

UNESCO-
EDUCATION REVITALISATION PROJECT

YEAR I

NATIONAL DIPLOMA IN
COMPUTER TECHNOLOGY

Computer Programming

COURSE CODE: COM113

[Type the document title]

-NIGERIA TECHNICAL & VOCATIONAL
EDUCATION REVITALISATION PROJECT -PHASE

II

YEAR I - SE MESTER I

THEORY
Version 1: December 2008

NATIONAL DIPLOMA IN

COMPUTER TECHNOLOGY

Computer Programming

COURSE CODE: COM113

[Type the document title]

1

NIGERIA TECHNICAL & VOCATIONAL
PHASE

[Type the document title]

2

Table of Contents

Features of a good computer program .. 7

System Development Cycle .. 9

Features of an Algorithm .. 11

Methods of Representing Algorithm .. 11

Pseudo code .. 12

English-like form .. 15

Flowchart .. 16

Decision table.. 20

Data flow Diagrams .. 22

The flowchart .. 25

ADVANTAGES OF USING FLOWCHART .. 33

DISADVANTAGES OF USING FLOWCHART.. 33

Designing Algorithm For Common Programming Logic Structures ... 35

Simple Sequence ... 35

Selection .. 35

Iteration Logic (Repetitive flow) .. 37

The Concept of Modular Programming .. 39

Modular program planning ... 39

Modular Hierarchy plan for the problem .. 43

STAGES OF PROGRAM DEVELOPMENT .. 45

Problem definition: ... 45

Develop the algorithm... 45

Plan the logic of the program/flowcharting: ... 45

Write the computer program: .. 45

Type the program into computer: ... 46

Test and debug the program:... 46

Document the work: .. 46

Program development/execution process ... 47

LEVELS OF COMPUTER PROGRAMMING LANGUAGES .. 49

Low-level Languages .. 49

Machine language ... 49

Concept of programming .. 6 WEEK 1

Concept of Algorithm ... 11 WEEK 2

WEEK 3

WEEK 4

WEEK 5

WEEK 6

WEEK 7

WEEK 8

WEEK 9

WEEK 10

[Type the document title]

3

Assembly Language .. 50

High-level languages .. 51

THE CONCEPT OF DEBUGGING AND MAINTAINING PROGRAM 59

Sources of bugs in a program .. 59

Preventing Bugs .. 60

Methods of debugging .. 60

Understand the Problem .. 60

Basic debugging techniques/steps... 61

Recognize a bug exists .. 61

Isolate source of bug ... 61

Identify cause of bug ... 62

Determine fix for bug.. 62

Fix and test .. 63

Categories of Program maintenance ... 66

THE CONCEPT OF GOOD PROGRAMMING PRACTICE ... 68

Structured Coding Guidelines ... 69

Flow of Control ... 69

Do...Loop Statement ... 70

Syntax ... 70

For...Next Statement ... 71

Using Comments in Code ... 75

Using Descriptive Names for Variables, Constants and Functions .. 75

Using Pseudo-code in Comments ... 75

Using Modular Coding ... 76

Program documentation concepts ... 78

Program Design .. 79

Program Debugging .. 79

Program Modifications ... 80

The Visual Basic environment .. 90

The properties window : ... 91

Starting Visual Basic... 93

Stopping Visual Basic ... 93

Getting online help .. 93

The Help Menu ... 96

WEEK 11

WEEK 12

WEEK 13

WEEK 15

[Type the document title]

4

Opening Application .. 97

Creating Simple application (Wizard) .. 98

Running your application .. 104

Creating Executable File ... 104

Saving your application .. 105

List of Computer Programming Languages .. 106

[Type the document title]

5

 WEEK 1

 SPECIFIC LEARNING OUTCOMES

To understand:

• Concept of programming

• Features of a good program

• Systems development cycle.

[Type the document title]

6

Concept of programming

A program is a set of instructions that tells the computer what to do. Computer programming (often
shortened to programming or coding), is the process of writing, testing, debugging/troubleshooting and
maintaining act of instructions (source code) for solving a problem with the computer. A source code is
written in an acceptable computer programming language. The code may be a modification of an existing
source or something completely new.

The purpose of programming is to create a program that exhibits a certain described behavior

(customization). The process of writing source code requires expertise in many different subjects,

including knowledge of the application domain. Alternatively. Programming is the craft of transforming

requirements into something that a computer can execute. Problem solving on computer is a task of

expressing the solution to the problem in terms of simple concepts, operations and computer code

(program) to obtain the results. To achieve this aim, you may proceed as follows.

1. First, understand the problem clearly:- Decide what you want to be calculated by the computer.

What will be the input data required? (if any). This is the problem formulation.

2. Write the steps of computation that are necessary to arrive at the solution. This is setting up the

algorithm.

3. Prepare a flowchart corresponding to the algorithm.

4. Develop the computer program. Test and run it on the computer.

There is an ongoing debate on the extent to which the writing of programs is an art, a craft or an

engineering discipline. Good programming is generally considered to be the measured application art, craft

and engineering, with the goal of producing an efficient and maintainable software (program) solution.

The discipline differs from may other technical professions in that programmers generally do not need to

be licensed or pass any standardized (or governmentally regulated) certification tests in order to call

themselves “programmers” or even “software engineers”.

[Type the document title]

7

Features of a good computer program

1) Reliability

Any developed program for a particular application can be depended upon to do what it is

supposed to accomplish. How often the results of a program are correct. This depends on

prevention of resulting from data conversion and prevention of errors resulting from buffer

overflows, underflows and zero division.

2) Meeting Users Needs:

Any developed system has a purpose for which it is developed. A developed program is a

failure if it cannot meet the objectives for which it is proposed and designed, that is, if the

potential users cannot use it either because it is too complex or too difficult. The usability of an

application analysis involving the user.

3) Development on time within Budgets:

Estimates of time and cost for writing computer programs have frequently been under or over

estimated. The components of a structured disciplined approach to programming are:

i) Proper control and management of time and cost required.

ii) Increased programmer productivity

iii) More accurate estimates.

4) Error-Free Set of Instruction

Almost all large set of programs contain errors. If a program is designed and developed in a

disciplined structured approach, it minimizes the likelihood of errors and facilitates

detection/correction of such errors during program testing.

5) Error-Resistant Operations:

A good program should be designed in such a way that it can perform validation run on each

input data to determine whether or not they meet the criteria set for them. Eg Reasonableness

check, Existence check, Dependency check, etc.

6) Maintainable Code:

A good program design will always be easy to change or modify when the need arises.

Programs should be written with the maintenance activity in mind. The structure, coding and

[Type the document title]

8

documentation of the program should allow another programmer to understand the logic of the

program and to make a change in one part of a program without unknowingly introducing an

error in another part of the same program.

7) Portable Code:

A good program design will be transferable to a different computer having a language translator

for that language without substantial changes or modification

8) Readability:

The program codes will be easy for a programmer to read and understand the logic involved in

the programming.

9) Storage Saving:

A good program design is not to be verbous, that is, it will not be allowed to be unnecessary

long, thereby consuming much storage that will be required for processing data and storage of

information produced from processing.

10) Efficiency:

The amount of system resources a program consumes (processor time, memory space, slow

devices, network bandwidth and to some extent even user interaction), the less the better.

11) Robustness:

How well a program anticipates situations of data type conflict and other incompatibilities that

result in run time errors and program halts. The focus is mainly on user interaction and

handling of

12) Usability:

The clarity and intuitiveness of a programs output can make or break it’s success. This involves

a wide range of textual and graphical elements that makes a program easy and comfortable to

use.

[Type the document title]

9

System Development Cycle

Most IT projects work in cycles. First, the needs of the computer users must be analyzed. This task is

often performed by a professional Systems Analysts who will ask the users exactly what they would like

the system to do, and then draw up plans on how this can be implemented on a real computer based system.

The programmer will take the specifications from the Systems Analyst and then convert the broad

brushstrokes into actual computer programs. Ideally at this point there should be testing and input from the

users so that what is produced by the programmers is actually what they asked for.

Finally, there is the implementation process during which all users are introduced to the new systems,

which often involves an element of training.

Once the users start using the new system, they will often suggest new improvements and the whole

process is started all over again.

These are methodologies for defining a systems development cycle and often you will see four key stages,

as listed below.

 Feasibility Study

 Design

 Programming

 Implementation

[Type the document title]

10

WEEK 2

SPECIFIC LEARNING OUTCOMES

To understand:

• The Concept of Algorithm

• Definition of Algorithm

• Features of an Algorithm

• Methods of representing Algorithm

[Type the document title]

11

Concept of Algorithm
An algorithm is a set of instructions to obtain the solution of a given problem. Computer needs precise and

well-defined instructions for finding solution of problems. If there is any ambiguity, the computer will not

yield the right results. It is essential that all the stages of solution of a given problem be specified in

details, correctly and clearly moreover, the steps must also be organized rightly so that a unique solution is

obtained.

A typical programming task can be divided into two phases:

(a) Problem solving phase

In this stage an ordered sequence of steps that describe solution of the problem is produced.

 Their sequence of steps can be called anti-Algorithm

(b) Implementation Phase

In this phase, the program is implemented in some programming languages.

Algorithm may be set up for any type of problems, mathematical/scientific or business. Normally

algorithms for mathematical and scientific problems involve mathematical formulars. Algorithms for

business problems are generally descriptive and have little use of formula.

Features of an Algorithm
1. It should be simple

2. It should be clear with no ambiguity

3. It should head to unique solution of the problem

4. It should involve a finite number of steps to arrive at a solution

5. It should have the capability to handle unexpected situation.

Methods of Representing Algorithm
Algorithms are statements of steps involved in solving a particular problem. The steps to the solutions are

broken into series of logical steps in English related form. Programs are written to solve real life problems.

[Type the document title]

12

There can’t be a solution if there is no recognized problem and once a problem exist, one must take certain

step in order to get a desired solution. The following methods could be used to represent an algorithm.

� Methods of English like form

� Methods of Flowchart

� Methods of Pseudo code

� Methods of Decision table

� Methods of Data flow Diagram (DFD)

Pseudo code
A pseudo code is the English-like representation of the program logic. It does not make use of

standard symbols like the flowchart. It is a sequential step by step arrangements of the instructions

to be performed to accomplish a task. It is an informal and artificial language that helps

programmers develop algorithms.

 Example 1

Write a pseudo code for findings the area of a room.

Solution:

• Begin process

• Input room length

• Input room width

• Multiply length by width to get area

• Print area

• End process

Solution for example 3 (below under pseudo code)

• Step 1: Input M1, M2, M3, M4

• Step 2: Grade ← (M1 + M2 + M3 + M4)/4

• Step 3: If (Grade < 50) then

• Print “FALL”

• Print “Pass”

• End it.

[Type the document title]

13

Example 2

Write a Pseudo code for finding the greatest of 3 numbers represented as A, B, and C.

Solution

• Begin process

• Input A,B,C

• If A>B then big = A

• Else big = B

• If big >C then bigst = big

Else bigst = C

Example 3

Write an Algorithm to determine a student’s final grade and indicate whether it is passing or failing.

The final grade is calculated as the average of four marks.

Solution

• Input a set of 4 marks

• Calculate their average by summing and dividing by 4.

• If average is below 50

Print “Fail”

else

Print “Pass”

[Type the document title]

14

 WEEK 3

SPECIFIC LEARNING OUTCOMES

To understand:

• The Concept of Algorithm

• Definition of Algorithm

• Features of an Algorithm

• Methods of representing Algorithm

[Type the document title]

15

 English-like form
The English form of representing as algorithm entails breaking down the solution steps of the problem into

single and sequential English words. The steps are represented in English to say what action should be

taken in such a step.

Example 1

Develop an algorithm to obtain a book on computer from your school library located on the fourth floor of

the building. You are to proceed to the library from your ground floor classroom.

