is true if A is traled B is false, or when B is true and A is
false. This function is called the XOR (exclusivRBORemember that in an OR gate, one
input true will create a true output, and thataftbinputs are true the output is still true.
The XOR function will give a false output if bothiguts are true as well as both false,
and will only give a true output when the inputs different.

Now simulate the circuit as shown above and comibereesult.



Week 8 Practical

Objectives:

Implement the Half-Adder and the Full-Adder usiniggic
simulator software (TKgate).

Designing a Half-Adder to compute a 1-bit sum

Let us now consider the design for a simple addatr takes two bitsx and

y as inputs and produces two outpsm and carry. For example, if the
inputs are 1 and 1, the sum is 2, or in binarySifice our adder only creates
a one bit sum, that's a sum of 0 with a carry offfie decimal equivalent
would be a one digit adder that might take inpiks 5 and 8 to produce a
sum of 3 and a carry of 1 (in other words, 13).

Start by filling in the table below for computisgmBit andcarryBit from x
andy. Determine what logic gates match these truthetafiteating 1 as true
and 0 as false). Then, draw a circuit that takeand y as inputs and
produces theumBit andcarryBit bits as outputs.



X y | sumBit carryBit
0 0
0 1
1 0
1 1

Your circuit is commonly called a “half-adder.”

In order to implement the above truth table, iree that returns a sum bit of
1 only when the two inputs are not the same, abidvaen they are, an XOR
gate is required. This will work perfectly for tHiest three entries of the
truth table because there are no carry bits. AsHerfourth entry, which

happens to be a 0 sum bit with a carry bit of 1X&R gate alone cannot
achieve that until an AND gate is added to take cédithe carry bit.

This is illustrated in the figure below;

Now, startTKGate and design the circuit above.



Depending on the order in which you make the comores, TKGate might
rename some of the input and output ports to ndrkeswvO, or wl, etc.
Check the names of the ports — they shouldk,bg, sum, andcarry. If
TKGate changed any of them, select the altered port wietitanouse-click,
then get the “Properties” menu by holding downrigat mouse button over
the port, selecting properties, and releasing t#ob. You can fill-in the
correct name in the “Net name” entry and then cl@k.”

Now, you can simulate your circuit. It is a goo@adto save your work at
this point before you start the simulator. Run $imaulator and verify that
your half-adder works.

Design of a One-Bit Full-Adder:

The one-bit half-adder is great if all you wantdimis add O or 1 to O or 1.
However, most situations require working with largeimbers. We could
make a bigger addition table, but a 1-billion byillion addition table is
rather impractical. Instead, we will take anotrekK at the way we learned
to add in elementary school: one digit at a time &&n build hardware that
works on the same principle.

The half-adder that you designed in the last Labr@se is a good start.
However, it only adds the bits from x and y, aneéslaoot take into account
any carry generated by the previous bit. Thus, eednan adder that takes
three input bits: one for a bit from x, one foriafboom y, and one for the
carry from the preceding bit. A circuit that dodsstis called gull-adder.
We will describe two ways to build a full-adder. tinis exercise we will
build a full-adder out of half-adders.

Implementing a Full-Adder with Half-Adders
Suppose that we have combined a bit from x witht &dom y using the half-

adder that you designed in the last Lab exercismyv,Nve have an input
carry, so the situation looks like:



Half-Adder

X —3| X carryl—— cout

y— 3]y suml— 3 S

cin » 7

Figure 1: A half-adder with an extra input carry.

where cin is the input carry, and cout is the outaury. What should we do
with cin? From the pencil and paper method for agdwe know that we
should add the input carry to our result. But howowdd we do this?
Consider the following computation:

+ b
cout =

+ cin

If the sum s+cin is 0 or 1, then everything is fiaed we can compute the
answer using two half-adders:

Half-Adder

X ylx carryp— cout

Y—3|y  suml—s|x carryl—s ignore

cin |y SUM f— sum
Half-Adder

Figure 2: two half-adders to (almost) add two bits and a carry.

But what if the sum s+cin is 2? In this case, il generate its own carry
(the bit labeled ignore in the figure), which ne¢dde added to the carry
cout from the first half-adder (since both of theapresent the value 21).
This suggests that we use one more half-addeilas/fo



Half-Adder Half-Adder

X ylx  carry »|x carryl—s cout2

Yy— 3|y  SUMl—s|x carryl—ly Sump_g cout
cin y

Y

SUMm > sum
Half-Adder
Figure 3: three half-adders to add two bits and a carry.

What should we do with the additional carry cout#f2hing, since as we are
only adding three bits together, the largest pésssbom is 3, so that last
carry will always be 0. This means that we can rgnmut2 and we do not
need the part of the rightmost half-adder in FigBréhat produces cout2.
Draw the part of that last half-adder that produzmad from x and .

