1
[Type the document title’ ‘

UNESCO-NIGERIA TECHNICAL & VOCATIONAL —~
EDUCATION REVITALISATION PROJECT -PHASE N[s |: []

NATIONAL DIPLOMA IN
COMPUTER TECHNOLOGY

Computer Programming

COURSE CODE: COM11z

YEAR |- SEMESTER |

THEORY
Version 1: December 2008

[Type the document title]

Table of Contents

WEEK 1 Concept Of PrOgrammingcc.eoieeiieiiee ettt stee et e e ste e e te e e eaa e e sbae e staaesntaesbeaesnseeenteaesnneas 6
Features of @ gOOd COMPULET PrOGIaAIMceveuiiiiieeeeeeereeettiee e e e eeeeeeatan e e e eeeeeesnsnaaeeeeeessnnnaeeaeeeenes 7
System DeVvelOPMENT CYCIE e e e e e e e e e e e e e aa s 9
WEEK 2 CONCEPt Of AlGOTTNM ..ot e e sreeaeanee s 11
Features of an AlQOTtNIM e e e e e e e et e e e e e e e araa s 11
Methods of Representing AIGOITRMcooviiiiiii e 11
S0 (o [0 oo o [P PTPTPSURPPPPIN 12
WEEK 3 ENQlISN-IKE FOMMNvcieieieiccs ettt ssse sttt ssssssssssnanes 15
FIOWGCRAIT .. 16
WEEK 4 DECISION tADIE........ceevieieeeeiie ettt ettt ettt e e et e et e e et e e et e e e tt e e entaeeetaeeeeneeas
D= U= B (oY A I = o = g 1SR 22
WEEK 5 TRE FIOWCNAIT ...ttt sttt nbe s 25
ADVANTAGES OF USING FLOWCHART ..ttt ea e e e eaae e 33
DISADVANTAGES OF USING FLOWCHARTuuiiiess e 33
WEEK 6 Designing Algorithm For Common Programming LOGIC StrUCLUIEScceuvereeeerreerereeeereennns 35
Y (0] o1 (SIS =To [N L= o o =SSP 35
Y= [T ox 1o o 1R RPUPP 35
Iteration LOQIC (REPELILIVE FIOW)ei e e e e e e e e e e e e e aaeens 37
WEEK 7 The Concept of Modular Programmingeeeieeiiiiiiieiiiiiii et e e e e e et eeeain e eanaeennns
Modular program PIAaNNING i e e e e e e e et a e e e e aaaaaan 39
Modular Hierarchy plan for the problemoouuiiiiii e 43
WEEK 8 STAGES OF PROGRAM DEVELOPMENT ..ot sssssssssssssssssssssssssssssssnns 45
Problem defiNItION: ... e e ettt e e e e et b e e e e eaaa e aaeaae 45
Develop the algorithim... ... e e e e e e ettt e e e e e e aeran e e e eeeeeneas 45
Plan the logic of the program/flowWCharting:ouuueiiii e 45
WILE the COMPULET PrOGIaIM: ... e ettt e ettt e e e et e ettt e e e e e e e e eaabb e e e e e eeessbnnaeeeeeeesenns 45
Type the program iNtO COMPULET:ccoiieeeieiiiee e e e e e e e e e e e e e e et e e e e e e e eaata e e e eeeeessnnaeeeeeennnns 46
Test and debug the Programi.. e e e e e e e e 46
DOCUMENT tNE WOTK: ...ttt ettt s e e e e e e et ettt e e e e e e e e ettt e e e e e eeeaebnn e eeeas 46
Program development/@XECULION PIrOCESSuuuuuiiiiieeerreeiiiiiiaeeeeeeeeestanaeeeeeeesasnnaeeaaeeersnnnaaaaeees a7
WEEK 9 LEVELS OF COMPUTER PROGRAMMING LANGUAGES............ccocviiiinevesesien e, 49
LOW-IEVEI LANQUAGES ...ttt e ettt e e e e e e e ettt s e e e e e e e e ettt e e e e e eeeatbnn e eeeaeeesnnns 49