1. Start from the classroom

2. Climb the stairs to the 4th floor and reach the library

3. Search a book on computer

4. Have the book issued

5. Return to your classroom

6. Stop.

Note: The above algorithm solution of example 1, has been written in simple and clear English way.

There is no

Example 2

Develop an algorithm to find the average of four numbers stored in variables A,B,C,D

Solution

1. Start

2. Read values in variables A,B,C,D

3. Calculate the average as (A+B+C+D)/4 and store the result in P.

4. Write the value stored in P

5. Stop.

Example 3

Develop and algorithm to find the average of four numbers stored in variables A, B, C, D. When the value

of variable A is zero, no averaging is to be done.

Solution

[Type the document title]

16

1. Start

2. Read values stored in variable A,B,C.D

3. If the value of A is Zero, then jump to step 6

4. Calculate the average of A, B, C, D and store the result in variable P.

5. Write the value of P

6. Stop.

Flowchart
Flowchart is a representation of the algorithm using standard symbols. Each symbols has a new function.

The Algorithm steps determine which symbol to use to represent it in the flow each step is linked to

another step by using the directional arrows.

[Type the document title]

17

Example

Write an algorithm

and draw a

flowchart to convert the length in feet to centimeter.

Solution

(Pseudocode)

• Input the length in feet (Lft)

• Calculate the length in an (LCM) by multiplying LFT with 30

• Print Length in Cm (LCM)

Flow Chart Symbols and Flow Chart For Mailing Letter

[Type the document title]

18

Step 1: Input Lft

Step 2: Lcm ← Lft * 30

Step 3: Print Lcm

Step 4: Stop

Flowchart

Start

Input Lft

LCM ← Lft * 30

Print
LCM

Stop

[Type the document title]

19

WEEK 4

SPECIFIC LEARNING OUTCOMES

To understand:

• The Concept of Algorithm

• Definition of Algorithm

• Features of an Algorithm

• Methods of representing Algorithm

[Type the document title]

20

Decision table
A decision table is a form of truth table that structures the logic of a problem into simple YES and No

form. It is easily adapted to the needs of business data processing. It is a rectangle divided into four

sections called quadrants. It provides a structure for showing logical relationships between conditions that

exist and actions to be taken as a result of these conditions.

The quadrants of a decision table are called the condition steeb, the condition entry, the action stub and the

action entry respectively.

Condition stub Condition entry

1. The number of condition is used to determine the number of entries by using the formula, where n

is the number of condition.

2. Halving method is used to form the entries in the condition entry e.g if the number of conditions in

a question is 3, then the no of entries will be 23 =8. Therefore in the condition entry box, the first

row will have 4 Ys and 4 Ns. The second row will have 2Ys and 2Ns by 2.Finally the 3rd row will

have 1Y and 1N into 4

1 Condition stub:- This gives a list of all the conditions that are relevant to the system.

2 Condition entry: - Shows a YES or NO entry (abbreviated to Y for YES and N for NO) whether listed

condition is present or absent.

3 Action stubs: - This quadrant gives a list of all the actions that could be taken by the system, based on

the conditions.

4 Action entry: - This quadrant indicates whether a specific action will be taken or will not be taken .

Action stub Action entry

[Type the document title]

21

The condition entries

i Y is an indication that the condition is present

ii N is an indication that the condition is not present

iii - or blank is an indication that the condition was not tested.

The action entries

i X is an indication that the listed action to be taken.

ii blank is an indication that the action is not to be taken.

Advantages of Decision Tables

1. They are simple, practicable and economical .All that is regarded to developed a decision table is a piece

of paper and a pencil

2. It makes the system designer to express the logic of the problem in direct and concise terms, which

results in the development of an effective and efficient program.

3. It is useful in program documentation i.e decision tables provide a quick and easily understood over

view of the system.

4. It is an excellent communication device to breach the gap between the computer personnel who are

responsible for developing the system and the non data processing personnel who use the out put

of the system.

5. Decision tables are easy to update.

6. It is easy to lean how to use decision table.

7. The complexity and the amount of detail that can be handed by a decision table is un-limited.

Disadvantages

1 Total sequence: The total sequence of an operation is not clearly shown in the decision table i.e no

overall picture is given as with flowcharts.

2 Logic: Where the logic of a system is simple flowcharts always serve the purpose better.

Example

A wholesaler gives discount according to the following rules.

i Irrespective of the value of the sale and whether it is for cash or credit, existing customers get a 5%

discount.

ii If the sale is for cash, then existing customers receive a 10% discount in total.

iii If the sale is for over #1000 and for cash then existing customers receive a15% discount in total.

[Type the document title]

22

iv New customers never receive a discount of any sort.

You are regarded to construct a limited entry decision table to describe the above process.

SOLUTION

 n = 3 2n = 23 =8

Condition stub Condition entry

Existing customer? Y Y Y Y Y Y Y Y

Cash sales ? Y Y N N Y Y N N

Cash sales > #1000 ? Y N Y N Y N Y N

Action stub Action entry

offer 5% discount X X

.. 10% .. X

.. 15% .. X

.. no discount X X X X

Condition stub Condition entry

Existing customer Y Y Y N

Cash sales Y Y N -

Sales > #1000 Y N - -

Action stub Action entry

offer of 5% discount X

.. 10% .. X

.. 15% .. X

no discount X

Data flow Diagrams
A data flow diagram shows the flow of the data among a set of components. The components may be

tasks, software components, or even abstractions of the functionality that will be included in the software

system. The actors are not included in the data flow diagrams. The sequence of actions can often be

inferred from the sequence of activity boxes.

Rules and Interpretations for correct data flow diagrams.

[Type the document title]

23

1) Boxes are processes and must be verb phrases

2) Arcs represent data and must be labeled with noun phrases.

3) Control is not shown. Some sequencing may be inferred from the ordering.

4) A process may be a one – time activity, or it may imply a continuous processing.

5) Two arcs coming out of a box may indicate that both output are produced or that one or the

other is produced.

Example DFD

(x + y) * (w + Z)

y

 x Sum1 Answer

 w Sum 2

 z

 Sum
Multiply

Sum

[Type the document title]

24

WEEK 5

SPECIFIC LEARNING OUTCOMES

To understand:

� Definition of flowchart

� Description of flowchart symbols

� Solving simple programming table with flowcharts

[Type the document title]

25

The flowchart
A flowchart is a pictorial representation of an Algorithm or of the plan of solution of a problem. It

indicates the process of solution, the relevant operations and computations, point of decision and other

information that are part of the solution. Flowcharts are of particular importance for documenting a

program. Special geometrical symbols are used to construct flowcharts. Each symbol represents an

activity. The activity could be input/out of data, computation/processing of data, taking a decision,

terminating the solution, etc. The symbols are joined by arrows to obtain a complete flowchart.

Name Symbol Use in flowchart

Oval Denotes the beginning or end of the

 program.

 Parallelogram Denotes an input operation

Rectangle Denotes a process to be carried out

 eg addition, subtraction, division,

 etc.

Diamond Denotes a decision (or branch) to be

 made. The program should continue

 along one of two routes (eg

 if/then/ese)

Hybrid Denotes an output operation

 Directional Denotes the directors of logic flow

[Type the document title]

26

 arrows or in the program.

 flow line

Example 1

Draw a flowchart to find the average of four numbers stored in variables A,B,C,D

[Type the document title]

27

Solution

Example 2

Draw a flowchart to find the average of four numbers stored in variables A,B,C,D. when the value of A is

zero, no averaging is to be done.

Start

Read numbers in
A,B,C,D

Calculate the average
P=(A+B+C+D)/4

Write the value of P

 Stop

[Type the document title]

28

Solution

Example 3

Write a flowchart to determine a student final grade and indicate whether it is pass or fail. The final grade

is calculated as the average of four marks.

Solution

Start

READ values
For A,B,C,D.

Is
A=0

?

Calculate the average

Write the value of
P

Stop

Start

Input
M1, M2, M3 & M4

[Type the document title]

29

Example 4

Write an algorithm and draw a flowchart that will read the two sides of a rectangle and calculate its area.

Solution

Pseudo code

• Input the Width(w) and Length(L) of a rectangle

[Type the document title]

30

• Calculate the area (A) by multiplying L with W

• Print A.

Algorithm

 Step 1: Input W, L

 Step 2: A← L * W

 Step 3: Print A.

[Type the document title]

31

 Flowchart

Example 5

Write an algorithm and draw a flowchart that will calculate the roots of a quadratic equation.

ax2 + bx + c = 0

Hint: d = SQrt(b2 – 4ac), and the roots are:

 X1 = (-b + d)/2a and X2 = (b – d)/ 2a

Solution

Pseudo code

• Input the coefficients (a, b, c) of the quadratic equation

• Calculate d

• Calculate X1

• Calculate X2

• Print X1 and X2

Algorithm

Stop

Input
W,L

A ← L * W

Print A

Stop

[Type the document title]

32

Step 1: Input a, b, c

Step 2: d ← Sqrt (b * b – 4 * a * c)

Step 3: X1 ← (- b + d)/ (2 * a)

Step 4: X2 ← (- b – d)/ (2 * a)

Step 5: Print X1, X2

Flowchart

Uses of flowcharts

1 It gives us an opportunity to see the entire system as a whole.

2 It makes us to examine all possible logical outcomes in any process.

3 It provides a tool for communicating i.e a flowchart helps to explain the system to others.

4 To provide insight into alternative solutions.

5 It allows us to see what will happen if we change the values of the variable in the system.

Start

Input
a, b, c

d ← Sqrt + (b * b – 4*a*c

X1 ← (-b + d)/ (2*a)

X2 ← (-b – d) / (2* a)

Print
X1, X2

Stop

[Type the document title]

33

ADVANTAGES OF USING FLOWCHART

1. Communication flowcharts are visual aids for communicating the logic of a system to all

concerned.

2. Documentation: flowcharts are a means of documentation because:

3 The analyst/ programmers may leave the arrangement or they may forget the logic of the program.

4 Changes to the procedure are more easily catered for (modification).

5 Flowchart can be understood by new staff coming to the company

6 Analysis: flowcharts help to clarify the logic of a system i.e the overall picture of the organization can

be seen.

7 Consistency: A flowchart is a consistent system of recording. It brightens @ the relationships

between different parts of a system.

DISADVANTAGES OF USING FLOWCHART
1. Complex logic :- Where the logic of a problem is complex, the flowchart quickly becomes clustered

and lacks clarity.

2. Alterations:- If alterations are required the flowchart may require redrawing completely.

3. Reproduction :- As the flowchart symbols cannot be typed, reproduction of flowchart is often a

problem.

[Type the document title]

34

WEEK 6

SPECIFIC LEARNING OUTCOMES

To understand:

* Design algorithm for problems involving.
• Strictly sequence control structure
• Selection control structure
• Iteration control structure

[Type the document title]

35

Designing Algorithm For Common Programming Logic Structures

Basic Coding Structures

All computer programs can be coded using only three logic structures (or programs) or combinations of

these structures:

1. Simple sequence

2. Selection

3. Repetition

The three structures are useful in a disciplined approach to programming because

1.The program is simplified. Only the three building blocks are used, and there is a single point of entry

into the structure and a single point of exit.

2. The three coding structures allow a program to be read from top to bottom making the logic of the

program more visible for checking and for maintenance.

Simple Sequence

The simple-Sequence structure consists of one action followed by another. In other words, the flow of

control is first to perform operation A and the to perform operation B.. A simple sequence is flowcharted

as two process symbols connected by a flowline.

Selection
The selection structure consists of a test for condition followed by two alternative paths for the program to

follow. The programs selects one of the program control paths depending on the test of the condition.

