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Week 1

Objective:
1. To understand number systems

Number Systems
Decimal System

The Decimal system is what you use everyday whencgaint/ Its name is derived from
the Latin word Decem, which means ten. This makese since the system uses ten
digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Thesetsligie what we call theymbolsof the
decimal system.

Since we have ten symbols, we can count from Q tdo®e that O, even though it often
means 'nothing’, is a symbol that counts! After gdu need a numeric way to say
'nothing’. When you want to count past what younmée symbols will allow, you
combine multiple digits. The table below shows @uscept, which is demonstrated by
adding one for every step:

0 1 2 3 4 5 6 7 8 9
10 | 11 12| 13| 14 13 14 1f 18 ]H9
20 || 21| 22| 23| 24 25 26 2 28 419

The table has 10 numbers across, which is the samber of symbols as the decimal
system. As you look at row 2, you notice that wdeatisymbol 1 to the 0, making 10. In
row 3, the one is replaced by a 2, giving 20. Turéher you go down the table, the higher
the numbers get.

Binary Number System

Binary is a number system used by digital devidessdomputers, cd players, etc. Binary
is Base 2 unlike our counting system decimal wigcBase 10 (denary). In other words,
Binary has only 2 different numerals (0 and 1),ikenDecimal which has 10 numerals
(0,1,2,3,4,5,6,7,8 and 9). Here is an examplemhary number: 10011100



As you can see it is simply a bunch of zeroes areb othere are 8 numerals in all which
make this an 8 bit binary number, bit is short Binary Digit, and each numeral is
classed as a bit.

The bit on the far right (in this case a zero) m®Wkn as the Least significant bit (LSB),
and the bit on the far left (in this case a 1)riewn as the Most significant bit (MSB)

When writing binary numbers you will need to sigrifiat the number is binary (base 2),
for example take the value 101, as it is writtewauld be hard to work out whether it is
a binary or decimal (denary) value, to get aroumsl problem it is common to denote the
base to which the number belongs by writing theebeslue with the number, for
example:

1012 is a binary number and 10110 is a decimalgidgvalue.

Octal Number System

Although this was once a popular number base, edpein the Digital EqQuipment
Corporation PDP/8 and other old computer systems rarely used today. The Octal
system is based on the binary system with a 3duhtary. The Octal Number System:

Uses base 8
Includes only the digits O through 7 (any otheritdigould make the number an
invalid octal number)

The weighted values for each position are as falow

8° 8* 8° 82 8! 8°

32768 4096 512 64 8 1

Hexadecimal Number System

Binary is an effective number system for compubsrsause it is easy to implement with
digital electronics. It is inefficient for humans tise binary, however, because it requires
so many digits to represent a number. The numbeior @xample, takes only two digits

to write in decimal, yet takes seven digits to aviit binary (1001100). To overcome this
limitation, thehexadecimal number systemas developed. Hexadecimal is more compact
than binary but is still based on the digital nataf computers.

Hexadecimal works in the same way as binary antgradgcbut it uses sixteen digits
instead of two or ten. Since the western alphatwetains only ten digits, hexadecimal



uses the letters A-F to represent the digits tevuthh fifteen. Here are the digits used in
hexadecimal and their equivalents in binary andniaic

Hex 0 1 2 3 4 5 6 7 8 g9 A B G G H H
Decimal| O 1 2 3 4 5 6 7 8 9 10 11 1 13 14
Binary ||0000/0001/00100011/01000101/011001111000100110101011110011101{11101111




Week 2

Objective:

1. Understand Number Systems

2.  Conversion from Binary to Decimal & Decimal tcnBry
3. Conversion from Binary to Octal & Octal tonry

4. Conversion from Binary to Hexadecimal & Hegeitnal to

Binary

1 Binary to Decimal & Decimal to Binary

1.1 Binaryto Decimal Conversion

Binary Evaluate | 2* 2° 22 |2' 2 Decimal
Decimal Value 16 & 4 2 1 Value Number

0 = 0 0

1 = 1 1

1 10 = d4+2+0 G

10 1 0 = 8+0+2+0 10

10 1 1 0 = 16+0+4+2+0 22

11 0 0 1 = 16+8+0+0+1 25

1 1 1 1 1 = | 16+8+4+7241 k|

1.2 Decimal to Binary Conversion

To convert a decimal number to binary, first sutitthe largest possible power of two,
and keep subtracting the next largest possible péave the remainder, marking'1in
each column where this is possible and Os whesenibt.

Example 1 - (Convert Decimal 44 to Binary)



O =

Example 2 - (Convert Decimal 15 to Binary)

1
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Example 3 - (Convert Decimal 62 to Binary)

14

6 2
3 2
30
16

[

32 |16 4|2

110 110
32|16
o]0
32|16







Decimal Values and Binary Equivalents chart:

DECIMAL BINARY

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

16 10000

32 100000

64 1000000
100 1100100
256 100000000
512 1000000000
1000 1111110100
1024 10000000000

1.3 BinarytoOctal & Octal toBinary
The following table show Octal numbers and thenmay Equivalent

0 000
1 001
2 010
3 011
4 100
5 101
6 110

7 111



1.4 Binaryto Octal Conversion
It is easy to convert from an integer binary nuntbesctal. This is accomplished by:

1. Break the binary number into 3-bit sections from L$B to the MSB.
2. Convert the 3-bit binary number to its octal eqlena

For example, the binary value 1010111110110010beilvritten:

001 010 111 110 110 010
1 2 |7 [ 6| 6 2

1.5 Octal to Binary Conversion
It is also easy to convert from an integer octahbar to binary. This is accomplished by:

1. Convert the decimal number to its 3-bit binary eglent.
2. Combine the 3-bit sections by removing the spaces.

For example, the octal value 127662 will be written

1 2 7 6 6 2
001 010 111 110 110 010

This yields the binary number 00101011111011001@0ct010 1111 1011 0010 in more
readable format.



1.6 BinarytoHEX & HEXtoBinary

HEX  BINARY

= 0000
= 0001
= 0010
= 0011
= 0100
0101
= 0110
= 0111
= 1000
= 1001

BT O e G0 RN LN PG W R
|

= 1010
= 1011
= 1100
= 1101
= 1110
= 1111

TE 00w

Using this relationship, you can easily convertabjnnumbers to hex. Starting at the
radix point and moving either right or left, bretde number into groups of four. The
grouping of binary into four bit groups is calleithdry-coded hexadecimal (BCH).

Convert 1110100110 hex:

0001‘1191‘9011.2

Fadix Point
! | D | 3 -

~ 16

Add Os to the left of the MSD of the whole portiohthe number and to the right of the
LSD of the fractional part to form a group of fo@onvert .111to hex:

Convert .111to hex:

1110,
E1g

In this case, if a 0 had not been added, the cesimremwould have been ., 7which is
incorrect.



Convert the following binary numbers to hex:

Ql.10
Q2.1011
Q3.101111
Q4.0011
Q5. 110011



Week 3

Objective:

1. Binary Coded Decimal

2. Excess-Three Code

3. Seven Segment Display Code

Binary Coded Decimal

Binary-coded decimal(BCD) is an encoding for decimal numbers in which edigit is
represented by its own binary sequence. Its matoevis that it allows easy conversion
to decimal digits for printing or display and fastecimal calculations. Its drawbacks are
the increased complexity of circuits needed to anmp@nt mathematical operations and a
relatively inefficient encoding—it occupies moreasp than a pure binary representation.
In BCD, a digit is usually represented by four bithich, in general, represent the
values/digits/characters 0-9. Other bit combinaiare sometimes used for sign or other
indications.

Excess-three Code:

A number code in which the decimal digitis represented by the four-bit binary
equivalent oh + 3.