WERKE O MACKINE [ANGUAGE ..o 49

[Type the document title]

F ST g o] VA =T g o U = Vo U SUPPPPPUPTPTN 50
HIGN-1EVEl TANQUAGESoeeeiiiiii ettt e e e e e e e e e et e e e e e e e eees 51
WEEK 11 THE CONCEPT OF DEBUGGING AND MAINTAINING PROGRAM.......ccccoovinniiiinicnns 59
SOUICES Of DUQGS 1N @ PrOGIAIMttt ettt e e e e e e e e e e e e taab e e e e e e e eeeeeabann e e e eeeaeees 59
PrEVENTING BUGS ...oieiiiiiiiiiii ettt e e e e e e e e et ettt bbb e e e e e e e e e e eeetstan e e e eeeaeeeenerns 60
(/IS dgToTe ES3a] o (=Y o 10 Lo o1 5o I 60
Understand the ProbIem..... ...t e et e e e e e eeaeene 60
Basic debugging teCNIQUES/SIEPS.uu it e e e e e eeeaanaanas 61
RECOGNIZE @ DUQ EXISTS ..eiiiiiiiiii sttt e et e ettt e e e e e e e e e e e e e et b e e e e e e e e eeeeeasnnn e eaeeeenees 61
[SOIALE SOUICE OF UG ...t e ettt e e e e e e e e e e eeetb b e e e e e e eeeeeesnnnnns 61
[dentify CAUSE OFf DU ...t e e e e e e e e s 62
Determine fiX fOr DUQ........oooieeeeee e e e e e et e e e e e e e e e e e 62
D= 16 IR (S U UTT 63
Categories of Program MaiNtENANCEuuuuuuiiiiie et e ettt e e e e e e e e e eaab e e e e 66
WEEK 12 THE CONCEPT OF GOOD PROGRAMMING PRACTICEcccovmimniniireinsiiineisssssesenenss 68
Structured CodiNg GUIEIINEScoii ittt e e e e e e et e e e e e e eees 69
[(o)11Y@ o o | PRSPPI 69
D Lo T Moo o IS r= 1 (=11 4[] o | AP PPPT 70
)1 2= ¥ G PPPPSTPPPUPTRTRPPPIN 70
FOr...NEXE STAIEIMENT ... e ettt e e ettt e e e e e et e e e e e et e e e eeta e e e eennnnaeas 71
USING COMMENES IN COUEcceeiiieeeeeeeeee sttt s e e e e e e e e e e e e s e e e e e e e eeeeasaasa s e aeeeeeeeeesnnnnns 75
Using Descriptive Names for Variables, Constants and FUNCLIONScccccoeeviviiiee e, 75
Using PSeUdO-COAE IN COMIMENTSoeiiiiiiiiiiiae e e e e e eeeeititte s e e e e e e e e eeabbe e e s e e e e e e e eeeatbbnnaneeeeeeeeeennes 75
(@153 To TN \Y [o [F= T @'o T 1] o T 76
WEEK 13 Program documentation CONCEPLScvevriririiriesiesieieesiesie st sttt e see e 78
(oo = o I DTS o | o PP TSURPPPPPPRI 79
[(o[-0 ¢ 1D =1 018 o To |1 o [79
Program MOGIfICALIONScoiiiiiiiiiiiee e e e e e ettt s e e e e e e e e e e eeaebbaaaeeeeeaaeeeeenes 80
WEEK 15 The Visual BaSiC ENVIFONMENT..........ccuiiiiiiieiieiese et sreesbeenae s 90
The PropertieS WINGOW :ccciieiiiieieeeeiis s e e e e e e e ettt e e e e e e e e e e eaaaaas e e e e aeaeeeeessaasn s aeeeeeeeesnnnnnns 91
SEArtiNg VISUAI BASIC.....cceuiiiiiiiiiie ettt e e e e e e e ettt et e e e e e e e e e e e eetbaaneeeeeeeeees 93
SEOPPING VISUBI BASIC ...ttt e e ettt e et e e e e e e e e e e e eeeabaaa e e e e e eaaeeeenees 93
(€T=ua [aTo o 11T L= 0 T= 1 o RS PRPRURRR 93