After performing one of two paths, the program control returns to a single point. This pattern can be

termed IF .. ELSE because the logic can be stated (for condition P and operations C and D): IF P (is true),

perform C; ELSE perform D . A flowchart for the selection structure consists of a decision symbol

followed by two paths, each with a process symbol, coming together following the operation symbols.

(a) Single alternative – This structure has the form:

 [IF condition, Then:]

 [End of IF structure]

[Type the document title]

36

(b) Double alternative: This structure has the form

ie IF condition holds, then module A executed; otherwise module B is executed.

(c) Multiple alternatives: This structure has the form:

IF Condition (1), then

 [Module A,]

Else if condition (2), then:

 [module Az]

Condition
?

Module A

Module A

Condition
?

Module
B

IF Condition, then:
 [Module A]

Else

 [Module A]

[End of IF structure]

[Type the document title]

37

 :

Else if condition (m), then;

 [module Am]

Else [module B] (END OF IF structure)

Iteration Logic (Repetitive flow)
The repetition structure can also be called a loop. In a loop, an operation or a set of operation is repeated

until some condition is satisfied. The basic form of repetition is termed DO WHILE in the literature of

structured programming. In some languages, the repetition structure might be termed PERFORM UNTIL.

In the perform until pattern, the program logic tests a condition; if it is true, the program executes the

operation and loops back for another test. If the condition is true, the repetition ceases.

 This structure has the form:

 Repeat for K = R to S by T:

 [Module]

 [End of loop]

Algorithm example for iteration or repetition

For example let us take 10 sets of numbers each set containing three. The problem is to get the biggest

number in each set and print it.

Algorithm

Step 1: Read the total number of sets

Step 2: Initialize the number of the set as N=1

Step 3: Read three numbers of a set say A, B, C.

Step 4: Compare A with 3 and choose the bigger.

Step 5: Compare the bigger number with C and Choose the biggest

Step 6: Print the biggest number,

Step 7: Increment the number of the set by 1

 (N=N+1)

Step 8: Check whether we have exceeded 10. If not Go – To step 3. Otherwise.

Step 9: STOP

The flow chart for the same in given below

[Type the document title]

38

WEEK 7

SPECIFIC LEARNING OUTCOMES

To understand:

• Explain modular programming concept.

• Explain top-down design technique.

• Illustrate program design with program structure charts, hierarchical Network,

Hierarchical.

[Type the document title]

39

The Concept of Modular Programming

As program become larger, and more complex, it becomes more difficult to write clear understandable

solutions that work correctly. The goal of modular programming is to break up the program into small

parts that are more easily understood. The planning, coding and testing can be done on these small,

relatively simple units, rather than on one large, complex body of code.

Programmers must develop the skill and the ability to look at a large program and to decompose it into

individual factions. Once a programmer has learned to modularize programs, program will be coded more

quickly, will be more likely to work correctly, and will certainly be easier to read to be maintained by

others.

Virtually all computer scientists recommend modular programming. The only disagreement seems to be at

what point a programmer should begin writing what are called “subroutines”. Many programmers wait

until programs become hopelessly complex. Then introducing subroutine can save the day. The more

practical approach is to being using subroutines early. As programs become more complex, if correct

habits need already in place, the programmer doesn’t need to be “rescued” The solution to the program is

at hand. A subroutine is a group of statements intended to accomplish an individual task.

When a program is written with individual tasks in subroutine, a mainline, or control program is needed.

This control program is sometimes called the program outline, as it presents an overviewed of the program

tasks. [Another term sometimes used for the program maintain is the driver.

Modular program planning
There are several popular methods used for planning modular programs. Pseudo code or flowcharts maybe

used, with slight modification for the subroutine, or hierarchy charts maybe used. The three methods can

be illustrated example programming program as shown below.

[Type the document title]

40

Program example

Using modular (subroutines) approach, show the program plan of a computer program for calculating

simple interest on a deposit by a customer.

Solution

Modular Pseudo code plan for the problem

1. Input data

1.1 Prompt and input rate, deposit amount, and number of years.

2. Calculations

2.1 Calculate interest = deposit * rate * years

2.2 Calculate ending balance = deposit + interest

3. Output

3.1 Print interest and ending balance

Modular flowchart plan for the problem

[Type the document title]

41

Program mainline Subroutines

Write output

Start

Calculations

Input data

End

[Type the document title]

42

Calculations

Calculate interest
= Deposit * Rate *years

Calculate balance
= Deposit + Interest

Return

Enter Rate

Enter deposit

Enter year

Return

Calculations

[Type the document title]

43

Modular Hierarchy plan for the problem

Many programmers who write modular programs prefer to plan their programs with hierarchy chart.

A hierarchy chart is used to plan and show program structure. It is constructed much like an

organization chart. As shown the solution below, level A shows the entire program, which is

broken down into major program functions on the B level. The modules can be broken into smaller

and smaller parts until the coding for each function becomes straightforward. Many programmers

use a hierarchy chart to plan the overall structure of a program. Then, when the individual modules

are identified, flowcharting or pseudo code will be used to plan the details of the logic.

Write Output

Print Interest

Print Balance

Return

Interest Program

Input
Data

Calculations Write Output

[Type the document title]

44

WEEK 8

SPECIFIC LEARNING OUTCOMES

To understand:

• Identify the problem and confirm it solvable.

• Design algorithm for the chosen method of solution with flowcharts or pseudo codes.

• Code the algorithm by using a suitable programming language.

• Test run the program on the computer.

[Type the document title]

45

STAGES OF PROGRAM DEVELOPMENT

Before computer program is successfully written, documented and installed, it must have passed through

the following stages. Each stage has something to contribute to the accomplishment of the whole task.

The stages are:

Problem definition:
Before any reasonable and meaningful program could be written, the problem that prompted it must have

to be defined. No one solves a problem he does not know. The problem to be solved by computer should

be well stated and understood before the solution will be worked out. From the solution, it is expected that

the output of the problem is known and the input will be prepared to arrive at the output.

Develop the algorithm
An algorithm is a well defined set of instructions that is used to solve a particular problem in a finite

number of steps. It involves unambiguous stating of the procedures and steps necessary to transform the

input data into output. It posses a little difficulty to the program planner, and once accomplished

successfully, the rest of the solution follows easily.

Plan the logic of the program/flowcharting:
The logic of the program will be planned using any of the program design tools it flowchart, pseudocode or

hierarchy chart. The choice of the design tool used depends on the programmer, but the most popular and

most handy is the use of the flowchart to organize the thought of the program planner and to check for any

logic error or misrepresentation. A flowchart is a pictorial view of the program logic

Write the computer program:
After the design or planning the logic of the program using the flowchart, the next stage is the actual

writing of the program using any of the programming languages in a proper sequence. This is called,

coding of the program. This is done by strictly obeying the language syntax or following the established

rules of the programming language.

[Type the document title]

46

Type the program into computer:
The next stage after writing the program, it to key the program into the computer. Any program that will

be executed by the computer must be resident in the computer memory. The typing is generally made one

line after the other.

Test and debug the program:
The moment the program has been keyed into the computer, the programmer is ready to see if the program

is working. The program could be translated into machine language by either a compiler or interpreter

depending on the language in use ie for BASIC program, when the command RUN is typed and entered,

the program begins executing. If any rules language is broken, the program will not work. The errors must

be removed before the program will start producing the output. Testing is very necessary to ensure that the

correct and required answers are produced as the output.

Document the work:
Documentation helps the user to understand the program better. It identifies exactly the purpose of the

program. It is always referred to whenever changes are to be made in the program to suite new

development. It contains the following parts.

i) A statement of the problem

ii) Algorithm and program plans (ie flowchart, hierarchy chart or pseudocode).

iii) Description of input and output

iv) Program listing

v) Test data and results

vi) Technical details and instruction for the user.

 All these are assembled into a finished program documentation.

[Type the document title]

47

Program development/execution process

The program development stages/process is illustrated in the diagram below;

Edit/enter the program

Compile program

Compile/linker errors?

Run program

Execute errors

Get unreasonable or
incorrect answers?

Success/documentation

Determine errors
Get back into editor
Fix program errors

Determine error source
Program (or data)

Edit program (or data)

Re-think problem
Re-think program

Edit program

Yes

Yes

Yes

No

No

No

[Type the document title]

48

WEEK 9

SPECIFIC LEARNING OUTCOMES

To understand:

• Explain machine language, low-level language and High level languages

• Various programming languages

• Differentiate between programming languages

[Type the document title]

49

LEVELS OF COMPUTER PROGRAMMING LANGUAGES

All computers whether small or big cannot do anything on their own. They all require a series of

instructions (i.e programs) before they can do any processing. It is these programs that will direct the

computer to carry out the required task. The programs have to be written out comprehensively: to

cover all possibilities: and in the right order before the control unit of the CPU can use them

effectively.

Programs can be written in several languages. Just as there are many spoken languages, there are many

computer languages. In this lecture we shall study the different levels of computer languages and their

forms.

Currently all computer languages can be grouped into three, namely, machine languages, assembly

languages and high-level languages. Machine languages and assembly languages are together referred to

as low-level languages. The detail characteristics of each group of languages are discussed below.

Low-level Languages

These group of languages are so named because in frm they are very close (i.e. similar) to the language the

computer understands, and very remote from languages spoken by human beings. Low-level languages are

in two forms namely: machine language and assembly language.

Machine language

Machine language is as old as the computer itself. It is the computer’ s own language. It consists of the

code that designates the electrical states in the computer (i.e, on or off): this is expressed as combination of

Os and 1s./It is called the computer’s own language because codes or instructions written in machine

language can be executed directly by the computer; without the need for any translation. This is the only

language that has this characteristic.

Each type of computer has its own machine language. That is to say, that different brands of computers

cannot understand programs written in another brand’s machine language. Talking specifically, a

computer made by IBM company has its own language which is different from the one of NCR

[Type the document title]

50

company. Even two different models of computers made by the same company do not usually have the

same machine language. Thus programs written in machine language are said to be machine-

dependent.

Every instruction in machine language programs must specify both the operation to be carried out as

well as the storage locations of the data items to be used in the operation. In form, it consists of a

series of numbers. The operation part is called opcode or operation code and the remaining part gives

the addresses of the data items in memory that will be affected by the operation. Due to these special

requirements machine language programming is extremely complex, tedious and time consuming.

For example, the instruction, in machine language, to make the computer add together the numbers

currently stored in memory addresse four and seven and then store the sum in address four will look

like this.

 1A47

The first two numbers 1A is the operation code for add in IBM 360 machine. On another machine it

will be another series of numbers different from the one given.

For effective and efficient program in machine language, the programmer must keep track of which

memory locations have been used and the purpose of each memory location. Also the programmer

must know every operation code and the action that it causes the computer to take. It is quite lengthy

and tedious. To overcome this, the assembly language come into existence.

Assembly Language

 In order to relieve programmers the arduous task of writing in machine language, the assembly

language was developed. It is very much similar to machine language but instead of writing in series of

numbers, convenient symbols and abbreviations are used. Assembly language programming does not

require the programmer to remember numeric opcodes and addresses. However, it still requires the

programmer to be familiar with the operation codes and the methods of addressing memory locations

[Type the document title]

51

for that particular machine. This is because, the assembly language; though at a higher level, still

depend very much on the language of that particular machines.

Programs in assembly language cannot be executed directly, it still has to be changed to the machine

language during execution. Thus we can see that assembly language too is machine dependent. That is

to say, different brands of computers have different assembly language. For this reason, assembly

language is still classified as low-level language.

For the IBM 360 computer the machine language code for ass is 1A while in assembly language,

addition operation code is AR is a mnemonic for “Add Register”. For STORE operation the assembly

code is the mnemonic STO while TRA stands for TRANSFER Operation and MR stands for MOVE

REGISTER operation etc.