Excess-3 binary coded decimal (XS-3), also cdtiededrepresentation dexcess-N is
a numeral system that uses a pre-specified nuMlsra biasing value. It is a way to
represent values with a balanced number of positivenegative numbers. In XS-3,
numbers are represented as decimal digits, anddgitis represented by four bits as
the BCD value plus 3 (the "excess" amount):

« The smallest binary number represents the smaidse. (i.e. 0 - Excess Value)

- The greatest binary number represents the largése \v(i.e. 2 - Excess Value -
1)

Decimal Binary Decimal Binary Decimal Binary Decimal Binary
-3 0000 1 0100 5 1000 9 1100
-2 0001 2 0101 6 1001 10 1101

-1 0010 3 0110 7 1010 11 1110



0 0011 4 0111 8 1011 12 1111

To encode a number such as 127, then, one simpbdes each of the decimal digits as
above, giving (0100, 0101, 1010).

The primary advantage of XS-3 coding over BCD cgd@that a decimal number can be
nines' complemented (for subtraction) as easily bimary number can be ones'
complemented; just invert all bits.

Adding Excess-3 works on a different algorithm tiBD coding or regular binary
numbers. When you add two XS-3 numbers togethemgsult is not an XS-3 number.
For instance, when you add 1 and 0 in XS-3 the anseems to be 4 instead of 1. In
order to correct this problem, when you are fincsadding each digit, you have to
subtract 3 (binary 11) if the digit is less tharideal 10 and add three if the number is
greater than or equal to decimal 10.

Seven Segment Display Code:

Binary numbers are necessary, but very hard to seaterpret. A seven-segment (LED)
display is used to display binary to decimal infatian.

A seven-segment display may have 7, 8, or 9 leadb@® chip. Usually leads 8 and 9 are
decimal points. The figure below is a typical com@ot and pin layout for a seven
segment display.
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7 SEGMENT DISPLAY

The light emitting diodes in a seven-segment displ@ arranged in the figure below.
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DIODE PLACEMENT IN A SEVEN SEGMENT DISPLAY

The image below is your typical seven segment displith each of the segments labeled
with the letters A through G. To display digits threse displays you turn on some of the
LEDs. For example, when you illuminate segmentsn8 & for example your eye

perceives it as looking like the number "1." Liglg A, B, and C and you will see what
looks like a "7."




Week 4

Objective:

1. Know the fundamentals of Boolean Algebra
2. Understand Boolean Postulates

3. Minimize Logical expressions algebraically.

Boolean Postulates

Introduction

The most obvious way to simplify Boolean expressimito manipulate them in the same
way as normal algebraic expressions are manipulsltéith regards to logic relations in
digital forms, a set of rules for symbolic manigida is needed in order to solve for the
unknowns.

A set of rules formulated by the English mathematicGeorge Booledescribe certain
propositions whose outcome would be eittree or false With regard to digital logic,
these rules are used to describe circuits whose s be eithed, (true) or 0O (false)in
order to fully understand this, the relation betwdge AND gate, OR gate and NOT gate
operations should be appreciated. A number of recdesbe derived from these relations
as Table 1 demonstrates.

« P1:X=0o0orX=1

« P2:0.0=0

e P3:1+1=1

« P4:0+0=0

« P5:1.1=1

« P6:1.0=0.1
+

0
. P7:1+0=0+1=

1=1

Table 1: Boolean Postulates

Laws of Boolean Algebra

Table 2 shows the basic Boolean laws. Note thatydag has two expressions, (a) and
(b). This is known asluality. These are obtained by changing every AND(.) tq#)R
every OR(+) to AND() and all 1s to O0s and \viarsa.

It has become conventional to drop tf&ND symbol) i.e. AB is written as AB.

Commutative Law
€)) A + B = B + A
(b)AB=BA



Associate Law
(@) (A + B) + C = A + (B + C)
()(AB)C=A(BC)

Distributive Law
(a) A (B + C) = A B + A C
()A+(BC)=(A+B)(A+C)

Identity Law
(a) A + A = A
(b)AA=A
(a) AB+AF=4

(b) (A+BIA+E) = 4

Redundance Law

(a) A + A B = A
(b)A (A+B)=A

@) 0 + A = A
(b)0A=0

(a) 1 + A = 1
(b)1A=A

@) A+a=1
(b)y A4=0

@) A+ AB=A+B

(b) AfA +B)=AB
De Morgan's Theorem

De Morgan's theorem are rulesfammal logicrelating pairs of dudbgical operatorsn a
systematic manner expressed in termseafation The relationship so induced is called
De Morgan duality.

not (P and Q) = (not P) or (not Q)
not (P or Q) = (not P) and (not Q)

De Morgan's laws are based on the equivalent tralines of each pair of statements.



(a) (A+85)
(b) (AF)= A+ 8

Minimize Logic Expressions Algebraically

Using the laws given above, complicated expresstansbe simplified.

Z=(4 +B+ T4 + B

Z=AA +ABC + AB + BBC + AT + BCC

Z=A +BC +E+ )+ B0 +B0T  from laws T8b and Th
Z=4+EFT fromlaws T8a, T8k and Tk



Week 5

Objective:

1. Know the fundamentals of Boolean Algebra.

2. Understand Boolean Algebra Manipulation.

3. Using Boolean Postulates to minimize Logic emqunat

Basic Digital Logic

There are three major functions in Digital Electosn These functions are used to make
more complicated circuits, so an understandingoef these building blocks work is key
to understanding how circuits work.

The "AND" function requires that multiple inputseaall true for the output to be true.

For example, if you turn your car's ignition keydastep on the gas, then your car will
start. Simply turning the key or stepping on the ga't enough, both must be done to get
the correct output. Likewise, all the inputs intbAND gate must be true for the output

to be true.

The "OR" function requires any input to be truetfog output to be true. For example,
you can enter your home through either the back dofront door. Once you enter
either one, you are inside your home. Likewisdeast one of the inputs into an OR gate
must be true for the output to be true. If morentbee input is true, the output is still
true, since the minimum requirement is one.

The "INVERTER" function (also known as the "NOTinply changes the condition. If
it was true it becomes false, and if it was fatdgecomes true. For example, it is never
day and night at the same time. If it is day, nas night. Likewise, an INVERTER gate
will logically change the input. For the outputiie true, the input must be false.

In digital electronics, a false condition is 0 woftalled VSS), while a true condition is
the applied voltage (called VCC or VDD). Since #pplied voltage can range from
under 3 volts to 5 volts, the true condition ismaHy simply called a logical 1, and the
false condition is called a logical O.

Using this information, it is possible to createawfs called a "truth table." A truth table
lists each possible input combination, and theltieguoutput for each combination.
While the AND and the OR functions can each hawedwmore inputs, the truth table
given here will assume two inputs.

AND oR I NV
#1 #2 O #1 #2 O I O



RrRL OO
RORrO
RrOoOoOOo
RrRL OO
RORrO
PR RO

O

or

To read this table, read across. For example, éolke third line down. If input #1 is a
logical 1 while input #2 is a logical 0, the outmiitan AND gate is a logical 0. On the
other hand, the same inputs into an OR gate wilegege a logical 1 output. Remember
that for an AND gate all inputs must be true (inpLUtAND input #2) to get a true output.
However, for an OR gate only one must be true {ifduOR input #2) to get a true
output.

Basic Boolean Algebra Manipulation
Boolean Algebra equations can be manipulated bgvihg a few basic rules.

Manipulation Rules

B + O

A ( A* B) + (A* 0
A+ (B* Q

(
(A+B) * (A+Q

A+B=B+A
A*B=B* A

(A+B) +C=A+(B+0
(A* By *C=A* (B* Q

Equivalence Rules

A=A (doubl e negati ve)
A+ A=A
A* A=A
A* A=0
A+A=1

Rules with Logical Constants

0O0+A=A
1+A=1
0* A=0
1* A=A

Many of these look identical to Matrix OperationdLinear Algebra. At any rate, this
permits a circuit designer to create a circuit@®mes to their mind, then manipulate the
formula to generate an equivalent circuit that dbessame thing but requires less space.

This can be illustrated using the 5th manipulatide.