B I =3 L= T Y1 T PSP 96

4
[Type the document title]

OpPeNING APPHCALION ...t ettt e e e e e e e e e e eeeeeeeenee 97
Creating Simple application (WIZard)coeeeeeeeeiiiiiiee e 98
RUNNING YOUT @PPIICALION.uueiiiiee s s s e e e e e e e e e e e e eeeeeaeseesennnnnnasansna s e e eeeaaeeeeeeees 104
Creating Executable File........... e e 104
Y= 1Y/ o I o1 UL gr=To] o] 10r= 4[] o NPT 105

List of Computer Programming LANQUAJES ... cuuuuurrrmmiiiiiieeeeeeeeeeeeeeeeesannnnnnsnnnnnnsssnnnnn 106

WEEK 1

SPECIFIC LEARNING OUTCOMES

To understand:

» Concept of programming

* Features of a good program

» Systems development cycle.

[Type the document title]

5

6
[Type the document title]

Concept of programming

A program is a set of instructions that tells toenputer what to do. Computer programming (often
shortened to programming or coding), is the prooéswiting, testing, debugging/troubleshooting and
maintaining act of instructions (source code) favg a problem with the computer. A source cade
written in an acceptable computer programming laggu The code may be a modification of an existing
source or something completely new.

The purpose of programming is to create a progréwat exhibits a certain described behavior
(customization). The process of writing source ecaéquires expertise in many different subjects,
including knowledge of the application domain. eiftatively. Programming is the craft of transforgiin
requirements into something that a computer camcwgge Problem solving on computer is a task of
expressing the solution to the problem in termssifiple concepts, operations and computer code
(program) to obtain the results. To achieve this §ou may proceed as follows.

1. First, understand the problem clearly:- Decide wla want to be calculated by the computer.

What will be the input data required? (if anyhid'is the problem formulation.

2. Write the steps of computation that are necessaayrive at the solution. This is setting up the
algorithm.

3. Prepare a flowchart corresponding to the algorithm.

4, Develop the computer program. Test and run ithencomputer.

There is an ongoing debate on the extent to whiehwriting of programs is an art, a craft or an
engineering discipline. Good programming is gelhecdnsidered to be the measured applicationceaff
and engineering, with the goal of producing ancedfit and maintainable software (program) solution.
The discipline differs from may other technical fessions in that programmers generally do not need
be licensed or pass any standardized (or govermthemegulated) certification tests in order tolcal

themselves “programmers” or even “software engsieer

7
[Type the document title]

Features of a good computer program

1)

2)

3)

4)

5)

6)

Reliability

Any developed program for a particular applicatman be depended upon to do what it is
supposed to accomplish. How often the resdls program are correct. This depends on
prevention of resulting from data conversion andvpntion of errors resulting from buffer
overflows, underflows and zero division.

Meeting Users Needs:

Any developed system has a purpose for which degeloped. A developed program is a
failure if it cannot meet the objectives for whithis proposed and designed, that is, if the
potential users cannot use it either becausedabisomplex or too difficult. The usability of an
application analysis involving the user.

Development on time within Budgets:

Estimates of time and cost for writing computergrseans have frequently been under or over
estimated. The components of a structured dis&gdlapproach to programming are:

)] Proper control and management of time and cosinextju

i) Increased programmer productivity

iii) More accurate estimates.