Similarly the programmer can assign a name to each memory location. For instance address seven may

be given the name P and address four may be given the name Q, thus the instruction.

 AR P. Q

In assembly language will be executed as adding the contents of register Q to the contents of P; of

course the final result will be in register P.

As mentioned earlier, regardless of which assembly language is used, the computer cannot directly

execute the programs written in this language. It has to be translated into the machine language by

another special purpose software called translator. The details of the translation process shall be

studied in later lectures.

High-level languages

As computers have developed in complexity, so have programming languages. High-level language

programming are the result of sophistication in programming languages.

The Machine and Assembly languages discussed before require programmers to construct programs in a

form that does not follow normal ways of human thinking, communication and language notation. To

avoid this problem High-level languages were developed. Another name for high-level languages is

[Type the document title]

52

problem-oriented languages. With this language, programmers’ attention are now directed towards

problem solving instead of operations going on inside computer. These languages allow mathematicians

and Scientists to use common algebraic notations for coding formulas while other lay programmers can

write their programs in ordinary sentence form. The time and effort needed to write programs are now

reduced considerably and programs are easier to correct and modify.

A large number of high-level languages are in use today. In fact, more are being developed daily as

researchers are still going on.

Example of high-level languages commonly in use today include:

1) BASIC (Beginners All-purpose Symbolic Instruction Code)

2) FORTRAN (Formula Translator). There are many versions of FORTRAN However

the modern version is called FORTRAN 77

3) COBOL (Common Business Oriented Language). There are many versions

4) `C’ language

5) PL/1

6) PASCAL (language named after an ancient French Mathematician and inventor of

Pascal engine), etc.

Each of the high-level languages has rules that govern how to write instructions in them. Like

any human language, it is the duty of the programmer or user to learn the rules of the language

he wants to use.

Unlike low-level language which is machine-dependent, high-level languages are machine-

independent. That is to say, a program written in any of the high-level languages can be run

[Type the document title]

53

with little or no changes by computer made by many different manufacturers. Thus, as new

computers come into existence, programmers do not have to rewrite the existing programs and

learn new language as it is the case with assembly programming.

The example below shows how to add two numbers held in variables X and Y placing the sum

in X using the most common four high-level languages.

BASIC……. LET X = X + Y

FORTRAN ……. X = X + Y

COBOL………. ADD Y TO X

PASCAL…….. X: = X + Y

It can be observed that the notation is very similar to human ways of thinking and expression

and very remote from the machine language.

[Type the document title]

54

WEEK 10

SPECIFIC LEARNING OUTCOMES

To understand:

• Explain the distinguishing features of different programming languages

• Distinguish between system commends and program statements.

• Advantages and disadvantages of different levels of programming languages

[Type the document title]

55

MACHINE LANGUAGE

Machine Code or machine language is a low-level programming language that can be understood directly

by a computer’s central processing unit (CPU). Machine code consists of sequences of binary numbers, or

bits, which are usually represented by 1s and 0s, and which form the basic instructions that guide the

operation of a computer. The specific set of instructions that constitutes a machine code depends on the

make and model of the computer’s CPU. For instance, the machine code for the Motorola 68000

microprocessor differs from that used in the Intel Pentium microprocessor.

Writing programs in machine code is tedious and time-consuming since the programmer must keep track of

each specific bit in an instruction. Another difficulty with programming directly in machine code is that

errors are very hard to detect because the program is represented by rows and columns of 1s and 0s.

Advantages of Machine Language

1) Less code is produced

2) Storage is saved

3) User has direct control of machine instruction

4) Execution is faster as no translation is needed

5) The programmer knows all the registers and instruction that use them.

Disadvantages of Machine Language

1) Cumbersome ie, tedious and difficult to learn

2) Programmer’s fluency is affected, thereby making the programs developed inefficient.

3) The developed programs are error prone and difficult to debug (correct)

4) The performance of the system is unreliable.

ASSEMBLY LANGUAGE

Assembly language is type of low-level computer programming language in which each statement

corresponds directly to a single machine instruction. Assembly languages are thus specific to a given

processor. After writing an assembly language program, the programmer must use the assembler specific to

the microprocessor to translate the assembly language into machine code. Assembly language provides

[Type the document title]

56

precise control of the computer, but assembly language programs written for one type of computer must be

rewritten to operate on another type. Assembly language might be used instead of a high-level language for

any of three major reasons: speed, control, and preference. Programs written in assembly language usually

run faster than those generated by a compiler; use of assembly language lets a programmer interact directly

with the hardware (processor, memory, display, and input/output ports).

Assembly language uses easy-to-remember commands that are more understandable to programmers than

machine-language commands. Each machine language instruction has an equivalent command in assembly

language. Assembly language makes programming much easier, but an assembly language program must

be translated into machine code before it can be understood and run by the computer. Special utility

programs called assemblers perform the function of translating assembly language code into machine code.

Like machine code, the specific set of instructions that make up an assembly language depend on the make

and model of the computer’s CPU. Other programming languages such as Fortran, BASIC, and C++, make

programming even easier than with assembly language and are used to write the majority of programs.

These languages, called high-level languages, are closer in form to natural languages and allow very

complicated operations to be written in compact notation.

 Advantages of Low Level Language

1) Program translation is easier than high level language

2) It affords the programmer the opportunity to understand the internal structure of the

hardware and its registers.

Disadvantages of Low Level Language

1) It is machine dependent, That is, cannot be transferred to another computer.

2) Program development is slow as the programmer must have detailed knowledge of the

hardware structure.

3) Program maintenance is slow and error prone.

[Type the document title]

57

HIGH LEVEL LANGUAGE
High-Level Language is a computer language that provides a certain level of abstraction from the

underlying machine language through the use of declarations, control statements, and other syntactical

structures. In practice, the term comprises every computer language above assembly language. The next

generation of language is called the 3rd generation. The computer programmers enjoy using this language

because it gives them the fluency, the flexibility and the opportunity to express their thought to the best of

their ability. The languages of this generation are called High level language. The high level languages are

referred to as machine language and assembly language.

Advantages of High Level Language

2) It makes programming easier for the human being.

3) High level instructions are easier to understand and faster to code.

4) Error correction and resting of program is easier

5) They are machine independent. That is, program written for computer can be transferred to

another computer with little or no modification.

Disadvantages of High Level Languages

1) High level language tends to be inefficient in the use of CPU and other facilities.

2) Machine code instructions are produced and than requires more storage spaces.

3) More time is required to run the program as it has to be translated.

[Type the document title]

58

WEEK 11

SPECIFIC LEARNING OUTCOMES

To understand:

* Debugging.

• Identify sources of bugs in a program

• Explain syntax, run-time and logical errors.

• Identify techniques of locating bugs in a program

• Explain program maintenance.

• Distinguish between debugging and maintaining a program

[Type the document title]

59

THE CONCEPT OF DEBUGGING AND MAINTAINING PROGRAM

Debugging is the art of diagnosing errors in programs and determining how to correct them. "Bugs" come
in a variety of forms, including: coding errors, design errors, complex interactions, poor user interface
designs, and system failures. Learning how to debug a program effectively, then, requires that you learn
how to identify which sort of problem you're looking at, and apply the appropriate techniques to eliminate
the problem.

Bugs are found throughout the software lifecycle. The programmer may find an issue, a software tester
might identify a problem, or an end user might report an unexpected result. Part of debugging effectively
involves using the appropriate techniques to get necessary information from the different sources of
problem reports.

Debugging is described as identification and removal of localized implementation errors or bugs from a
program or system. Program debugging is often supported by a debug tool, a software tool that allows the
internal behavior of the program to be investigated in order to establish the existence of bugs. This tool
typically offer trace facilities and allow the planting of breakpoint in the program at which execution is to
be suspended so that examination of partial results is possible and permit examination and modification of
the values of program variables when a breakpoint is reached.

In computer program/software, a bug is an error in coding or logic that causes a program to malfunction or
to produce incorrect results. The computer software (debug tool) is used to detect, locate, and correct
logical or syntactical errors in a computer program. Similarly, in hardware, a bug is a recurring physical
problem that prevents a system or set of components from working together properly. To detect, locate, and
correct a malfunction or to fix an inoperable system, the term troubleshoot is more commonly used in
hardware contexts. The three major program error are; syntax error, logical error and run-time error.

Sources of bugs in a program

With coding errors, the source of the problem lies with the person who implements the code. Examples of
coding errors include:

• Calling the wrong function ("moveUp", instead of "moveDown")
• Using the wrong variable names in the wrong places ("moveTo(y, x)" instead of "moveTo(x, y)")
• Failing to initialize a variable ("y = x + 1", where x has not been set)
• Skipping a check for an error return

Software users readily see some design errors, while in other cases design flaws make a program more
difficult to improve or fix, and those flaws are not obvious to a user. Obvious design flaws are often
demonstrated by programs that run up against the limits of a computer, such as available memory, available

[Type the document title]

60

disk space, available processor speed, and overwhelming input/output devices. More difficult design errors
fall into several categories:

• Failure to hide complexity
• Incomplete or ambiguous "contracts"
• Undocumented side effects

Complex interactivity bugs arise in scenarios where multiple parts of a single program, multiple programs,
or multiple computers interact.

Sometimes, computer hardware simply fails, and it usually does so in wildly unexpected ways.
Determining that the problem lies not with the software itself, but with the computer(s) on which it is
usually complicated by the fact that the person debugging the software may not have access to the
hardware that shows the problem.

Preventing Bugs

No discussion of debugging software would be complete without a discussion of how to prevent bugs in
the first place. No matter how well you write code, if you write the wrong code, it won't help anyone. If
you create the right code, but users cannot work the user interface, you might as well have not written the
code. In short, a good debugger should keep an open mind about where the problem might lie.

Although it is outside the scope of this discussion to describe the myriad techniques for avoiding bugs,
many of the techniques here are equally useful after the fact, when you have a bug and need to uncover it
and fix it. Thus, a brief discussion follows.

Methods of debugging

Understand the Problem

In order to write effective software, the developer must solve the problem the user needs solved. Users,
naturally enough, do not think in strict algorithms, windowing systems, web pages, or command line
interfaces. Rather, users think of their problems in the way that they think of their problems (yes, that is
circular).

Sit down with the intended user, and ask them what they want from the software. Users frequently want
more than software can actually deliver, or have contradictory aims, such as software that does more, but
doesn't require that they learn anything new. In short, ask the users what their goals are. Absent those goals,
users will keep reporting bugs that do not add up to a coherent whole.

[Type the document title]

61

Basic debugging techniques/steps

Although each debugging experience is unique, certain general principles can be applied in debugging.
This section particularly addresses debugging software, although many of these principles can also be
applied to debugging hardware.

The basic steps in debugging are:

• Recognize that a bug exists
• Isolate the source of the bug
• Identify the cause of the bug
• Determine a fix for the bug
• Apply the fix and test it

Recognize a bug exists

Detection of bugs can be done proactively or passively.

An experienced programmer often knows where errors are more likely to occur, based on the complexity of
sections of the program as well as possible data corruption. For example, any data obtained from a user
should be treated suspiciously. Great care should be taken to verify that the format and content of the data
are correct. Data obtained from transmissions should be checked to make sure the entire message (data)
was received. Complex data that must be parsed and/or processed may contain unexpected combinations of
values that were not anticipated, and not handled correctly. By inserting checks for likely error symptoms,
the program can detect when data has been corrupted or not handled correctly.

If an error is severe enough to cause the program to terminate abnormally, the existence of a bug becomes
obvious. If the program detects a less serious problem, the bug can be recognized, provided error and/or log
messages are monitored. However, if the error is minor and only causes the wrong results, it becomes much
more difficult to detect that a bug exists; this is especially true if it is difficult or impossible to verify the
results of the program.