2
/ cﬁ—r\ T=(4 ®E)@®C
G 7 S
Cr (A ®E)

W AR Co=AB+{AEE) O

Logic Circuit for the full-adder



Week 9 Practical

Obijectives:

To understand the characteristics of various logidagates.

Understanding AND Gates

If we think of two signals, A and B, as represeqtia truth value of two different
propositions, then A could be either TRUE (a logitaor FALSE (a logicaD). B can
take on the same values. Now consider a situatiovhich the output, C, is TRUE only
when both A is TRUE and B is TRUE. We can congtaucuth tablefor this situation.

In that truth table, we insert all of the possibembinations of inputs, A and B, and for
every  combination of A and B we list the output, C.

True als als
True|[True|(True

An AND Example

Let's imagine a physician prescribing twags. For some conditions drdyg is
prescribed, and for other conditions diigs prescribed. Taken separately each drug is
safe. When used together dangerous side effex{zraduced.

Let
« A =Truth of the statemefiDrug 'A' is prescribed."

« B = Truth of the statemefDrug 'B' is prescribed."
« C = Truth of the statemehthe patient is in danger.”

Then, the truth table below shows when the patient is in danger.

Fals Fals Fals
Fals True Fals




True||Falsqd|Fals

True||True(|True

Notice that C is TRUE when both A AND B are truelamly then!

AND GATES

An AND function can be implemented elealig using a device known as an AND
gate. You might imagine a system in which zeroigGepresented by zero (0) volts, and
one (1) is represented by three (3) volts, for gdam If we are going to use electrical
devices we need some sort of symbolic representafitiere is a standard symbol for an
AND gate shown below.

-

Often in lab work it's helpful to use anEo show when a signal 8 or 1.
Usually al is indicated with an LED that is ON (i.e. glowing)

+ To get a logicakerqg connect the input of the gate to ground to hmare (0) volts
input

« To get a logicabne connect the input of the gate to a five (5) velisirce to have
five volts at the input

« Each button controls one switch (two buttons - tsvatches) so that you can
control the individual inputs to the gate.

« Each time you click a button, you toggle the swiizhhe opposite position.

Exercise

1. You have an AND gate. Both inputs are zero.aW#the output?

2. Assume you have an AND gate with two inputs, A &dDetermine the outpu€,
for the following cases.

A c
B '
P1.A=1,B=0

P2.A=0,B=1



P3. If either input is zero, what is the output?

P4 A=1,B=1



Understanding OR Gates

Consider a case where a pressure can be hightengparature can be high Let's assume
we have two sensors that measure temperature @sdype.. The first sensor has an
output, T, that isl when a temperature in a boiler is too high, @ndtherwise. The
second sensor produces an output, P, that when the pressure is too high, abd
otherwise. Now, for the boiler, we have a dangeraituation when either the
temperature or the pressure is too high. It omkes$ one. Let's construct a truth table for
this situation. The output, D, is 1  when danger exists.

T lp_|o |

Falsg
True|[True|(True

What we have done is defined @R gate. An OR gate is a gate for which the
output is1 whenever one or more of the inputs is 1. The wuty an OR gate i6 only
when all inputs are 0. Shown below is a schensgtnebol for an OR gate, together with
the simulated LEDs and input buttons so that youecglore OR gate behavior.

Exercise

Assume you have an OR gate with two inpAitand B. Determine the output, C,
for the following cases.

1. A=1,B=0

2.A=0,B=1

3. If either input is one, what is the output?



NOT Gates (Inverters)

A third important logical element is the inverteAn inverter does pretty much what it
says. If the input i§, the output id. Conversely, if the input i%, the output i9.

Exercise

You need to control two pumps that supply two dédfé concentrations of reactant to a
chemical process. The strong reactant is used wHdan very far from the desired value,
and the weak reactant when pH is close to desired.

You need to ensure that only one of the two puraps at any time. Each pump
controller responds to standard logic signals, ihathen the input to the pump controller
is 1, the pump operates, and when that inputtiseOpump does not operate.

Design a circuit to operate this process using d lgate.

NAND Gates

There is another important kind of gate, tRGND gate. Actually, the way to start
thinking about a NAND gate is to think of it as AND gate with an inverter on the
output. That's shown below.

=i e

Actually, however, the symbol for a NAND gate coegses the inverter down to a dot at
the output of the NAND gate as shown below.

—P-



Week 10 Practical

Obijectives:

To trace the Technological Advances in the Manui@cof Gates

Technological Advances in the Manufacture of Gates

In electronics, an integrated circuit (also knowri@, microcircuit, microchip, silicon
chip, or chip) is a miniaturized electronic circ(gbnsisting mainly of semiconductor
devices, as well as passive components) that resrhanufactured in the surface of a
thin substrate of semiconductor material. Integraiecuits are used in almost all
electronic equipment in use today and have revanized the world of electronics.