D= (h+*E)+ (&*C)

Using the rule, generating an equivalent circuat tfioes the exact same thing, but be less
complicated, can be done with reasonable ease.

Ay

D=4%(B+0)

In the case of CMOS, the right hand side of thenfda can also be manipulated, just
always remember to invert. The manipulation occunder the invert bar.

D=(A* B) + (A* O

is the same as...

D=A* (B + 0

The manipulation is done the exact same way. Omere tis a simplified formula, using
the rules with logical constants permit the placenud values directly into the formula to
see what the answer is. For example, using theeabon inverted formula, C is a logical
1.

1]
Al

vAvAvAw)
(I I T

If C is known to be a logical 1, anything OR loditas always a logical 1. Since the
minimum requirement is one input, once a singleling true (in this case C), the other
inputs don't alter the result. On the other haine AND gate requires all inputs. With
B+C true, the only other requirement is A. As therfula gave, D will be whatever A is.



Many Boolean Algebra problems can be solved usiagerthen one formula, just like
most Algebra problems. For example...

D

I

D:m [ gi ven fornul a]
D=A+ (B+ 0O [DeMbrgan (A * B) = A + BJ
D=A+ (B* O [DeMbrgan (A + B) = A * B]
D= (A+B) * (A+ 0O

[A+(B*C =(A+B) * (A+ Q]
D= (A* B) * (A* Q [DeMorgan (A * B) = A + B
D=(A* B) + (A* C [DeMbrgan (A + B) = A * BJ

Manipulation rule number 5 could have been usagbtrom the first step to the last one
in a single move. However, using DeMorgan's Theotemproblem turns into
something that manipulation rule number 6 can tteensed on instead. DeMorgan's
Theorem changes the logic of the formula.



Week 6

Objective:
1. Know the fundamentals of Boolean algebra
2. Understand Karnaugh Map

The Karnaugh Map

The Karnaugh map provides a simple and straightdod graphic method of minimising
boolean expressions. It groups together expressiwits common factors, thus
eliminating unwanted variables. With the KarnaugipmBoolean expressions having up
to four and even six variables can be simplified.

The Karnaugh map is a rectangular map of the vafube expression for all possible
input values, it comprises a box for

every line in the truth table. But A
unlike a truth table, in which the B \ A A

input values typically follow a —
standard binary sequence (00, ClA Y )/I'
10, 11), the Karnaugh map's inp§it

values must be ordered such t tO
the values for adjacent columnso
vary by only a single bit, for
example, 00, 01, 11, and 10. Th{s
ordering is known as a gray COdF

= O |- |O (0

and it is a key factor in the way i
which Karnaugh maps work.

Figure illustrates the concept of a Karnaugh foa Inputs.

Example of Karnaugh map for 2 input AND gate
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An Example of Karnaugh Map for AND gate

Lets take an example of 4 inputs (A, B, C and Dindsigure 2.

=

a0 01 11 10

oo

01

11

10

Figure 2: Thle ba"\sic Kérnaugh map

Two things are noteworthy about this map. Firstvei@rranged the 16 possible values of
the four inputs as a 4x4 array, with two bits eriegakach row or column.

The second and key feature is the way we numberotie and columns. They aren't in
binary sequence, as you might think. As you can tbey have the sequence 00, 01, 11,
10. Some of you may recognize this as a Gray code.

Why this particular sequence? Because the codesiat=d with any two adjacent rows
or columns represent a change in only one varidhlea true binary counting code,
sometimes several digits can change in a single $o& example, the next step after
0x1111 is 0x10000. Five output signals must charejaes simultaneously. In digital
circuits, this can cause glitches if one gate deaybit faster or slower than another. The
Gray code avoids the problem. It's commonly useapiical encoders.

Suppose the output value for two adjacent cellsessame. Since only one input variable
is changed between the two cells, this tells usttteoutput doesn't depend on that input.
It's a "don't care" for that output.
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Figure 3: Looking for patterﬁs

Look at Figure 3. Group X is true for inpud8CD = 0100 and 1100. That means that it
doesn't depend o, and we can write:

A =860(20)
Similarly, Group Y doesn't depend 8ror C. Its value is:
¥ =A0(21)

Note that the groupings don't necessarily haveetinbcontiguous rows or columns. In
Group Z, the group wraps around the edges of the ma

If we can group cells by twos, we eliminate oneutnBy fours, two inputs, and so on. If
the cell associated with a given output is isolatedepends on all four inputs, and no
minimization is possible.

The Karnaugh map gives us a wonderful, graphiadupe that lets us group the cells in a
near-optimal fashion. In doing so, we minimize tbpresentation. Neat, eh?
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Now let's see how Equation 2 plots onto the Karhaongp, as shown in Figure 4. To
make it easier to see, I'll assign a different lmase letter to each term of the equation:



i=Ar (22)

In this case, the individual groups don't mattecmtAll that counts is the largest group
we can identify, which is of course the entire piwé 16 cells. The outpuX is true for all
values of the inputs, so all four are don't-caneades.

As you can see, using a Karnaugh map lets us seeethlts and, usually, the optimal

grouping at a glance. It might seem that drawirfiguach of graphs is a tedious way to

minimize logic, but after a little practice, youtgehere you can draw these simple arrays
fast and see the best groupings quickly. You havadmit, it's a better approach than
slogging through Equations 2 through 19.



Week 7

Objective:
1. Know the fundamentals of Boolean algebra
2. Implement K-Maps with don’t care states

NAND and NOR implementation

Function F can be implemented using NAND gates,argy.

F="A.B+'A.C.D+B .C .DfA .C . D+B .C . D

Complement twice:

F=((F)

F="CA .B). (A.C.D).B.C.D).(A.C.D).(B.C .D
F now uses NAND gates only

Similarly, F can be implemented using NOR gatey onl

F="A.B+'A.C.D+B .C .DfA .C . D+B .C . D

F=(A+B).(A+C+D).(B+C+D).(A+C+D).(B+C+D)

F="(A+B)+ (A+C+ D)+ (B+ C+ D)+ (A+ C+D)+(B+ C+D)

Now a circuit diagram using NOR gates only can fzava



AAB'BCCD™D

OR
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K-Map with Dont care states

K-Map is constructed from a truth table, wheretlal combinations are given. Assuming
sum of minterms selection, a ‘1’ is inserted in Ka®lap whenever a certain combination
results in obtaining a ‘1’.



In certain circumstances, a few combinations mayhappen or if it does one may not be
so concerned about its occurance and its subserpgiit. These combinations are called
DON'T CARE states and they are represented an aad-by a ‘X'.

Eg: BCD ------mememeeee > Excess-3
A 0000 0011
[ 0001 0100
Viewed Il 0010 0101
Il 0011 0110

Il 0100 0111
Il .. .

Don't care states are

BCD
A 1010 | )
B 1011
C 110 )

Not allowed in excess-3 and BCO
> To represent a digit

D 1101
E 111C
= 1111 | )




Week 8

Objective:
1. Know the implementation of the addition openatio the
computer

2.  Design Half Adder
3. Design Full Adder

Simple Adders

In order to design a circuit capable of binary &ddione would have to look at all of the
logical combinations. You might do that by lookiaigthe following four sums:

+
o O
+
= O
+
Qo -
+
P

o |
- |
- |

10

That looks fine until you get to 1 + 1. In that eagou have aarry bit to worry about. If
you don't care about carrying (because this isy aft, a 1-bit addition problem), then
you can see that you can solve this problem witK@R gate. But if you do care, then
you might rewrite your equations to always incldeits of output, like this:

+
o O
+
= O
+
Qo -
+
T

From these equations you can form the logic table:

1-bit Adder with Carry-Out

A B Q CO
0 0

= Bk O O
= O+ O

1 O
1 O
0 1



By looking at this table you can see that you caplément Q with an XOR gate and CO
(carry-out) with an AND gate.

What if you want to add two 8-bit bytes togetheh?sTbecomes slightly harder. The
easiest solution is to modularize the problem metgsable components and then replicate
components. In this case, we need to create omyomponent: a full binary adder.