The goal of this step is to identify the symptoms of the bug. Observing the symptoms of the problem, under
what conditions the problem is detected, and what work-around, if any, have been found, will greatly help
the remaining steps to debugging the problem.

Isolate source of bug

This step is often the most difficult (and therefore rewarding) step in debugging. The idea is to identify
what portion of the system is causing the error. Unfortunately, the source of the problem isn't always the
same as the source of the symptoms. For example, if an input record is corrupted, an error may not occur

[Type the document title]

62

until the program is processing a different record, or performing some action based on the erroneous
information, which could happen long after the record was read.

This step often involves iterative testing. The programmer might first verify that the input is correct, next if
it was read correctly, processed correctly, etc. For modular systems, this step can be a little easier by
checking the validity of data passed across interfaces between different modules. If the input was correct,
but the output was not, then the source of the error is within the module. By iteratively testing inputs and
outputs, the debugger can identify within a few lines of code where the error is occurring.

Identify cause of bug

Having found the location of the bug, the next step is to determine the actual cause of the bug, which might
involve other sections of the program. For example, if it has been determined that the program faults
because a field is wrong, the next step is to identify why the field is wrong. This is the actual source of the
bug, although some would argue that the inability of a program to handle bad data can be considered a bug
as well.

A good understanding of the system is vital to successfully identifying the source of the bug. A trained
debugger can isolate where a problem originates, but only someone familiar with the system can accurately
identify the actual cause behind the error. In some cases it might be external to the system: the input data
was incorrect. In other cases it might be due to a logic error, where correct data was handled incorrectly.
Other possibilities include unexpected values, where the initial assumptions were that a given field can
have only "n" values, when in fact, it can have more, as well as unexpected combinations of values in
different fields (field x was only supposed to have that value when field y was something different).
Another possibility is incorrect reference data, such as a lookup table containing incorrect values relative to
the record that was corrupted.

Having determined the cause of the bug, it is a good idea to examine similar sections of the code to see if
the same mistake is repeated elsewhere. If the error was clearly a typo, this is less likely, but if the original
programmer misunderstood the initial design and/or requirements, the same or similar mistakes could have
been made elsewhere.

Determine fix for bug

Having identified the source of the problem, the next task is to determine how the problem can be fixed.
An intimate knowledge of the existing system is essential for all but the simplest of problems. This is
because the fix will modify the existing behavior of the system, which may produce unexpected results.
Furthermore, fixing an existing bug can often either create additional bugs, or expose other bugs that were
already present in the program, but never exposed because of the original bug. These problems are often
caused by the program executing a previously untested branch of code, or under previously untested
conditions.

[Type the document title]

63

In some cases, a fix is simple and obvious. This is especially true for logic errors where the original design
was implemented incorrectly. On the other hand, if the problem uncovers a major design flaw that
permeates a large portion of the system, then the fix might range from difficult to impossible, requiring a
total rewrite of the application.

In some cases, it might be desirable to implement a "quick fix", followed by a more permanent fix. This
decision is often made by considering the severity, visibility, frequency, and side effects of the problem, as
well as the nature of the fix, and product schedules (e.g., are there more pressing problems?).

Fix and test

After the fix has been applied, it is important to test the system and determine that the fix handles the
former problem correctly. Testing should be done for two purposes: (1) does the fix now handle the
original problem correctly, and (2) make sure the fix hasn't created any undesirable side effects.

For large systems, it is a good idea to have regression tests, a series of test runs that exercise the system.
After significant changes and/or bug fixes, these tests can be repeated at any time to verify that the system
still executes as expected. As new features are added, additional tests can be included in the test suite.

The diagram below illustrates the fix and test approach of debugging a program.

No

Edit/enter the program

Compile program

Compile/linker errors?

Run program

Execute errors

Get unreasonable or
incorrect answers?

Success

Determine errors
Get back into editor
Fix program errors

Determine error source
Program (or data)

Edit program (or data)

Re-think problem
Re-think program

Edit program

Yes

Yes

Yes

No

No

[Type the document title]

64

Syntax of a program
The syntax of a program is the rules defining the legal sequences of symbolic elements in a particular
language. The syntax rules define the form of various constructs in the language, but say nothing about the
meaning of these constructs. Examples of constructs are; expressions, procedures and programs.

Programming Errors
Error simply means mistake. That is errors occur in programs as a result of system failure (hardware),
wrong code/instructions (software) and human error. There are four categories of programming error;

Run-time errors (execution error)

Is an error that occurs during the execution of a program. In contrast, compile-time errors occur while a
program is being compiled. Runtime errors indicate bugs in the program or problems that the designers
had anticipated but could do nothing about. For example, running out of memory will often cause a
runtime error.

Note that runtime errors differ from bombs or crashes in that you can often recover gracefully from a
runtime error.

Run-time errors have the following basic characteristics;

� Program is compiled OK, but something goes wrong during execution e.g division by zero or an
attempt to read data that does not exist.

� Detected by the computer run-time system
� Computer usually prints error message and stops.

Define logical errors
A problem that causes a program to produce invalid output or to crash (lock up). The problem is either
insufficient logic or erroneous logic. For example, a program can crash if there are not enough validity
checks performed on the input or on the calculations themselves, and the computer attempts to divide by
zero. Bad instruction logic misdirects the computer to a place in the program where an instruction does not
exist, and it crashes. .
A program with bad logic may produce bad output without crashing, which is the reason extensive testing
is required. For example, if the program is supposed to add an amount, but subtracts it instead, bad output
results, although the computer keeps running.

Logic errors have the following basic characteristics;

[Type the document title]

65

� Program compiles and executes OK but produces unexpected or incorrect results.
� Detected by programmer (i.e You!)
� Hardest to detect, locate and find.

Define syntax errors (compilation error)
Syntax error is a programming error in which the grammatical rules of the language are broken. That is
program errors that occur due to violation or disobedience of rules of the programming language. When
syntax error occurs, the program execution is halt until the error or bug is detected, located and corrected.
Syntax errors can be detected by the compiler, unlike semantic errors which do not become apparent until
run-time.

Run-time errors have the following basic characteristics;

� Error in the form of statement: misspelled word, unmatched parenthesis, comma out of place
� Detected by the computer at compiler time
� Computer cannot correct error, so object program is not generated and thus program is not executed
� Computer (compiler) prints error messages, but continues to compile.

Linker errors: These types of errors have the following basic characteristics;

� Prevents the generation of an executable image
� Common linker errors;

o specifying the wrong header file
o disagreement among the function prototype, function definition and calls to that function

The difference between run-time, logical and syntax errors?

• Students should identify the differences from the above explanations.

Program maintenance

Program/software maintenance is the modification of a software product after delivery to correct faults, to
improve performance or other attributes, or to adapt the product to a modified environment. This
international standard describes the 6 software maintenance processes as:

1. The implementation processes contains software preparation and transition activities, such as the
conception and creation of the maintenance plan, the preparation for handling problems identified
during development, and the follow-up on product configuration management.

2. The problem and modification analysis process, which is executed once the application has become
the responsibility of the maintenance group. The maintenance programmer must analyze each
request, confirm it (by reproducing the situation) and check its validity, investigate it and propose a
solution, document the request and the solution proposal, and, finally, obtain all the required
authorizations to apply the modifications.

[Type the document title]

66

3. The process considering the implementation of the modification itself.
4. The process acceptance of the modification, by checking it with the individual who submitted the

request in order to make sure the modification provided a solution.
5. The migration process is exceptional, and is not part of daily maintenance tasks. If the software

must be ported to another platform without any change in functionality, this process will be used
and a maintenance project team is likely to be assigned to this task.

6. Finally, the last maintenance process, also an event which does not occur on a daily basis, is the
retirement of a piece of software.

Categories of Program maintenance

E.B. Swanson initially identified three categories of maintenance: corrective, adaptive, and perfective.

• Adaptive maintenance: Modification of a software product performed after delivery to keep a
software product usable in a changed or changing environment.

• Perfective maintenance: Modification of a software product after delivery to improve performance
or maintainability.

Preventive maintenance: Modification of a software product after delivery to detect and correct latent faults
in the software product before they become effective faults.

Difference between program maintenance and debugging

A common perception of maintenance is that it is merely fixing bugs. However, studies and surveys over
the years have indicated that the majority, over 80%, of the maintenance effort is used for non-corrective
actions. Key findings shows that program maintenance is really evolutionary developments and that
maintenance decisions are aided by understanding what happens to systems (and software) over time.
While Debugging is a very important task in the software development process, because an erroneous
program can have significant consequences for its users. Some languages are more prone to some kinds of
faults because their specification does not require compilers to perform as much checking as other
languages. Use of a static analysis tool can help detect some possible problems.

[Type the document title]

67

SPECIFIC LEARNING OUTCOMES

To understand:

*Employ structured approach to both flowcharting and program development.

WEEK 12

[Type the document title]

68

THE CONCEPT OF GOOD PROGRAMMING PRACTICE

Structured Programming is a general term referring to programming that produces programs with clean

flow, clear design, and a degree of modularity or hierarchical structure. Benefits of structured programming

include ease of maintenance and ease of readability by other programmers.

Structured Programming is one step beyond modular programming with guidelines for “good” modules

and “poor” modules. The structured programming guidelines also define “proper” flow of control and

coding standards (such as indentation). In many large programming projects where statistics have been

kept, it has been shown that structured programming has many demonstrable advantages over the old style,

unstructured programs, such as:

1. Programs are more reliable. Fewer bugs appear in testing and later operation.

2. Programs are easier to read and understand

3. Programs are easier to test and debug.

4. Programs are easier to maintain.

Most commercial programming shops report that at least 50 percent of programmer time is spent making

changes and correction in existing programs rather than developing new programs (some report more than

90 percent maintenance). Anything that will save time in correction and maintenance can save a company

considerable money. It is easy to see why most commercial stops hiring programmers insist on structured

programming techniques.

The current definition of structured programming includes standards for program design, coding and

testing that are designed to create proper, reliable, and maintainable software. These standards include

coding guidelines and rules for flow of control and module formation.

[Type the document title]

69

Structured Coding Guidelines

The structured coding guidelines are designed to make programs more reliable and easier to understand.

1. Use meaningful variable names

2. Code only one statement per line.

3. Use REMarks to explain program logic.

4. Indent and align all statements in a loop.

5. Indent the THEN and ELSE actions of an IF statement.

Flow of Control

In 1964, Italians Bohm and Jacopini proved mathematically that any program logic can be accomplished

with just three control structures. Within a few years, studies were done declaring the GOTO statement to

be harmful to good programming. In fact, in comparisons of selected large programming projects, there

was a direct correlation between the number of GOTO statements and program bugs found.

BASIC was not designed as a structured language, but some of the current additions to the language now

permit the programmer to adhere to the three “proper” constructs. All programming can be done with

combinations of these three construct.

Iteration – This is the loop structure. The BASIC statement learned for looping are the WHILE/WEND.

Others include;

• Looping
• Do...Loop Statement
• For...Next Statement

Visual Basic allows a procedure to be repeated as many times as long as the processor could support. This
is generally called looping .

[Type the document title]

70

Do...Loop Statement

Repeats a block of statements while a condition is True or until a condition becomes True.

Syntax

Do [{ While | Until } condition]
[statements]
[Exit Do]
[statements]

Loop

Or, you can use this syntax:

Do
[statements]
[Exit Do]
[statements]

Loop [{ While | Until } condition]

The Do Loop statement syntax has these parts:

Part Description

Condition Optional. Numeric expression or string expression that is True or False. If
condition is Null, condition is treated as False.

Statements One or more statements that are repeated while, or until, condition is True.

Remarks

Any number of Exit Do statements may be placed anywhere in the Do…Loop as an alternate way to exit a
Do…Loop. Exit Do is often used after evaluating some condition, for example, If…Then , in which case
the Exit Do statement transfers control to the statement immediately following the Loop.