Error-Free Set of Instruction
Almost all large set of programs contain erroréa program is designed and developed in a
disciplined structured approach, it minimizes thigelihood of errors and facilitates

detection/correction of such errors during progtasting.

Error-Resistant Operations:
A good program should be designed in such a walyitltan perform validation run on each
input data to determine whether or not they meetctiteria set for them. Eg Reasonableness

check, Existence check, Dependency check, etc.

Maintainable Code:
A good program design will always be easy to changemodify when the need arises.

Programs should be written with the maintenancwigcin mind. The structure, coding and

7)

8)

9)

10)

11)

12)

8
[Type the document title]

documentation of the program should allow anotheg@ammer to understand the logic of the
program and to make a change in one part of a anogvithout unknowingly introducing an

error in another part of the same program.

Portable Code:
A good program design will be transferable to #edént computer having a language translator

for that language without substantial changes adifivation

Readability:
The program codes will be easy for a programmeean and understand the logic involved in

the programming.

Storage Saving:
A good program design is not to be verbous, thait iwill not be allowed to be unnecessary
long, thereby consuming much storage that will éuired for processing data and storage of

information produced from processing.

Efficiency:
The amount of system resources a program consupnesegsor time, memory space, slow

devices, network bandwidth and to some extent egeninteraction), the less the better.

Robustness:

How well a program anticipates situations of dggetconflict and other incompatibilities that
result in run time errors and program halts. Tbeu$ is mainly on user interaction and
handling of

Usability:

The clarity and intuitiveness of a programs outgart make or break it's success. This involves
a wide range of textual and graphical elements riegltes a program easy and comfortable to

use.

9
[Type the document title]

System Development Cycle

Most IT projects work in cycles. First, the needghe computer users must be analyzed. Thisigask
often performed by a professional Systems Analysts will ask the users exactly what they would like

the system to do, and then draw up plans on hasactim be implemented on a real computer basechsyste

The programmer will take the specifications frone tBystems Analyst and then convert the broad
brushstrokes into actual computer programs. Igeslthis point there should be testing and inpoinfthe

users so that what is produced by the programreeastually what they asked for.

Finally, there is the implementation process dunvigch all users are introduced to the new systems,

which often involves an element of training.

Once the users start using the new system, thdyoitén suggest new improvements and the whole

process is started all over again.

These are methodologies for defining a systemsldewent cycle and often you will see four key stge
as listed below.

Feasibility Study

Design

Programming

Implementation

10
[Type the document title]

WEEK 2
SPECIFIC LEARNING OUTCOMES
To understand:
* The Concept of Algorithm
» Definition of Algorithm

* Features of an Algorithm

* Methods of representing Algorithm

11
[Type the document title]

Concept of Algorithm
An algorithm is a set of instructions to obtain fwdution of a given problem. Computer needs geeand

well-defined instructions for finding solution ofgblems. If there is any ambiguity, the computél mot
yield the right results. It is essential that thié stages of solution of a given problem be sptiin
details, correctly and clearly moreover, the st@pst also be organized rightly so that a uniquetiem is
obtained.

A typical programming task can be divided into twophases:
(@) Problem solving phase
In this stage an ordered sequence of steps thatiloesolution of the problem is produced.

Their sequence of steps can be called anti-Algaorit

(b) Implementation Phase

In this phase, the program is implemented in soragramming languages.

Algorithm may be set up for any type of problemsatimematical/scientific or business. Normally
algorithms for mathematical and scientific problemgolve mathematical formulars. Algorithms for

business problems are generally descriptive and hiée use of formula.

Features of an Algorithm

1. It should be simple

2. It should be clear with no ambiguity

3. It should head to unique solution of the problem

4, It should involve a finite number of steps to aerst a solution
5. It should have the capability to handle unexpestadation.

Methods of Representing Algorithm
Algorithms are statements of steps involved in isgj\a particular problem. The steps to the sohgiare

broken into series of logical steps in English tediaform. Programs are written to solve real lifelpems.