The difference between a full adder and the presvamder we looked at is that a full
adder accepts an A and a B input plesay-in (CI) input. Once we have a full adder,
then we can string eight of them together to cradigte-wide adder and cascade the
carry bit from one adder to the next.

In the next section, we'll look at how a full adeeeimplemented into a circuit.

Full Adders

The logic table for a full adder is slightly moreneplicated than the tables we have used
before, because now we ha&/@put bits. It looks like this:

One-bit Full Adder with Carry-In and Carry-Out

Cl A B Q CO
0 00 0 O
0 0 1 1 0
0 1 0 1 0
01 1 0 1
1.0 0 1 0
1.0 1 0 1
11 0 0 1
1 1 1 1 1

There are many different ways that you might imp@atrthis table. If you look at the Q
bit, you can see that the top 4 bits are behavkegdn XOR gate with respect to A and B,
while the bottom 4 bits are behaving like an XNCdRegwith respect to A and B.
Similarly, the top 4 bits of CO are behaving likeAND gate with respect to A and B,
and the bottom 4 bits behave like an OR gate. Ta#tinse facts, the following circuit
implements a full adder:
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This definitely is not the most efficient way toptement a full adder, but it is extremely
easy to understand and trace through the logigubkis method.

Exercise: Implement the above logic using feweegat
Now we have a piece of functionality called a "fadlder." What a computer engineer

then does is "black-box" it so that he or she ¢ap worrying about the details of the
component. Alack box for a full adder would look like this:

Q

22002 HowStuffWorks

With that black box, it is now easy to draw-®it full adder:



AB AB AB AB
Q Q Q Q

In this diagram the carry-out from each bit feenlealy into the carry-in of the next bit
over. A 0 is hard-wired into the initial carry-ift.oif you input two 4-bit numbers on the
A and B lines, you will get the 4-bit sum out o t@Q lines, plus 1 additional bit for the
final carry-out. You can see that this chain cateed as far as you like, through 8, 16 or
32 bits if desired.

The 4-bit adder we just created is callatpbale-carry adder. It gets that name because
the carry bits "ripple" from one adder to the n&itis implementation has the advantage
of simplicity but the disadvantage of speed prolsleim a real circuit, gates take time to
switch states (the time is on the order of nanasggadbut in high-speed computers
nanoseconds matter). So 32-bit or 64-bit rippleycadders might take 100 to 200
nanoseconds to settle into their final sum becabisarry ripple. For this reason,
engineers have created more advanced adders cafigedlookahead adders. The
number of gates required to implement carry-lookahs large, but the settling time for
the adder is much better.

NAND Gate Implementation of Half Adder

Half adder:
A Combinational Circuit that performs the additiointwo bits is called a Half adder.

Full adder:

A Combinational Circuit that performs the additiohthree bits (two significant bits and
a previous carry) is a full adder.

NAND Implementation:

S="A .B+A .B S="(A .B) ."(A . B)

C=A.B



A A B B

“(A.B)
&
(A .7B)
&
&

Half adder

NAND Gate Implementation of Full Adder

Full Adder

R IR|IO|IO|RIFROIOK
R O ORI O|IFRIOIN

C
0
0
0
1
0
1
1
1

R OO ORIk oun

X
0
0
0
0
1
1
1
1
N

ot defined
S= X. y.z+ X.y. zZ+X . Yy .XZ¥ .z

C= X.y.z+X . y.zZ+X .y . Z+K.z

Y\ | 0|1

00 1

011

11 1

10 | 1




S = No Simplification

Y\ | 0|1

00

01 1

11 1|1

10 1

C=x .y+x .z+y .z



NAND Implementation of Full Adder (F A)
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Week 9

Objective:

1. Understand Small -Scale Integrated Circuit

2. Understand various terminologies used to chariae
integrated circuits

Terminologies used to characterize Integrated Circits

Fan in: Is the number of inputs of a digital gate.

Fan out: Is the number of gates’ inputs connected to thpuwutf a gate (the amount of
loading). Sometimes the other types of loads (wipesls, etc.) are expressed as fan out

equivalent.

Example: For the following gate the Fan irtiand the Fan out &

)

JUUUU

Input & Output Currents:
IIL is the input current to a gate when the input hlagjia value of O (low input current)

IIH is the input current to a gate when the input hdsgac value of 1 (high input
current)



IOL is the output current of a gate when the outputahfsgic value of 0 (low output
current)

IOH is the output current of a gate when the outputehbgic value of 1 (high output
current)

Input curr
— Output current

Noise Margins: These circuit parameters specify the circuit’sigbib withstand noise.

The low noise margin (NML or NMO) specifies by how much an input voltage
representing logic 0 can change before an errarreaue to it being interpreted as 1.

The high noise margin (NMH or NM1) specifies by how much an input voltage
representing logic 1 can change before an errasreaue to it being interpreted as 0.

A typical voltage characteristic (output voltagestes input voltage) of a digital gate is
shown below.

Von is the high output level

Vout .
N VoL is the low output level
Vonu V1L is the maximum low (logic 0) input voltage
Vi is the minimum high (logic 1) input voltage
NML =V - VoL
<> <>
NML NMH NMH = Vog - Vi
VoL S Vin
VoL TR A% >
L IH OH

For these gates to operate properly, 1K x2S
Vor of G1 should be < Vi1, of G2 & V
Vom of G1 should be > VigofG2& L G2 S
Iog of G1 should be > 3 X Ijgof G2 &
Ior of G1 should be>3 X Ijpof G2 L G2N




Propagation Delay: The figure below shows the input and output wave®bf a digital
gate where all the delay parameters are defingtiefigure.

AV (input)

50% -

time

AV (outpui)

50% . tHI. tf 2
time
>

Average propagation delay Tp = (t,. + t§)/2

Power Dissipation: In general, the amount of power dissipated by &lggte has two
components a static one and a dynamic one.

a. Static Power (PSt) is due to DC current flow betwéee two supplies (VDD and
ground) and = IDC x VDD

b. Dynamic Power is due to the charging and dischgrgincapacitances at the outputs
of the gates. These capacitances are made of weapgcitances, capacitances of the
output transistors of the gate itself, and inpydiazdtances of the gates connected to the
output of the gate (the Fan out). The average valube dynamic power PD = f x C x
VDD2 where f is the switching frequency in hertddis the output (load) capacitance.
Total power PT = PSt + PD .



Week 10

Objective:
1. Understand Small -Scale Integrated Circuit.
2. Explain Pin connections of ICs.

Integrated Circuits (Chips)

Integrated Circuits are usually called ICs or chifisey are complex circuits which have
been etched onto tiny chips of semiconductor ¢i)c The chip is packaged in a plastic
holder with pins spaced on a 0.1" (2.54mm) gridolhwill fit the holes on stripboard
and breadboards. Very fine wires inside the packagehe chip to the pins.

Pin numbers
The pins are numbered anti-clockwise around thé&hip) starting near the notch or dot.

The diagram shows the numbering for 8-pin and MIgE, but the principle is the same
for all sizes.

g 7 6 5 1413121110 9 8

1 2 3 4 1 2 3 4 5 6 7

Chip holders (DIL sockets)

ICs (chips) are easily damaged by heat when saolgleand their short pins cannot be
protected with a heat sink. Instead we use a abligheln, strictly called a DIL socket (DIL

= Dual In-Line), which can be safely soldered otfte circuit board. The chip is pushed
into the holder when all soldering is complete.

Chip holders are only needed when soldering sodneyot used on breadboards.
Commercially produced circuit boards often havepshsoldered directly to the board
without a chip holder, usually this is done by achiae which is able to work very
quickly. Please don't attempt to do this yourselfduse you are likely to destroy the chip
and it will be difficult to remove without damagg te-soldering.