When used within nested Do…Loop statements, Exit Do transfers control to the loop that is one nested
level above the loop where Exit Do occurs.

[Type the document title]

71

Example

This example shows how Do...Loop statements can be used. The inner Do...Loop statement loops 10
times, sets the value of the flag to False, and exits prematurely using the Exit Do statement. The outer loop
exits immediately upon checking the value of the flag.

Dim Check, Counter
Check = True: Counter = 0 ' Initialize variables.
Do ' Outer loop.
 Do While Counter < 20 ' Inner loop.
 Counter = Counter + 1 ' Increment Counter.
 If Counter = 10 Then ' If condition is True.
 Check = False ' Set value of flag to False.
 Exit Do ' Exit inner loop.
 End If
 Loop
Loop Until Check = False ' Exit outer loop immediately.

For...Next Statement

Repeats a group of statements a specified number of times.

Syntax

For counter = start To end [Step step]
[statements]
[Exit For]
[statements]

Next [counter]

The For…Next statement syntax has these parts:

Part Description

Counter Required. Numeric variable used as a loop counter. The variable can't be a
Boolean or an array element.

Start Required. Initial value of counter.

End Required. Final value of counter.

Step Optional. Amount counter is changed each time through the loop. If not

[Type the document title]

72

specified, step defaults to one.

Statements Optional. One or more statements between For and Next that are executed the
specified number of times.

Remarks

The step argument can be either positive or negative. The value of the step argument determines loop
processing as follows:

Value Loop executes if

Positive or 0 counter <= end

Negative counter >= end

After all statements in the loop have executed, step is added to counter. At this point, either the statements
in the loop execute again (based on the same test that caused the loop to execute initially), or the loop is
exited and execution continues with the statement following the Next statement.

Tip Changing the value of counter while inside a loop can make it more difficult to read and debug your
code.

Any number of Exit For statements may be placed anywhere in the loop as an alternate way to exit. Exit
For is often used after evaluating of some condition, for example If...Then, and transfers control to the
statement immediately following Next.

You can nest For...Next loops by placing one For...Next loop within another. Give each loop a unique
variable name as its counter. The following construction is correct:

For I = 1 To 10
 For J = 1 To 10
 For K = 1 To 10
 ...
 Next K
 Next J
Next I

Note If you omit counter in a Next statement, execution continues as if counter is included. If a Next
statement is encountered before its corresponding For statement, an error occurs.

[Type the document title]

73

Example

This example uses the For...Next statement to create a string that contains 10 instances of the numbers 0
through 9, each string separated from the other by a single space. The outer loop uses a loop counter
variable that is decremented each time through the loop.

Dim Words, Chars, MyString
For Words = 10 To 1 Step -1 ' Set up 10 repetitions.
 For Chars = 0 To 9 ' Set up 10 repetitions.
 MyString = MyString & Chars ' Append number to string.
 Next Chars ' Increment counter
 MyString = MyString & " " ' Append a space.
Next Words

Example

For counter=1 to 10

 display.Text=counter

 Next

Example

For counter=1 to 1000 step 10

 counter=counter+1

 Next

Example

For counter=1000 to 5 step -5

 counter=counter-10

 Next

One Entry, One Exit.

[Type the document title]

74

The primary rule for program modules is the each module must have only one entry point and one exit

point. So even though BASIC will allow a GOSUB to a line number within a subroutine and will allow

multiple RETURN statements, such violations of the “one-entry, one exit” rule should be avoided.

The “Black Box” Concept

A “black box” (program module) is designed to accomplish a task. Generally, some data is input to the

module, a transformation occurs, and data is output from the module . the details of what happens within

the “black box” are not important to the overall program. What is important is that for a given input, the

module will reliably produce the correct output. That module could be replaced by another – perhaps in

another language such as assembler – without changing the rest of the program. It is important that each

module “stand alone.”

Module Cohesion

Choosing the correct statements to combine into module is an important skill for programmers to develop.

“Good” or “bad” module design is often an elusive concept when beginning to modularize programs.

Cohesion refers to the internal strength of a module. It is an indication of how closely related each of the

statements in a module are to one another. As cohesion is increased, module independence, clarity,

maintainability, and portability are increased.

Module Coupling

Coupling refers to the connections, or interfaces, between modules. As a general rule, modules should be

loosely coupled; that is, what goes on inside one module should not affect the operation in other modules.

The control for execution of program modules must “come from above.” Looking at a hierarchy chart, a

lower level module cannot determine what a higher level module should do – or even a module at the same

level. For example, do not allow the detail read routine to determine that it is time to do final total

calculations. That decision must be made by the mainline.

[Type the document title]

75

When a decision will determine what function to perform, place that decision at as high a level as possible.

Good programming practice

Good Programming Concept or Style makes code/program easier to maintain and modify. Maintaining and
modifying code is made much easier by following a few often-overlooked techniques.

Whether the original programmer or someone else needs to make a change in the code the job is much
easier if the original programmer used lots of comments, gave the variables and constants descriptive
names, and sketched out the basic structure of the program at the very beginning in pseudo-code.

Using Comments in Code

The use of comments can mean the difference between code which any competent programmer can
maintain or modify and a program that even the original programmer has trouble figuring out. Every
routine should start with at least one comment that documents the purpose of the routine and any non-
obvious dependencies or effects that the routine may have on other portions of the program.

In a development environment in which several programmers will be contributing code, adding a comment
identifying the person who wrote the code will definitely help others to know who to ask if a question
should arise.

Using Descriptive Names for Variables, Constants and Functions

It can be very tempting to use short names for variables and constants but it is not a good programming
practice. A name such as DateOfBirth is much easier for other programmers to understand than dob.

Global variable names can all start with a lower case "g" so that any programmer looking at the code will
instantly know which entities are local and which are global. Likewise, a lower case "k" can be the first
letter of constants. This type of self-documenting code greatly reduces the need for comments and some
typical errors.

Using Pseudo-code in Comments

When first developing the structure of a program it can be very helpful to write out the different routines in
pseudo-code. This is language which resembles a cross between English and the programming language
that the code will eventually be written in.

[Type the document title]

76

Using pseudo-code allows the programmer to concentrate on the conceptual aspects of the program without
being distracted by syntax rules. The pseudo-code can also be the basis of the comments so it can server
two purposes.

Using Modular Coding

Whenever possible, the lines of a routine should fit entirely on one screen of the editor. By keeping
routines short, it is easier to comprehend them and see errors. Having short routines also forces the
programmer to break each task into distinct sub-tasks, each of which is easier to maintain and modify in the
future.

Modular coding also has the advantage of creating reusable routines that can be used in other programs.
Once a routine is debugged and verified it is easier to copy and paste it into another program than to write
it all over again.

Following these simple suggestions will make a programmer's code easier to maintain and modify. It may
seem like more work, but in the end the net result is greater efficiency and fewer mistakes.

[Type the document title]

77

SPECIFIC LEARNING OUTCOMES

To understand:

* Employ program documents technique HIPS, data flow diagram, pseudo-cal.

• Explain graphic user interface, GUI.

• Define interactive processing.

WEEK 13

[Type the document title]

78

Program documentation concepts

Program documentations

This is the act of keeping/maintaining all materials that serve primarily to describe a system/program and
make it more readily understandable rather than to contribute in some way to actual operation of the
system. Documentation is frequently classified according to purpose; thus for a given system there may be
requirements documents, design document, and so on.

Why is program documentation important?

1) The main purpose of program documentation is to describe the design of your program. The
documentation also provides the framework in which to place the code. as coding progresses, the code is
inserted into the framework already created by the program documentation. .

2) Documentation is important to tell other programmers what the program does and how it works. In the
"real world" and in some classes here at BGSU, programmers often work in teams to develop code.
Documentation helps others on the team to understand your work.

3) Maintenance and debugging are needed sooner or later for most programs and these are frequently done
by someone other than the original programmer. Documentation can help the programmer who is making
the modifications understand your code.

4) Documenting your program during development helps you to maintain your sanity.

When should program documentation be done?

When designing your program, you must spend time thinking about how to structure your program, what
modules are needed, and the algorithms and processes you will use in the modules. You must think about
what sort of data structures and objects (e.g., arrays, files or linked lists) are needed. This thinking must be
done before you start coding, or you will find yourself wasting time writing useless code that is full of
errors. It is very important to record this creative process so that the programmers that follow you do not
duplicate work that you have already done.

Before writing the code, you should write the documentation to describe the design of each component of
your program. Writing documentation for the modules before writing the code helps you define exactly
what each module should do and how it will interact with other modules. Focusing on the design and the
steps needed to solve the problem can help prevent errors in the completed program.

[Type the document title]

79

What information should be in the program documentation?

For an individual module, it is important to record (1) who has written the module, (2) when the module
was written or modified, (3) why the module was written or modified, (4) how the module interacts with
other modules, (5) what special algorithms were used, if any, and (6) acknowledge outside sources for
ideas and algorithms.

For data structures, it is important to record (1) what data structure is used, (2) why a particular structure
was used, (3) what data is contained in the structure, and (4) how the data structure is implemented.

Goals of good documentation:

1. Aid in designing good programs
2. Aid in debugging programs
3. Make programs clear and understandable once written
4. Make structure of program well-organized

 Good documentation is a great aid to producing clear, well written, and understandable programs, and can
save much programming and computing time. Good documentation is especially necessary for
programming projects requiring either a long period of time by one programmer, any period of time by
more than one programmer, or modifications to any code by another other than the original author. Good
documentation techniques can be helpful in the following ways:

 Program Design

Many beginning programs seem to write programs in haphazard and unplanned ways, and often add
comments only after the program is running. This method not only leads to poorly-structured programs,
but also usually results in wasted time, and is not feasible except for relatively trivial programs.

 A much better method is to write most of the overall comments with a flow chart first, specifying the
structure and convention of the program, and then writing the program to fit. This usually leads to cleaner-
coded, well-structured programs, which are produced in less time than those written by most novice
programmers.

 Program Debugging

Program debugging is aided by documenting a program before and during its creation, rather than
afterward. Many mistakes can be avoided by having programming conventions well specified before
writing the code. The very act of adding a comment to a statement often helps identify errors in the
statement, because it forces the programmer to think about the function of the statement. Finally, good

[Type the document title]

80

documentation is useful if help is required from someone else, since it aids one in the understanding the
program quickly. (It also makes other people much more willing to look at the program)

 Program Modifications
Clear and complete documentation is absolutely invaluable with a program must be modified, especially if
anyone but the original programmer is making the changes. It may be noted that useful programs tend to
be modified often.

Program documentation techniques

When using an object oriented programming language, such as C++, programmers often create their own
classes and then declare objects of these class types. These programs are frequently composed of several
files — one or more header files containing class definitions, implementation files containing class
functions, and a file containing the main program. The following describes what documentation should
appear in each of these files.

Header files

Documentation in the header file must clearly describe the class interface. That is, the task performed by
each member function should be described so that a client program which has declared objects of this class
type will know exactly what this class can do. This documentation should be written so even a non-
programmer can understand it. Header file documentation should appear before the class declaration
statement and contain the following.

HIPS

Human Interactive Proofs (HIPs) are challenges meant to be easily solved by humans, while remaining
too hard to be economically solved by computers. HIPs are increasingly used to protect services against
automatic script attacks. To be effective, a HIP must be difficult enough to discourage script attacks by
raising the computation and/or development cost of breaking the HIP to an unprofitable level. At the same
time, the HIP must be easy enough to solve in order to not discourage humans from using the service. Early
HIP designs have successfully met these criteria.