1. Conduct research on the Internet to investitfeesequence of events that led to the
manufacture of the first micro chip by Jack KilblyT@xas Instruments. Your write up
should include;

1.1 Vacuum Tube Computers
1.2  Transistor-based Computer
1.3 Comparison between Vacuum Tube computers eantsiBtor-based computers.

1.4  The drawbacks of using Vacuum Tubes and Tramsisn computer architectural
design.



Week 11 Practical

Obijectives:
Understand the basic concepts of Small Scale latieg(SSI), Medium

Scale Integration (MSI), Large Scale Integratib81§, and Very Large
Scale Integration (VLSI).

Understand the basic concepts of SSI, MSI, LSI, VUS

Discuss Integrated Circuits under the followingdiegs

1. Small Scale Integration (SSI)
2. Medium Scale Integration (MSI)
3. Large Scale Integration (LSI)

4. Very Large Scale Integration (VLSI)



Week 12 Practical

Objectives:
1. Implement sequential circuits
2. Design and test a transparent latch

This lab introduces circuits that can perform seges of steps and remember
information from previous steps. These circuitstasically made dlip-flops that can
remember values from one step to the next.

Designing a Transparent Latch

Figure 1 shows the first circuit that we will codsi.

% on
alB DS

enfﬁ; [>° |__)_;~»’

Figure 1: A Transparent Latch

When we write down the logic equations for thicgit, we get:
x =d AND en

y =qAND _en

q=x_Y

This acts as a two-input multiplexer with outputhat selectsl whenen is true and
selectqy whenen is false. Writing out these two cases we get:

Caseen:
x=d
y=F
q=X

Substitutingk = d into g = x we getq = d. In other words, whean is true, the outpu
matches the data inpdt The other case is:

Case en:



o X
Inm
<O

The equations fog andy give us two equationy,= q andq =y in two unknownsg
andy. Because andy are Boolean valued, each must be either true se faBMe note
thatq =y =T andq =y = F are both solutions.

How does the circuit know which solution to choo¥éf?enen is true,q takes on the
value ofd. Whenen is false g retains whatever value it had whem went from true to
false. Thusq “remembers” the value thdthad wheren was true. Whileen is false,q
retains its value and is unaffected by changek @his circuit is called a transparent
latch.

Start up TKGate and design the circuit in figur& ien verify the operation of the latch.
For example, changewhenen is low, and then again whem is high. Show that you
can store both high and low valuesdo#ithin the latch.

You may observe that if you start the simulatohwite switch foen in the off (i.e. low)
position, then the LED faq is yellow. This indicates that the value fprs “undefined;”
in other words, TKGate can't figure outgfshould be high or low. When you sat
high, q will take on the value afl and will no longer be undefined.



Week 13 Practical

Objectives:
1. Implement sequential circuits
2. Design and Test a D-Flip Flop

Designing a D Flip-Flop

Now, let us look at an extension of the previowsidhe D Flip-Flop. Flip-flops are circuits that
combine a pair of latches along with circuitry engrate a clock (a signal that is first high, then
low, then high, then low, then high, then low, etéigure 2 shows the circuit that is known as a D
flip-flop.

In the circuit in Figure 2, the pair of NOR gatesldhe inverter at the bottom of the diagram
produce two control signals, such tpatse-1 is low whenevephase-2 is high, and the other
way around. These two signals come from a singdaticlk. Theclk input is referred to as the
“clock.” It is the clock that tells the flip-flop® update their outputs. In other words, with each
clock event, the hardware moves to the next stégs sbmputation. This is the same clock that
appears on advertisements for computers. For exatm@al computer has a 3.2GHz clock, that
means that it the hardware performs 3.2 billiothefke basic steps per second.

Note that some of the gates at the bottom of thed are needed to make sure the signals go low
or high at exactly the right time.



on
i x
d wase Off =] d ar= d j

a|-+
transparentLatch transparentLatch
en en
.?
clkE|3:o<}
phase-1 DC . phase-2
[ cn
L
clk

Figure 2: A D Flip-Flop

Consider the situation whetk is low. In this case;lkB is high; thereforephase-2 is low; and
finally, phase-1 is high. This means that the valuedris transferred to node Whenclk goes
high, clkB andphase-1 go low. This in turn causgshase-2 to go high. Likewise, whealk

goes lowgclkB will go high; phase-2 will go low; andphase-1 will go high

The combined effect of the two latches is thatvhleie ofd is copied to the) when the clock
makes a low-to-high transition. At all other tingeretains its value, independent of any changes
tod. This circuit is called a positive-edge-triggei2dip-flop. The term “positive-edge-
triggered” refers to the property thathanges when the clock goes high (i.e. on thegisidye

of the clock). It's called a “D flip-flop” becaugbe value ofy is determined by the “data” input
(i.e.d).