Now-a-days, most of the logic or digital systems are available in the market as digital 1C
building blocks in various logic families. In fact, it is comparatively more convenient and
cheaper to build logic circuits and systems using ICs which are more reliable compared to
discrete components gates. In this chapter we shall be discussing the ICs based on packing
density, IC series and their handling procedures.

Categories of Integrated Circuits Based on Packin@ensity

Ssi (Small scale integration) means integration levels typically below 12 equivalent gates per
IC package.

MSI (Medium scale integration) means integration typically between 12 and 100 equivalent
gates per 1C package.

LSI (Large scale integration) implies integration typically above IDO equivalent gates per 1C
package.

VLSI (Very large scale integration) means integration levels with extra high number of gates.
For example, a RAM may have more than 4000 gates in a single chip.

Logic IC Series

Commonly used Logic IC Families are

a. Standard TTL (Type 74/54)

b. CMOS (Type 4000 B)

c. Low power Schottky TTL (Type 74LS/54LS)

d. Schottky TTL (Type 74S/54S)
e. ECL (Type 10,000).

Packages in Digital ICs

Digital ICs come in four major packaged forms. These forms are shown in Fig. 1.3.1.
Dual-in-Line Package (DIP)” Most TTL and MOS devices in SSI, MSI and LSI are packaged
in 14, 16, 24 or 40 pin DIPs.

Mini Dual-in-Line Package (Mini DIP) Mini DIPs are usually 8 pin packages.



Flat Pack Flat packages are commonly used in applications where light weight is essential
requirement. Many military and space applications use flat packs. The number of pins on a
flat pack varies from device to device. TO-5, TO-S Metal Can The number of pins on a TO-
5 or TO-8 can vary from 2 to 12.

All the above styles of packaging have different systems of numbering pins. For knowing
about how the pins of a particular package are numbered, the manufacturer’s data sheet on
package type and pin numbers must be consulted.

-
AP

-

Fig. 1 Typical packaging systems in digital integred circuits.

Identification of Integrated Circuits

Usually the digital integrated circuits come in @abin-line (DIP) package. Sometimes,
the device in a DIP package may be an analog coemperan operational amplifier or
tapped resistors and therefore, it is essentialintderstand as to how to identify a
particular IC. In a schematic diagram, the ICsrapresented in one of the two methods.

TLL513%-F3

14

A . — gy O, 3
2 13
11 i ¢

.

i S o
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-
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Fig. 1.3.2 Representation of schemes for digital KC

a. IC is represented by a rectangle (Fig. 1.3.2) win numbers shown along with
each pin. The identification number of the IC s#dd on the schematic.



b. Representation of the IC in terms of its simplgic elements. For example, IC
74L.S08 is Quad 2-input and gate and when it isasgted in a schematic, it is listed as

74 LS 08.

An IC can be identified from the informa-tion-givem the IC itself. The numbering
system, though has been standardized, has somatisasi from manufacturer to
manufacturer. Usually an IC has the following magds on its surface (Fig. 1.3.3).

Veor of monufeciung

I|I P - Fat
Mandactarey Cate code | | 'bokh
oga., "._ f
'l". I'-nl ._-_.]fi ji
! W - ol I
" 7931
) b S .h"—'s‘
- 1.‘“I'jL} @
Wil ?I Y
.l'-l. 1._
Fredm Indeaies S indcales .
nangeirer, | pathage 1ype.
C by UM ETEILNE Fang
Core rembet
P
..a-"ﬂf. ‘ H'x_ -
Mursler indentifes
LS Tary functon of 15
Logk Sull@miy
ilﬂ;:ﬂ:i ?
Mo Lpflgr = TTL
& =CMOS
M =High speed
g = oe ST
15 = Low power FSchatlky
S =Schamay

Core Number identifies the logic family and its étions. In 74 LS 51, the first two

numbers indicate that the IC is a member of theD7@Hries IC family. Last letters give
the function of the IC. Letters inserted in the toerof the core number show the logic
sub-family. Since TTL is the most common series,



Week 11

Objective:

1. Understand TTL Technology
2. Understand DTL Technology
3. Understand ECL Technology

Transistor-Transistor Logic (TTL) Technology

Transistor—transistor logic (TTL) is a class ofdigital circuits built from bipolar
junction transistor{BJT), andresistors It is calledtransistor—transistor logidoecause
both the logic gating function (e.g., AND) and tmaplifying function are performed by
transistors (contrast this with RTL and DTL).

TTL is notable for being a widespread integratectwt (IC) family used in many
applications such asomputersindustrial controls, test equipment and instruragon,
consumer electronicsynthesizersetc. The designatioRTL is sometimes used to mean
TTL-compatible logic levelseven when not associated directly with TTL instgd
circuits, for example as a label on the inputs aumgbuts of electronic instruments.

TTL contrasts with the precedingsistor—transistor l0gi¢RTL) and diode—transistor
logic (DTL) generations by using transistors notyaiw amplify the output, but also to
isolate the inputs. The-n junctionof a diode has consideraliepacitanceso changing
the logic level of an input connected to a diodejraDTL, requires considerable time
and energy.

TTL is particularly well suited tantegrated circuitdbecause the inputs of a gate may all
be integrated into a single base region to formudtiphe-emitter transistor. Such a highly
customized part might increase the cost of a dinvhere each transistor is in a separate
package. However, by combining several small op-atomponents into one larger
device, it reduces the cost of implementation oiCan

As with all bipolar logic, a small amount of current must be drawmfr@ TTL input to
ensure proper logic levels. The total current dramust be within the capacities of the
preceding stage, which limits the number of noties tan be connectéthe fanout).

All standardized common TTL circuits operate witb-aolt power supply. A TTL input
signal is defined as "low" when between 0V and\0.&ith respect to the ground
terminal, and "high" when between 2.2V and 5 Ve{se logic levels vary slightly
between sub-types). Standardization of the TTLI&was so ubiquitous that complex
circuit boards often contained TTL chips made bynyananufacturers, selected for
availability and cost and not just compatibility.ittn usefully broad limits, logic gates
could be treated as ideal Boolean devices withontern for electrical limitations.



Comparison with other logic families

TTL devices consume substantially more power thraequivalent CMOS device at rest,
but power consumption does not increase with clgpgked as rapidly as for CMOS
devices. Compared to contemporary ECL circuits, TiBes less power and has easier
design rules, but is substantially slower. Desigresuld combine ECL and TTL devices
in the same system to achieve best overall perfocenand economy, but level-shifting
devices were required between the two logic fasillETL was less sensitive to damage
from electrostatic discharge than early CMOS deiic

Due to the output structure of TTL devices, thepattimpedance is asymmetrical
between the high and low state, making them urigeitbor driving transmission lines.
This is usually solved by buffering the outputshwgipecial line driver devices where
signals need to be sent through cables. ECL, hyeviof its symmetric low-impedance
output structure, does not have this drawback.

Applicationsof TTL

Before the advent of VLSI devices, TTL integratectuits were a standard method of
construction for the processors of mini-computett arainframe processors; such as the
DEC VAX and Data General Eclipse, and for equipnsmh as machine tool numerical
controls, printers, and video display terminals. Ascroprocessors became more
functional, TTL devices became important for "glagic" applications, such as fast bus
drivers on a motherboard, which tie together thecfion blocks realized in VLSI
elements.

Diode—transistor logic

Diode—Transistor Logic (DTL) is a class of digital circuits built from bipolgmction
transistors (BJT), diodes and resistors; it is direct ancestor of transistor—transistor
logic. It is calleddiode—transistor logidecause the logic gating function (e.g., AND) is
performed by a diode network and the amplifyingction is performed by a transistor .

Operation

With the simplified circuit shown in the pictureetivoltage at the base will be near 0.7
volts even when one input is held at ground lewglich results in unstable or invalid
operation. Two diodes in series with R3 are commaskd to lower the base voltage and
prevent any base current when one or more inpetstalow logic level. The IBM 1401
used DTL circuits almost identical to this simg@di circuit, but solved the base bias level
problem mentioned above by alternating NPN and HiéBed gates operating on
different power supply voltages instead of addiriyeediodes.