However, the growing sophistication of attackers and correspondingly increasing profit incentives have
rendered most of the currently deployed HIPs vulnerable to attack. Yet, most companies have been
reluctant to increase the difficulty of their HIPs for fear of making them too complex or unappealing to
humans. The purpose of this study is to find the visual distortions that are most effective at foiling
computer attacks without hindering humans. The contribution of this research is that we discovered that;

[Type the document title]

81

i. Automatically generating HIPs by varying particular distortion parameters renders HIPs

that are too easy for computer hackers to break, yet humans still have difficulty
recognizing them, and

ii. It is possible to build segmentation-based HIPs that are extremely difficult and
expensive for computers to solve, while remaining relatively easy for humans.

HIPs, or Human Interactive Proofs, are challenges meant to be easily solved by humans while remaining
too hard to be solved economically by computers. For instance, a HIP challenge (or HIP) could be a pixel
image of distorted characters, and the proper response would be the ASCII string of corresponding
characters. HIPs are increasingly used to protect services against
automatic script attacks. Examples of such services include email (spam), online registrations (fraud, denial
of service, or DoS), ticket/event reservations (DoS), online voting (stuffing), login (DoS), chat rooms,
weblogs, etc.

Many companies such as Yahoo, Microsoft, TicketMaster, Register.com, and Google, are currently using
HIPs to protect their online services. To be effective, a HIP must be difficult enough to discourage script
attacks by raising the computation and/or development costs of breaking the HIP to an unprofitable level.
At the same time, the HIP must be easy enough to
not discourage humans from using the service.

Early HIP designs have successfully met these criteria. For instance, when MSN Hotmail deployed its first
HIP, hotmail registrations dropped by 19% without impacting customer support inquiries. A study of the
data revealed that the drop corresponded to mail accounts acquired by
scripts for the purpose of spamming. However, the growing sophistication of attackers and increasing profit
incentives have rendered most of the currently deployed HIPs vulnerable to attacks. Yet, most companies
have been reluctant to increase the difficulty of their HIPs.

An example character based HIP for fear of making them too complex or unappealing to humans. This has
raised an important question: Is it possible to design human-friendly HIPs that are easy for humans but
difficult for computers? Work on distinguishing computers from humans traces back to the original Turing
test which asks that a human distinguish between another human and a machine by asking questions of
both. In contrast, we are interested in building a computer program designed to distinguish between another
computer program and a human.
Such programs have been called reverse Turing tests, HIPs, or CAPTCHAs (Completely Automated Public
Turing Tests to Tell Computer and Human Apart). An overview of this work can be found in. Construction
of HIPs of practical value is difficult because it is not sufficient to develop challenges to which humans are
somewhat more successful than machines. This is because the cost of failure from using machines to solve
the puzzles may be very small. In practice, if one wants to block automated scripts, a challenge at which
humans are about 90% successful and machines are 1% successful, may not be sufficient, especially when

[Type the document title]

82

the cost of failure and repetition is low for the machine. At the same time, the identical challenge must not
put too much burden on the human in order to avoid discouraging the use of the service.

Data flow diagram

Data flow diagrams with Concept Draw PRO

Data flow diagrams (DFD) are the part of the SSADM method (Structured Systems Analysis and Design
Methodology), intended for analysis and information systems projection. Data flow diagrams are intended
for graphical representation of data flows in the information system and for analysis of data processing
during the structural projection. By means of data flow diagrams it is possible to show visually the work of
the information system and results of this work. Data flow diagram visualizes processes, data depositories
and external entities in information systems and data flows connecting these elements.

Data flow diagrams consist of following components:

• Processes and functions which represent actions happened in information system;
• External entities which represent in the system data ingoing and outgoing from it;
• Data depositories which represent places in system where data can be saved for definite period of

time;
• Data flows, indicating direction and character of data flowing in the considered information system.

Diagram element Graphical presentation
Process

External Entity

Data Store

Data Flow

[Type the document title]

83

This variant of presentation of data flow diagram objects got the name of Yourdon ? de Marco notation.

Objects of data flow diagrams are interpreted in the following way:

• Processes transform input data flows into output data flows;
• Data depositories serve only for keeping of ingoing data and do not change them;
• Data flows changes in external entities do not considered.

Every diagram object should have a name. Each data flow is denoted with indication of transferred data
and with the possibility of indication of the format of these data. Data flow diagram should not involve
more than 10 objects, excluding arrows, representing data flows. In case of more complicated system the
totality of several objects (as a rule, processes) is united and represented on the diagram in the form of one
object. This complicated compound object is presented in the form of a separate flows diagram. Each
component has a number, at this, diagrams illustrating compound objects are numerated starting from the
number of an object which they describe. For example components of the diagram of the description of an
object with number 5 will be numerated 5.1, 5.2 etc.

For clearness there is a possibility to duplicate notations of used data depositories and external entities.
Processes can?t be duplicated. For example if one the same data depository is used in several different
processes it is better to duplicate it on the diagram but not to create several intricate data flow arrows from
one object to several processes. This concerns external entities as well. Duplicates of data depositories are
marked with the double line from the left side, external entities duplicates - with the asterisk.

Data flows on the diagram can ramify and merge that implies branching or confluence of data in the
information system.

[Type the document title]

84

Thus the information system is represented by a planner in the form of the high level DFD in which objects
are worked out in details by diagrams of the lower level with the preset level of detailed elaboration. There
is also another way of looking at which all events in the system are described at once and each event is
represented in the form of process transforming data flows, further these subruns are grouped for getting
diagrams of the higher level.

Pseudo – code
This section should describe, in an easily readable and modular form, how the software system will solve
the given problem.

The term “pseudo code” is not intended to refer to a precise form of expression. Rather it refers to using
standard English terms in a restricted manner to describe the algorithmic process involved. Good pseudo
code must use a restricted subset of English, in such a way that it resembles a good high level programming
language. Pseudo code must be formatted similarly to actual code. The pseudo code description of the
problem should state the problem solution so clearly that it can easily be translated to the programming
language to be used. Thus, it must include flow of control. The pseudo code for the system driver should

[Type the document title]

85

appear first. The pseudo code for subroutines in a system component should be grouped together, with the
component identified.

Graphic user interface (GUI)
In computer science and human-computer interaction, the user interface (of a computer program) refers to
the graphical, textual and auditory information the program presents to the user, and the control sequences
(such as keystrokes with the computer keyboard, movements of the computer mouse, and selections with
the touchscreen) the user employs to control the program.

Currently (as of 2008) the following types of user interface are the most common:

• Graphical user interfaces accept input via devices such as computer keyboard and mouse and
provide articulated graphical output on the computer monitor. There are at least two different
principles widely used in GUI design: Object-oriented user interfaces (OOUIs) and application
oriented interfaces.

• Web-based user interfaces or web user interfaces (WUI) accept input and provide output by
generating web pages which are transmitted via the Internet and viewed by the user using a web
browser program. Newer implementations utilize Java, AJAX, Adobe Flex, Microsoft .NET, or
similar technologies to provide realtime control in a separate program, eliminating the need to
refresh a traditional HTML based web browser.

Interactive processing

Definition: Interactive processing is the performance of tasks on a computer system that involves continual
exchange of information between the computer and a user; the opposite of batch processing.

[Type the document title]

86

 SPECIFIC LEARNING OUTCOMES

To understand:

* The concept of OO programming.

• the features of OO programming.

• the concept of properties, events, objects and classes.

WEEK 14

[Type the document title]

87

Object oriented (00) program

Object-oriented languages are outgrowths of functional languages. In object-oriented languages, the code

used to write the program and the data processed by the program are grouped together into units called

objects. Objects are further grouped into classes, which define the attributes objects must have.

A simple example of a class is the class Book. Objects within this class might be Novel and Short Story.

Objects also have certain functions associated with them, called methods. The computer accesses an object

through the use of one of the object’s methods. The method performs some action to the data in the object

and returns this value to the computer. Classes of objects can also be further grouped into hierarchies, in

which objects of one class can inherit methods from another class. The structure provided in object-

oriented languages makes them very useful for complicated programming tasks.

Features of OOP

Object-oriented programming (OOP) languages, such as C++ and Java, are based on traditional high-level

languages, but they enable a programmer to think in terms of collections of cooperating objects instead of

lists of commands. Objects, such as a circle, have properties such as the radius of the circle and the

command that draws it on the computer screen. Classes of objects can inherit features from other classes of

objects. For example, a class defining squares can inherit features such as right angles from a class defining

rectangles. This set of programming classes simplifies the programmer’s task, resulting in more “reusable”

computer code. Reusable code allows a programmer to use code that has already been designed, written,

and tested. This makes the programmer’s task easier, and it results in more reliable and efficient programs.

Object-oriented programming began with Simula, a programming language developed from 1962 to 1967.

Simula introduced definitive features of OOP, including objects and inheritance. Graphical user interface

(GUI) is a feature that allows the user to select commands using a mouse. GUIs became a central feature of

operating systems such as Macintosh OS and Windows.

Objects oriented programming languages

The most popular OOP language is C++, VB, JAVA, PASCAL, COBOL, Java, an OOP language that can

run on most types of computers regardless of platform. In some ways Java represents a simplified version

[Type the document title]

88

of C++ but adds other features and capabilities as well, and it is particularly well suited for writing

interactive applications to be used on the World Wide Web.

Java

Java is an object-oriented programming language. Java facilitates the distribution of both data and small

applications programs, called applets, over the Internet. Java applications do not interact directly with a

computer’s central processing unit (CPU) or operating system and are therefore platform independent,

meaning that they can run on any type of personal computer, workstation, or mainframe computer. This

cross-platform capability, referred to as “write once, run everywhere,” has caught the attention of many

software developers and users. With Java, software developers can write applications that will run on

otherwise incompatible operating systems such as Windows, the Macintosh operating system, OS/2, or

UNIX.

To use a Java applet on the World Wide Web (WWW)—the system of software and protocols that allows

multimedia documents to be viewed on the Internet—a user must have a Java-compatible browser, such as

Navigator from Netscape Communications Corporation, Internet Explorer from Microsoft Corporation, or

HotJava from Sun Microsystems. A browser is a software program that allows the user to view text,

photographs, graphics, illustrations, and animations on the WWW. Java applets achieve platform

independence through the use of a virtual machine, a special program within the browser software that

interprets the bytecode—the code that the applet is written in—for the computer’s CPU. The virtual

machine is able to translate the platform-independent bytecode into the platform-dependent machine code

that a specific computer’s CPU understands.

Applications written in Java are usually embedded in Web pages, or documents, and can be run by clicking

on them with a mouse. When an applet is run from a Web page, a copy of the application program is sent to

the user’s computer over the Internet and stored in the computer’s main memory. The advantage of this

method is that once an applet has been downloaded, it can be interacted with in real time by the user. This

is in contrast to other programming languages used to write Web documents and interactive programs, in

which the document or program is run from the server computer.

[Type the document title]

89

Visual Basic

Step in Developing Applications

The visual Basic development environment makes building an application a straight forward process.

There are three primary steps involved in building a visual Basic application.

(2) Draw the user interface by placing controls on the form.

(3) Assign properties to controls.

(4) Attach code to control events (and perhaps write other procedures)

Note:

(2) These same steps are followed whether you are building a very simple application or one

involving many controls and many lines of code.

(3) The event – driven nature of visual Basic allows you to build your application in stages and test

it at each stage. You can build one procedure, or part of a procedure, at a time and try it until it

works as descried. This minimizes errors and gives you, the programmer, confidence as your

application takes shape.

(4) As you progress in your programming skills, always remember to take above sequential

approach to building a visual Basic application Build a little, test a little, modify a little and test

again. You will quickly have a completed application.

- Microsoft VB is the fastest and easiest way to create applications for Microsoft windows.

- The visual part refers to the method used to create the graphical user interface (GUI).

- The Basic part refers to the BASIC Beginners All – Purpose symbolic construction code

Language.