Now, simulate this circuit and verify that wheneteeclk signal goes from low to high,
theq output takes on the current valuedofShow that you can chandeat other times,
whether the clock is high or low, without affectiag



WEEK 14 PRACTICAL

Objectives:

1. Ability to design counter circuits

Counters

One common requirement in digital circuitosinting, both forward and backward.

Digital clocks and watches are everywhere, timers are found in a range of appliances
from microwave ovens to VCRs, and counters for other reasons are found in everything
from automobiles to test equipment.

Although we will see many variations on the basic counter, they are all fundamentally
very similar. The demonstration below shows the most basic kind of binary counting
circuit.

In the 4-bit counter below, we are using edge-triggered master-slave flip-flops. The
output of each flip-flop changes state on the falling edge (1-to-0 transistion) of the T
input.

The count held by this counter is read in the reverse order from the order in which the
flip-flops are triggered. Thus, output D is the high order of the count, while output A is
the low order. The binary count held by the counter is then DCBA, and runs from 0000
(decimal 0) to 1111 (decimal 15). The next clock pulse will cause the counter to try to
increment to 10000 (decimal 16). However, that 1 bit is not held by any flip-flop and is
therefore lost. As a result, the counter actually reverts to 0000, and the count begins
again.

A B C D

O O l'.?l!J

— al- 0- af-

Use a different input scheme, as shown in the figure below. Instead of changing the state
of the input clock with each click, you will send one complete clock pulse to the counter
when you click the input button. The button image will reflect the state of the clock pulse,
and the counter image will be updated at the end of the pulse. For a clear view without
taking excessive time, each clock pulse has a duration or pulse width of 300 ms (0.3
second). The demonstration system will ignore any clicks that occur within the duration
of the pulse.



Q Q—I_ Q QJ
—::--Tﬁ = = T

- ol

=)
|
=]

A major problem with the counters shown here i$ tha individual flip-flops do not all
change state at the same time. Rather, each digpil used to trigger the next one in the
series. Thus, in switching from all 1s (count = ficball Os (count wraps back to 0), we
don't see a smooth transition. Instead, outputlla fast, changing the apparent count to
14. This triggers output B to fall, changing thepagent count to 12. This in turn triggers
output C, which leaves a count of 8 while trigggroutput D to fall. This last action
finally leaves us with the correct output counzefo. We say that the change of state
“ripples” through the counter from one flip-flopttee next. Therefore, this circuit is
known as dripple counter.”

This causes no problem if the output is only tadsed by human eyes; the ripple effect is
too fast for us to see it. However, if the courtbide used as a selector by other digital
circuits (such as a multiplexer or demultiplexéng ripple effect can easily allow signals
to get mixed together in an undesirable fashionpfBwent this, we need to devise a
method of causing all of the flip-flops to changgts at the same moment. That would be
known as a "synchronous counter" because thel@jgsfwould be synchronized to
operate in unison.



Week 15 Practical

Objectives:

Ability to design counter circuits

A Binary Counter

Using the basic building blocks of gates and flgps, we can build every
digital function. In this exercise, we will be dgsing a four bit counter. The
Figure below shows its design:



carr}r—out

q[= q3
dff
>|d
clk
|+
—
v
a—O g2
dff
3|d
clk

q[ D q1
dff
>|d
clk
4 [t
af= (D qo
dff
+| d
clk
f
on on an
Euﬁ "n_"Dﬁ ﬁ‘oﬁ‘
reset clk enable

Figure 4. A Four-Bit, Binary Counter



As with the toggle element, theeinputs of all of the flip-flops are forced
low whenreset is high. Note that each AND gate on the right hasatput
that is true if-and-only-if the outputs for all flip-flops below the gate are
true. Thus, each XOR gate inverts theutput if-and-only-if all of theg
outputs below that stage are true. This is exdb#ysituation when a carry is
generated by the lower bits when adding one tathneent value.

Implement this module and start the simulator.tBeteset signal to high.
Toggle the switch for thelk signal and all of the outputs should go low.
Now, set theeset signal to low. Toggle the switch for tioék signal several
times and observe how tlgesignals count in binary.



	Cover
	Table of Contents
	Week 1 Practical
	Week 2 Practical
	Week 3 Practical
	Week 4 Practical
	Week 5 Practical
	Week 6 Practical
	Week 7 Practical
	Week 8 Practical
	Week 9 Practical
	Week 10 Practical
	Week 11 Practical
	Week 12 Practical
	Week 13 Practical
	Week 14 Practical
	Week 15 Practical
	Return to Table