Speed disadvantage

A major advantage over the earlier resistor-traosifogic is the increased fan-in.
However, the propagation delay is still relativédyge. When the transistor goes into
saturation from all inputs being high, charge el in the base region. When it comes
out of saturation (one input goes low) this change to be removed and will dominate
the propagation time. One way to speed it up otmect a resistor to a negative voltage
at the base of the transistor which aids the retnaftaie minority carriers from the base.

The above problem is solved in TTL by replacing thedes of the DTL circuit with a
multiple-emitter transistor, which also slightlyduees the required area per gate in an
integrated circuit implementation.

Emitter-coupled logic

In electronicsemitter-coupled logic or ECL, is a logic family in which current is
steered through bipolar transistors to implemegicléunctions. ECL is sometimes called
current-mode logic or current-switch emitter-follen(CSEF) logic.

The chief characteristic of ECL is that the tratmsis are never in the saturation region
and can thus change states at very high speedajts disadvantage is that the circuit
continuously draws current, which means it requarést of power.

History

ECL was invented in August 1956 at IBM by HannoryY8urke. Originally called
current steering logicit was used in the Stretch, IBM 7090, and IBM Z@®mputers.

While ECL circuits in the mid-1960s through the @8%onsisted of a differential
amplifier input stage to perform logic, followed by emitter follower to drive outputs
and shift the output voltages so they will be cotifgba with the inputs, Yourke's current
switch, also known as ECL, consisted only of défdral amplifiers. To provide
compatible input and output levels, two complemgnt@rsions were used, an NPN
version and a PNP version. The NPN output couled®NP inputs, and vice-versa.
"The disadvantages are that more different poweplswoltages are needed, and both
pnp and npn transistors are required." Motoroleoauced their first digital monolithic
integrated circuit line, MECL I, in 1962.

Explanation

TTL and related families use transistors as digitéatches where transistors are either
cut off or saturated, depending on the state otitoelit. ECL gates use differential
amplifier configurations at the input stage. A biasfiguration supplies a constant
voltage at the midrange of the low and high logmels to the differential amplifier, so



that the appropriate logical function of the inpattages will control the amplifier and

the base of the output transistor (this outputsisdar is used in common collector
configuration). The propagation time for this agament can be less than a nanosecond,
making it for many years the fastest logic family.

Characteristics

Other noteworthy characteristics of the ECL fanmiglude the fact that the large current
requirement is approximately constant, and doeslepénd significantly on the state of
the circuit. This means that ECL circuits generatatively little power noise, unlike
many other logic types which typically draw far re@urrent when switching than
guiescent, for which power noise can become proaiemin an ALU - where a lot of
switching occurs - ECL can draw lower mean curteah CMOS.

Usage

The drawbacks associated with ECL have meantthaisibeen used mainly when high
performance is a vital requirement. Other fami(earticularly advanced CMOS
variants) have replaced ECL in many applicatiomenemainframe computers. However,
some experts predict increasing use of ECL in tiheré, particularly in conjunction with
more widespread adoption of advanced semicondustmts as gallium arsenide, which
has always been seen as the semiconductor oftilme flout cannot be produced as
cheaply or cleanly as silicon.

Older high-end mainframe computers, such as thergmse System/9000 members of
IBM's ESA/390 computer family, used ECL; currenMBnainframes use CMOS.

The equivalent of emitter-coupled logic made ouEBf's is called source-coupled FET
logic (SCFL).



Week 12

Objective:

1. Understand the concept and methodology of sdiglien
circuit design.

2. The design and operations of various bi-stabl

| ntroducing bistable (Flip-Flops)

A Flip-Flop is a sequential circuit which is capalolf retaining a unit of information such
as ‘0, or ‘1.

Basic Flip-Flop circuit

(a) Using NOR gates:

Reset
J LR o 5

nEE) > .

Truth Table
SIRIQ|IQ
1/0l1] 0
olo[1] 0
o[1]0] 1
olofo] 1
1/1]0] 0

(b) Using NAND gates
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Let's consider a general truth table

Qt = means present state  at t=0
Qt-1 = means previous state at t=-0
-0 means a time very close to present

O
[y

Q

[ PN FEN N P Y =1 E=1F=117;
R|r|o|lo|r|r|lo|lo|x
X |%|k|o|lk|lo|lr|lo

X|X|—|—|o|lo|lo|o|Q
1
XX |o|lo/k|k|k[kQ

X = indeterminate



Block representation of a Flip-Flop

Clocked S-R Flip-Flop

To convert the basic Flip-Flop frolsynchronousto Synchronousa clock pulse must
be incorporated

Clock

U




The J-K Flip-Flop

A very common form of flip-flop is th@-K flip-flop . It is unclear, historically, where the
name "J-K" came from, but it is generally represdnh a black box like this:

Clk

82002 HowStulfWorks

In this diagrampP stands for "PresetC stands for "Clear" an@lk stands for "Clock."
The logic table looks like this:

P C CKk J K Q «Q

1 1 1-to-0 1 0 1 0

1 1 1-to-0 0 1 0 1

1 1 1-to-0 1 1 Toggles
1 0 X X X 0 1

0 1 X X X 1 0

Here is what the table is saying: First, Preset@edr override J, K and Clk completely.
So if Preset goes to 0, then Q goes to 1; ande&iCGhoes to 0, then Q goes to 0 no matter
what J, K and Clk are doing. However, if both Ptes® Clear are 1, then J, K and Clk
can operate. Th&-to-0 notation means that when the clock changes frdmaaa 0, the
value of J and K are remembered if they are oppesit thelow-going edgeof the
clock (the transition from 1 to 0), J and K arerstb However, if both J and K happen to
be 1 at the low-going edge, then Q simpaggles That is, Q changes from its current
state to the opposite state.

The concept of "edge triggering” is very usefuleThct that J-K flip-flop only "latches”
the J-K inputs on a transition from 1 to 0 makesuich more useful as a memory device.
J-K flip-flops are also extremely useful aounters (which are used extensively when



creating a digital clock). Here is an example dflait counter using J-K flip-flops:
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C
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The outputs for this circuit are A, B, C and D, dhdy represent a 4-bit binary number.
Into the clock input of the left-most flip-flop cas a signal changing from 1 to 0 and
back to 1 repeatedly (ascillating signa). The counter will count the low-going edges
it sees in this signal. That is, every time theoming signal changes from 1 to O, the 4-
bit number represented by A, B, C and D will incegrnby 1. So the count will go from 0

to 15 and then cycle back to 0. You can add as rhasyas you like to this counter and
count anything you like. For example, if you puhagnetic switch on a door, the counter
will count the number of times the door is opened elosed. If you put an optical sensor
on a road, the counter could count the number if theat drive by.

Another use of a J-K flip-flop is to create etige-triggered latch as shown here:

Clock

L2002 HowBtuffWorks

In this arrangement, the value on D is "latchedemithe clock edge goes from low to
high. Latches are extremely important in the design of thinde Icentral processing
units (CPUs) and peripherals in computers.



Week 13

Objective:

1. Understand Digital Counters

2. Understand Ripple (Asynchronous) Counter
3. Understand Synchronous Counters

4. Introduce Shift Registers

Digital Counters

A digital counter, or simply counter, is a semiconductor device that is used for counting the
number of times that a digital event has occurred. The counter's output is indexed by one LSB
every time the counter is clocked.

A simple implementation of a 4-bit counter is shown in Figure 1, which consists of 4 stages of
cascaded J-K flip-flops. This is a binary counter, since the output is in binary system format, i.e.,
only two digits are used to represent the count, i.e., '1' and '0'. With only 4 bits, it can only count
up to '1111", or decimal number 15.

As one can see from Figure 1, the J and K inputs of all the flip-flops are tied to '1', so that they
will toggle between states every time they are clocked. Also, the output of each flip-flop in the
counter is used to clock the next flip-flop. As a result, the succeeding flip-flop toggles between '1'
and '0" at only half the frequency as the flip-flop before it.