With VB an individual can build simple applications in minutes. VB enables you to write object

oriented programmes or simple programs.

WEEK 15

[Type the document title]

90

VB editions:- Learning editions

 Professional Edition

 Enterprises edition

 How windows work

Windows is an GUI operating system. With GUI it easily recognized graphic icons be selected using the

mouse and commands chosen from menus, This is much easier for the user than typing in the specific lines

of code that were required by MS-Dos in order to perform basic operations.

In GUI operating system, more than one application can be open at the same time. Processor time is shared

between computing tasks and this called multitasking.

The Visual Basic environment

The Visual Basic environment is made up of several windows. The initial appearance of the windows on

your screen will depend on the way your environment has been set up.

The tool bar The Visual Basic tool bar functions like the tool bar in any other Microsoft application. It

provides shortcuts for many of the common operating commands. It also shows you the dimensions and

location of the form currently being designed.

[Type the document title]

91

The tool box The tool box gives you access to the controls that you use on a form.

A control is an object such as a button, label or grid.

Controls are used on forms to display output or get input.

Each control appears as a button in the tool box. If the control you are looking for is not in

the toolbox, select Components from the Project menu.

If the tool box is not displayed on your screen, or if at any time during the exercises you

close it, choose Toolbox from the View menu.

The form designer window

This window is where you design the forms that make up your user interface.

If the form designer window is not displayed on your screen, or if at any time during the exercises you

close it, choose Object from the View menu.

 The properties window :

A form, and each control on it, has a set of properties which control its characteristics such as size, position

and color.

[Type the document title]

92

The properties window lists all the properties a control has and their value. The default value of a property

can be changed by setting the property value using the properties window when you design your

application or changed by assigning a new value in code while your application is running. If the properties

window is not displayed on your screen, or if at any time during the exercises you close it, choose

Properties Window from the View menu.

The project explorer window

A project is a collection of the forms and code that make up an application. Each form in your application

is represented by a file in the project explorer window.

A form file contains both the description of the screen layout for the form and the program code associated

with it. If the project explorer window is not displayed on your screen, or if at any time during the exercises

you close it, choose Project Explorer from the View menu.

 The form layout window

Move the form in the screen in this window to set the position of your form when your application is

running.

You may wish to close the form layout window to allow more space for the

properties window. To open the window again, select Form Layout Window from

the View menu.

[Type the document title]

93

Starting Visual Basic

• From the Windows Start menu, choose Programs, Microsoft Visual Studio 6.0, and then

Microsoft Visual Basic 6.0.

• Visual Basic 6.0 will display the following dialog box as shown in this figure

Stopping Visual Basic

• From the File menu, choose Exit and then Microsoft Visual Basic 6.0. ask you to save changes in

your project.

Getting online help

If you've used online help before, you may not think you need to read this section. Although you might be

able to figure out Visual Basic's online help yourself, the help is fairly advanced and varies from most other

[Type the document title]

94

online help you may be used to. This topic section describes some of the help tools available from within

Visual Basic.

The content-sensitive nature of Visual Basic's help system extends to almost every menu option, screen

element, control, window, and language command. When you want help and aren't sure exactly where to

turn first, press F1 and let Visual Basic give it a try. For example, if you think you need to use the Picture

Box control but want to read a description first to make sure that you have the right control, click the

Toolbox's Picture Box control and then press F1. Visual Basic sees that you've clicked the Picture Box and

returns with the help screen shown in this figure

Click any screen element and press F1 for help

Throughout the help screens, Microsoft has scattered numerous links to related topics. When you click any

underlined word or phrase inside a help window, Visual Basic responds with a pop-up definition or an

additional help screen. Often, so may related topics appear throughout the help system that when you click

a link, Visual Basic displays a scrolling Topics Found list, from which you can choose the description that

most closely matches the topic you need.

[Type the document title]

95

Help links often provide several alternatives.

When you click an Example hypertext link, Visual Basic displays a window similar to the one shown in

Figure. Although the help might look ambiguous at this point, you'll grow to appreciate the helpful

suggestion when you begin learn the Visual Basic language. The Example help link shows you real Visual

Basic language code that uses the item you've requested help for. As a programmer, you'll therefore see

how to implement the item inside your own Visual Basic code by looking at the sample Visual Basic

provides.

[Type the document title]

96

Visual Basic shows you sample code that uses the property or control.

The Help Menu

When you choose the first topic on the Help menu, Microsoft Visual Basic Topics, Visual Basic displays a

help dialog box . This dialog box contains the usual Windows-like help tools. You can open and close the

book icons on the Contents page to read about different Visual Basic topics. You can search for a particular

topic in the index by clicking the Index tab. To locate every occurrence of a particular help reference word

or phrase, you can click the Find tab to build a comprehensive help database that returns multiple

occurrences of topics.

Example :

Get an instant definition for help links with a dotted underline.

[Type the document title]

97

Pop-up definition, Hyperlinks

Close the help window by clicking the window's Close button.

Opening Application

To open a project, you can do one of two things:

• Click File menu , Open project…

• Click the tool and specify the project you want to open.

Then select Hello project and press Open.

[Type the document title]

98

 The project window will display the file “Hello.frm” from your project.

Creating Simple application (Wizard)

You start the application wizard from the New Project dialog box or by choosing New Project from the File

menu. Click the VB Application Wizard icon to start the wizard. This Figure shows the application

wizard's opening screen.

[Type the document title]

99

Example

Assuming that you started the application wizard in the previous section, follow these steps to build your

first application:

1- Click the Next button to display the Interface Type dialog box. The wizard can generate one of

three types of user interfaces for the application you're generating:

− MDI (Multiple Document Interface) lets you create a program window that contains

embedded windows called child windows.

− SDI (Single Document Interface) lets you create a program with one or more windows that

exist at the same level (not windows within windows).

− Explorer Style lets you create programs that somewhat take on the Books Online

appearance, with a summary of topics or windows in a left pane and the matching program

details in the right pane.

2- The MDI option should already be selected. If not, click the MDI option.

[Type the document title]

100

3- Click Next to display the menu selection dialog box. You can select certain menu options that will

appear on your application's menu bar. By using the dialog box's options, you can help ensure that

your application retains the standard Windows program look and feel. (You can add your own

menu options after the wizard generates the program's initial shell.) For now, leave these options

selected: File, Edit, Window, and Help.

[Type the document title]

101

4- Click Next to display the wizard's Resources dialog box. A resource might be a menu, a text string,

a control, a mouse cursor, or just about any item that appears in a program.

5- Click Next, you'll bypass the Internet connectivity dialog box because you don't need to add such

connectivity to your first application shell.

[Type the document title]

102

6- Determines which forms appear in your application:

• A splash form is an opening title form that your users see when they first run your application.

• A login form requests the user's ID and password, in case you want to add security features to

your application.

• The options dialog box gives users the ability to modify certain application traits.

• The About box is accessed from most Windows Help menus and provides your program

description and version.

[Type the document title]

103

8. Check the About Box but leave the other options unchecked.

9. Click the Next button twice to display the final application wizard dialog box. (You'll bypass the

database access dialog box because you won't be retrieving database data in this first application.)

10. Click the Finish button. The wizard generates the application before your eyes. You'll see the

wizard generating forms and titles; without the wizard, you would have to perform these steps

yourself. When finished, the application wizard displays a dialog box to tell you that the application

is completed.

[Type the document title]

104

11. Click OK to close the final application wizard dialog box. A summary report appears, to describe

the generated program.

Running your application

Now that the form is complete you can see it in action by running it.

When you have written code for the buttons, running the application will allow you to activate the code.

For now your buttons will not do anything.

Your form will appear like a window from any other Microsoft application.

Creating Executable File

- Click File, Then Make Project1.exe…

[Type the document title]

105

- Specify the location and the name of the project, then click OK.

Saving your application

The last step in this chapter is to save your application so that you can use it for the exercises later in the

book.

Visual Basic first asks you to save the form and then the project file. Remember that each represents a

separate file.

[Type the document title]

106

Specify the filename for the form as hello.frm. The file extension “frm” indicates that the file is a form file.

Always take care to ensure that you save all the files that make up a project.

List of Computer Programming Languages
ADA Augusta ADA Byron (Lady

Lovelace)

1979 Derived from Pascal, used primarily by the military.

ALGOL ALGOrithmic Language 1960 First structured procedural programming language, used

mainly for solving math problems.

APL A Programming Language 1961 Interpreted language using a large set of special symbols and

terse syntax. Used primarily by mathematicians.

BASIC Beginners All-Purpose

Symbolic Instruction Code

1965 Very popular high-level programming language, frequently

used by beginning programmers.

C Predecessor was Bell

Laboratory's 1972 B

Programming Language

1972 Compiled, structured, programming language commonly used

in many workplaces because its programs are easy to transfer

between different types of computers.

C++ Advanced version of C.
Developed at ATT Bell Labs.

1985 C++ is used in numerous fields, such as accounting and
finance systems, and computer-aided design. Supports object-
oriented programming.

COBOL

COmmon Business-Oriented
Language

1959 English-like programming language, emphasizes data
structures. Widely used, especially in businesses.

FORTH FOuRTH-Generation
language (4 GL)

1970 Interpreted, structured language, easily extended. Provides
high functionality in limited space.

[Type the document title]

107

Fortran FORmula TRANslation 1954 Initially designed for scientific and engineering uses, a high-

level, compiled language now used in many fields. Introduced
several concepts such as variables, conditional statements,
and separately compiled subroutines.

HTML HyperText Markup Language 1989 Designed for publishing hypertext on the Internet.

JAVA Sun Microsystems developers
drank a lot of coffee when
coding for this.

1990 Originally developed for use in set-top boxes, transitioned to
the World Wide Web in 1994.

LISP LISt Processing 1960 A list-oriented programming language, mainly used to
manipulate lists of data. Interpreted language, often used in
research, generally considered the 'standard' language for
Artificial Intelligence (AI) projects.

LOGO Derived from Greek logos,
meaning word

1968 Programming language often used with children. Features a
simple drawing environment and several higher-level features
from LISP. Primarily educational.

Modula-
2

MODULAr Language,
designed as secondary phase
of Pascal (Niklaus Wirth
devised both)

1980 Language that emphasizes modular programming. High-level
language based on Pascal, characterized by lack of standard
functions and procedures.

Pascal Blaise PASCAL,
mathematician and inventor of
first computing device

1971 Compiled, structured language, based on ALGOL. Adds data
types and structures while simplifying syntax. Like C
language, it is a standard development language for
microcomputers.

PERL Practical Extraction and
Report Language

1988 It is a text-processing language that looks like a combination
of C and several Unix text processing utilities.

PILOT Programmed Inquiry,
Language Or Teaching

1969 Programming language used primarily to create applications
for computer-aided instruction. Contains very little syntax.

PL/1 Programming Language One 1964 Designed to combine the key features of Fortran, COBOL,
and ALGOL, a complex programming language. Compiled,
structured language capable of error handling and
multitasking, used in some academic and research
environments.

SGML Standard Generalized Markup
Language

1986 Designed as a metalanguage, it is used as an international
standard for the description of marked-up electronic text.

SQL Structured Query Language 1986 Designed to be used for creating complex databases and
accessing data in a relational database.

VB Visual Basic 1990 Sometimes called the Rapid Applications Development
system, is used to build applications quickly.

XML Extensible Markup Language 1977 Used for creating arbitrarily-structured documents and Web
pages; it is commonly associated with the Internet.

	Cover
	Table of Contents
	WEEK 1
	WEEK 2
	WEEK 3
	WEEK 4
	WEEK 5
	WEEK 6
	WEEK 7
	WEEK 8
	WEEK 9
	WEEK 10
	WEEK 11
	WEEK 12
	WEEK 13
	WEEK 14
	 WEEK 15
	Returt to Table