12
[Type the document title]

There can't be a solution if there is no recognigezblem and once a problem exist, one must takaine

step in order to get a desired solution. The fuilhg methods could be used to represent an algorith

Pseudo code
A pseudo code is the English-like representatiothefprogram logic. It does not make use of

Methods of English like form
Methods of Flowchart

Methods of Pseudo code

Methods of Decision table

Methods of Data flow Diagram (DFD)

standard symbols like the flowchart. It is a sedia step by step arrangements of the instructions

to be performed to accomplish a task. It is aorim@al and artificial language that helps

programmers develop algorithms.

Example 1

Write a pseudo code for findings the area of a room

Solution:

Begin process

Input room length

Input room width

Multiply length by width to get area

Print area

End process

Solution for example 3 (below under pseudo code)
Step 1: Input M1, M2, M3, M4

Step 2: Grade— (M1 + M2 + M3 + M4)/4

Step 3: If (Grade < 50) then

Print “FALL”

Print “Pass”

End it.

13
[Type the document title]

Example 2

Write a Pseudo code for finding the greatest ofi@ipers represented as A, B, and C.

Solution

* Begin process

* InputAB,C

* If A>B then big = A

* Elsebig=B

» If big >C then bigst = big
Else bigst=C

Example 3

Write an Algorithm to determine a student’s finehde and indicate whether it is passing or failing.

The final grade is calculated as the average ofriwarks.

Solution
* Input a set of 4 marks
» Calculate their average by summing and dividingtby
» If average is below 50
Print “Fail”
else

Print “Pass”

14
[Type the document title]

WEEK 3

SPECIFIC LEARNING OUTCOMES

To understand:

» The Concept of Algorithm
» Definition of Algorithm
* Features of an Algorithm

* Methods of representing Algorithm

15
[Type the document title]

English-like form
The English form of representing as algorithm dataieaking down the solution steps of the probietm

single and sequential English words. The stepsegeesented in English to say what action shoeld b

taken in such a step.

Example 1

Develop an algorithm to obtain a book on computemfyour school library located on the fourth fladr

the building. You are to proceed to the libragnfryour ground floor classroom.

1. Start from the classroom

2. Climb the stairs to the"floor and reach the library

3. Search a book on computer

4. Have the book issued

5. Return to your classroom

6. Stop.

Note: The above algorithm solution of exampleds heen written in simple and clear English way.
There is no

Example 2

Develop an algorithm to find the average of foumiers stored in variables A,B,C,D

Solution

1.

o bk~ 0N

Start

Read values in variables A,B,C,D

Calculate the average as (A+B+C+D)/4 and storedkelt in P.
Write the value stored in P

Stop.

Example 3

Develop and algorithm to find the average of foumiers stored in variables A, B, C, D. When theea

of variable A is zero, no averaging is to be done.

Solution

16
[Type the document title]
Start
Read values stored in variable A,B,C.D
If the value of A is Zero, then jump to step 6
Calculate the average of A, B, C, D and store &salt in variable P.

Write the value of P

S o

Stop.

Flowchart
Flowchart is a representation of the algorithm gstandard symbols. Each symbols has a new functio

The Algorithm steps determine which symbol to useadpresent it in the flow each step is linked to

another step by using the directional arrows.

[Type the document title]

Do Something

Decision

Connector

Start or Stop

Input or (hutput

Direction
of Flow

Flow Chart Symbols and Flow Chart For Mailing Letter

Example
Write an algorithm

and draw a

flowchart to convert the length in feet to centiaret

Solution

(Pseudocode)
* Input the length in feet (Lft)
» Calculate the length in an (LCM) by multiplying LRlith 30
* Print Length in Cm (LCM)

17

18
[Type the document title]

Step 1: Input Lft

Step 2: Lcm— Lft * 30
Step 3: Print Lcm
Step 4: Stop

Flowchart

Input Lft

LCM « Lft * 30

Print
LCM

19
[Type the document title]