& elmBE

EJ FFO EJ FF1 EJ FF2 &‘, FF3
Clk a1 Cik nz
Clock T | _]

Figure 1. A Simple Ripple Counter Consisting of J-K Flip-flops

Thus, in Figure 1's 4-bit example, the last flip-flop will only toggle after the first flip-flop has
already toggled 8 times. This type of binary counter is known as a 'serial’, 'ripple', or
‘asynchronous' counter. The name 'asynchronous' comes from the fact that this counter's flip-
flops are not being clocked at the same time.

A 4-bit counter, which has 16 unique states that it can count through, is also called a modulo-16
counter, or mod-16 counter. By definition, a modulo-k or base-k counter is one that returns to |ts
initial state after k cycles of the input waveform. A counter that has N flip-flops is a modulo 2N
counter.

An asynchronous counter has a serious drawback - its speed is limited by the cumulative
propagation times of the cascaded flip-flops. A counter that has N flip-flops, each of which has a



propagation time t, must therefore wait for a duration equal to N x t before it can undergo another
transition clocking.

A better counter, therefore, is one whose flip-flops are clocked at the same time. Such a counter
is known as a synchronous counter. A simple 4-bit synchronous counter is shown in Figure 2.

Not all counters with N flip-flops are designed to go through all its 2N possible states of count. In
fact, digital counters can be used to output decimal numbers by using logic gates to force them to
reset when the output becomes equal to decimal 10. Counters used in this manner are said to be
in binary-coded decimal (BCD).

EelmBE

FFD
(&1 5 Clk Cik Clk Q3
| [ j

Figure 2. A Simple Synchronous Counter Consisting of J-K Flip-flops and AND gates

—

Synchronous Counters

Basically, any sequential circuit that goes throagprescribed sequence of states upon
the application of input pulses is called a countére input pulses, called count pulses,

may be clock pulses or they may originate from ater@al source and may occur at

prescribed intervals of time or at random. The sega of states in a counter may follow

a binary count or any other sequence.
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Why do we need counters?

In a digital circuit, counters are used to do 3 nmiinctions: timing, sequencing and
counting. A timing problem might require that a lvigequency pulse train, such as the
output of a 10-MHz crystal oscillator, be dividedpgroduce a pulse train of a much lower
frequency, say 1 Hz. This application is requinediprecision digital clock, where it is

not possible to build a crystal oscillator whoseura frequency is 1 Hz.

Measuring the flow of auto traffic on roadway is @pplication in which an event (the
passage of a vehicle) must increment a tally. This be done automatically with an
electronic counter triggered by a photocell or readsor. In this way, the total number of
vehicles passing a certain point can be counted.

How are counters made?

Counters are generally made up of flip-flops argida@ates. Like flip-flops, counters can
retain an output state after the input conditionclwhbrought about that state has been
removed. Consequently, digital counters are claskds sequential circuits. While a flip-
flop can occupy one of only two possible statespanter can have many more than two
states. In the case of a counter, the value oht® & expressed as a multi-digit binary
number, whose "1's and "0's are usually derived tte outputs of internal flip-flops that
make up the counter. The number of states a conmagr have is limited only by the
amount of electronic hardware that is availablee Train types of flip-flops used are J-K
flip-flops or T flip-flops, which are J-K flip-flop with both J and K inputs tied together.
Before that, here's a quick reminder of how a Jiikffop works:

J inpu K input Output, C

0 0 Q
0 1 0
1 0 1
1 1 not Q

T flip-flops are used because set/reset ([1,0]]Jdunctions are seldom used. Only the
"do nothing" and toggle ([0,0] [1,1]) functions ansed. Logic gates are used to decide
when to toggle which outputs. Below is an examgdle aynchronous binary counter,
implemented using J-K flip-flops and AND gates.
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The difference between asynchronous and synchronoasunters.

In an asynchronous counter, an external eventead te directly SET or CLEAR a flip-
flop when it occurs. In a synchronous counter hawethe external event is used to
produce a pulse that is synchronised with the materclock. An example of an
asynchronous counter is a ripple counter. Eachflthp in the ripple counter is clocked
by the output from the previous flip-flop. Only thest flip-flop is clocked by an external
clock. Below is an example of a 4-bit ripple counte
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Shift registers, like counters, are a fornsefjuential logicSequential logic, unlike
combinational logic is not only affected by theg®et inputs, but also, by the prior
history. In other words, sequential logic rememlparst events.

Shift registers produce a discrete delay of a digignal or waveform. A waveform
synchronized to alock a repeating square wave, is delayedrdy discrete clock times,
where"n" is the number of shift register stages. Thusua $tage shift register delays
"data in" by four clocks to "data out". The stagea shift register ardelay stages
typically type"D" Flip-Flops or type' JK" Flip-flops.

Formerly, very long (several hundred stages) sbdtsters served as digital memory.
This obsolete application is reminiscent of theusstic mercury delay lines used as early
computer memory.

Serial data transmission, over a distance of mébekometers, uses shift registers to
convert parallel data to serial form. Serial daienmunications replaces many slow
parallel data wires with a single serial high speieclit.

Serial data over shorter distances of tens of wetérs, uses shift registers to get data
into and out of microprocessors. Numerous perigbgeirecluding analog to digital
converters, digital to analog converters, displayeats, and memory, use shift registers
to reduce the amount of wiring in circuit boards.

Some specialized counter circuits actually usd sbgisters to generate repeating
waveforms. Longer shift registers, with the helgesfdback generate patterns so long
that they look like random noispseudo-noise

Basic shift registers are classified by structweoading to the following types:

« Serial-in/serial-out

« Parallel-in/serial-out

« Serial-in/parallel-out

« Universal parallel-in/parallel-out
« Ring counter



Week 14

Objective:
Understand the basic design of counters

Design of Counters

This example is taken from T. L. Floyjgital FundamentalsFourth Edition,
Macmillan Publishing, 1990, p.395.

Example 1.5 A counter is first described by a state diagram, which is shows the
sequence of states through which the counter advances when it is clocked.
Figure 18 shows a state diagram of a 3-bit binary counter.

(=)

Figure 18
State

diagram o

a 3hit

binary
0 o counter.

The circuit has no inputs other than the clock pulse and no outputs other than its
internal state (outputs are taken off each flip-flop in the counter). The next state

of the counter depends entirely on its present state, and the state transition

occurs every time the clock pulse occurs. FigureH@vs the sequences of count after
each clock pulse.



Once the sequential circuit is defined by the stigdgram, the next step is to obtain the
next-state table, which is derived from the stadgm in Figure 18 and is shown in
Table 1.

Table 1. State table

Present State Next State
Q2Q1Q0 Q2Q1 Q0
00O 0 01
0 01 010
010 011
011 100
1 00 101
1 01 110
110 111
111 00O

Since there are eight states, the number of fipdirequired would be three. Now we
want to implement the counter design using JK filyps.

Next step is to develop an excitation table fromgtate table, which is shown in Table
16.

Table 16. Excitation table



Output State Transitions Flip-flop inputs

Present State Next State
Q2 Q1 Q0 Q2 Q1 QO J2 K2 J1 K1 JO KO

00O 001 00X O0X 1X
001 010 0X 1X X1
010 011 0X XO 1X
011 100 1X X1 X1
100 101 X0 O0X 1X
101 110 X0 1X X1
110 111 X0 XO 1X
111 00O X1 X1 X1

Now transfer the JK states of the flip-flop inputs from the excitation table to
Karnaugh maps to derive a simplified Boolean expression for each flip-flop input.
This is shown in Figure 20.

Qo
szm D 1 azmm 0 1 pzot_ 01
0| 0|0 oo| 0| 1 0o X
01| 0 1 o1 X X o1| 1 X
11| X | X 11| X | X 11} 1| X
ol X | X | 0| 1 w11 X _
Figure
I2 map J1 map JO map 20.
Qo Qo Qn
azo™N_0__ 1 azanN_0__1 Qzo™\_0__1 Karnaugh
maps
oo| X | X ool X | X oo| X | 1
01| X | X 01| 0 | 1 01 X | 1
11 0 | 1 11| 0 | 1 11 X | 1
| 0} 0 10 X | X 10| X | 1
E2 map K1 map EO map

The 1s in the Karnaugh maps of Figure 20 are grouped with "don't cares" and the
following expressions for the J and K inputs of each flip-flop are obtained:

JO=KO0=1



J1=K1=Q0
J2 = K2 =Q1*Q0
The final step is to implement the combinational logic from the equations and

connect the flip-flops to form the sequential circuit. The complete logic of a 3-bit
binary counter is shown in Figure 21.

Figure
1 21.
T ' .J Logic
1 + b L diagran
Ktlﬂ’“ Kll:i”" KOT of a 3-
Clk FFO FF1 FF2 bit
e * :
binary

counter



Week 15

Objective:

1. Understand shift register operation

2. Understand the different methods of data transfth shift
registers

3. Scaling

SHIFT REGISTERS

A shift register is a register in which the congemtay be shifted one or more places to
the left or right. This type of register is capabfgerforming a variety of functions. It
may be used for serial-to-parallel conversion ands€aling binary numbers.

Before we get into the operation of the shift resgislet's discuss serial-to-parallel
conversion, parallel-to-serial conversion, andiagal

Serial and Parallel Transfers and Conversion

Serial and parallel are terms used to describenét@od in which data or information is
moved from one place to another. SERIAL TRANSFERwnsethat the data is moved
along a single line one bit at a time. A controlsgus required to move each bit.
PARALLEL TRANSFER means that each bit of data isveton its own line and that
all bits transfer simultaneously as they did in plagallel register. A single control pulse
is required to move all bits.

Figure 1 shows how both of these transfers ocougath case, the four-bit word 1101 is
being transferred to a storage device. In viewh&,data moves along a single line. Each
bit of the data will be stored by an individual tah pulse. In view B, each bit has a
separate input line. One control pulse will calmedntire word to be stored.

Figure 1. - Data transfer methods: A. Serial trands.

Parallel transfer.
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Serial-to-parallel conversion or parallel-to-sedahversion describes the manner in
which data is stored in a storage device and theeran which that data is removed
from the storage device.

Serial-to-parallel conversion means that dataaissierred into the storage device or
register in serial fashion and removed in paraéshion, as in figure 3-30, view A.
Parallel-to-serial conversion means the data rsfeared into the storage device in
parallel and removed as serial data, as showrein .

Figure 2. - Data conversion methods: A. Serialdoaflel; B. Parallel-to-serial.
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Serial transfer takes time. The longer the wordytlenthe longer the transfer will take.
Although parallel transfer is much faster, it reggimore circuitry to transfer the data.

Scaling

SCALING means to change the magnitude of a nun8iefting binary numbers to the
left increases their value, and shifting to théntidecreases their value. The increase or
decrease in value is based on powers of 2.

A shift of one place to the left increases the gdly a power of 2, which in effect is
multiplying the number by 2. To demonstrate thesslassume that the following block
diagram is a 5-bit shift register containing thedsy number 01100.

01100

Shifting the entire number one place to the left put the register in the following
condition:

11000

The binary number 01100 has a decimal equivaleh®off we convert 110600
decimal, we find it has a value of34By shifting the number one place to the left, we
have multiplied it by 2. A shift of two places feetleft would be the equivalent of
multiplying the number by?2 or 4; three places by 2r 8; and so forth.



Shifting a binary number to the right decreasesstiee of the number by a power of 2
for each place. Let's look at the same 5-bit regisbntaining 011Q0and shift the
number to the right.
01100
A shift of one place to the right will result inetmegister being in the following condition:
00110
By comparing decimal equivalents you can see tleghawve decreased the value from
12,0 to 6,0. We have effectively divided the number by 2. Atsbf two places to the
right is the equivalent of dividing the number By @& 4; three places by:2r 8; and so
forth.
Shift Register Operations
Figure 3-31 shows a typical 4-bit shift registenisTparticular register is capable of left
shifts only. There are provisions for serial andaglal input and serial and parallel
output. Additional circuitry would be required taake right shifts possible.

Figure 3. - Shift register.
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Before any operation takes place, a CLEAR pulspied to the RESET terminal of
each FF to ensure that the Q output is LOW.

The simplest modes of operation for this registerthe parallel inputs and outputs.
Parallel data is applied to the SET inputs of tRe &nd results in either a 1 or 0 output,
depending on the input. The outputs of the FFs loeagampled for parallel output. In this
mode, the register functions just like the parakgjister covered earlier in this section.

Parallel-to-Serial Conversion

Now let's look at parallel-to-serial conversion. Wil use the 4-bit shift register in
figure 3 and the timing sequence in figure 4 toyaid in understanding the operations.



Figure 4. - Parallel-to-serial conversion timinggham.
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At CP1, a CLEAR pulse is applied to all the FFseténg the register to a count of 0.
The number 01Qlis applied to the parallel inputs at CP2, causiR@ and FF3 to set. At
this point, the J inputs of FF2 and FF4 are HIGINIDAgate 2 has a LOW output since
the FF4 output is LOW. This LOW output represehtsfirst digit of the number 0191
to be output in serial form. At the same time weehAIGHSs on the K inputs of FF1 and
FF3. (Notice the NOT symbol on FF1 at input K. Wit serial input to AND gate 1, the
output is LOW; therefore, the K input to FF1 ischellIGH). With these conditions CP3
causes FF1 and FF3 to reset and FF2 and FF4 fbheeHIGH output of FF4, along with
CP3, causes AND gate 2 to output a HIGH. This 1&gts the second digit of the
number 0101

At CP4, FF2 and FF4 reset, and FF3 sets. FF1 remaset because of the HIGH at the
K input. The output of AND gate 2 goes LOW becailgeoutput of FF4 is LOW and the
third digit of the number is output on the seriakl CP5 causes FF4 to set and FF3 to
reset. CP5 and the HIGH from FF4 cause AND gatedutput the last digit of the
number on the serial line. It took a total of f@lkK pulses to input the number in
parallel and output it in serial. CP6 causes FR£&set and effectively clears the register
for the next parallel input. Between CP7 and CRd® humber 1110s input as parallel
data and output as serial data.



Serial-to-Parallel Conversion

Serial input is accomplished much in the same maasiserial output. Instead of shifting
the data out one bit at a time, we shift the datane bit at a time.

To understand this conversion, you should agairfigaee 3 and also the timing diagram
shown in figure 5. In this example we will convére number 10Llfrom serial data to
parallel data.

Figure 5. - Serial-to-parallel conversion timinggliam.
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A CLEAR pulse resets all the FFs at CP1. At CP2 niost significant bit of the data is
input to AND gate 1. This HIGH along with the clopllse causes AND gate 1 to output
a HIGH. The HIGH from the AND gate and the clockgauapplied to FF1 cause the FF
to set. FFs 2, 3, and 4 are held reset. At thistpthe MSD of the data has been shifted
into the register.

The next bit of data is a 0. The output of AND ghie LOW. Because of the inverter on
the K input of FF1, the FF senses a HIGH at thatiirand resets. At the same time this is
occurring, the HIGH on the J input of FF2 (from FFlahd the CLK cause FF2 to set. The
two MSDs, 1 and 0, are now in the register.

CP4 causes FF3 to set and FF2 to reset. FF1ly $ké CLK pulse and the third bit of
the number. The register now contains 31@% a result of shifting the first three bits of
data.

The remaining bit is shifted into the register B§3CFF1 remains set, FF2 sets, FF3
resets, and FF4 sets. At this point, the seriaktea is complete. The binary word can be



sampled on the parallel output lines. Once thellehdata is transferred, a CLEAR pulse
resets the FFs (CP6), and the register is reashptd the next word.
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