WEEK 4

SPECIFIC LEARNING OUTCOMES

To understand:

* The Concept of Algorithm
» Definition of Algorithm
* Features of an Algorithm

* Methods of representing Algorithm

20
[Type the document title]

Decision table
A decision table is a form of truth table that stuwes the logic of a problem into simple YES ana N

form. It is easily adapted to the needs of busirgeta processing. It is a rectangle divided fotor
sections called quadrants. It provides a strudmrehowing logical relationships between conditidhat

exist and actions to be taken as a result of tbesditions.

The quadrants of a decision table are called theiton steeb, the condition entry, the action stad the

action entry respectively.

Condition stub ~ Condition entry

Action stub Action entry

1. The number of condition is used to determineniimaber of entries by using the formula, where n
is the number of condition.

2. Halving method is used to form the entries md¢bndition entry e.g if the number of conditions i
a question is 3, then the no of entries will Be@ Therefore in the condition entry box, the first
row will have 4 Ys and 4 Ns. The second row wil@2Ys and 2Ns by 2.Finally th& 3ow will
have 1Y and 1N into 4

1 Condition stub:- This gives a list of all thenditions that are relevant to the system.

2 Condition entry: - Shows a YES or NO entry (avimted to Y for YES and N for NO) whether listed
condition is present or absent.

3 Action stubs: - This quadrant gives a list ¢ftla¢ actions that could be taken by the systersedan

the conditions.
4 Action entry: - This quadrant indicates whethapecific action will be taken or will not be take

21
[Type the document title]

The condition entries

i Y is an indication that the condition is present

i N is an indication that the condition is noepent

iii - or blank is an indication that the conditiaras not tested.
The action entries

i Xis an indication that the listed action tothken.

il blank is an indication that the action is notie taken.

Advantages of Decision Tables

1. They are simple, practicable and economicalthdt is regarded to developed a decision taldepiece
of paper and a pencil

2. It makes the system designer to express the tdghe problem in direct and concise terms, which
results in the development of an effective anccedifit program.

3. It is useful in program documentation i.e demidiables provide a quick and easily understood ove
view of the system.

4. ltis an excellent communication device to bhetle gap between the computer personnel who are
responsible for developing the system and the @& jprocessing personnel who use the out put

of the system.

5. Decision tables are easy to update.
6. It is easy to lean how to use decision table.
7. The complexity and the amount of detail that lba handed by a decision table is un-limited.

Disadvantages

1 Total sequence: The total sequence of an oparas not clearly shown in the decision tablenbe
overall picture is given as with flowcharts.
2 Logic: Where the logic of a system is simplevibbarts always serve the purpose better.
Example
A wholesaler gives discount according to the foilogwules.
i Irrespective of the value of the sale and whetthis for cash or credit, existing customers @é&o
discount.
i If the sale is for cash, then existing custosn@rceive a 10% discount in total.

i If the sale is for over #1000 and for cashrtlexisting customers receive al5% discount in total

iv New customers never receive a discount of amly s

22
[Type the document title]

You are regarded to construct a limited entry decisable to describe the above process.

SOLUTION
n=3 %=2°=8
Condition stub
Existing customer?
Cash sales ?
Cash sales > #1000 ?
Action stub
offer 5% discount
10%
15%
no discount

Condition stub

Existing customer
Cash sales
Sales > #1000
Action stub
offer of 5% discount
10%
15%

no discount

Data flow Diagrams

Condition entry

Y Y Y Y
Y N N Y
N Y N Y
Action entry
X X
X
X
X
Condition entry
Y Y Y N
Y Y N -
Y N - -
Action entry
X
X
X

z < <

A data flow diagram shows the flow of the data agharset of components. The components may be

tasks, software components, or even abstractiotisedfinctionality that will be included in the swére

system. The actors are not included in the data fliagrams. The sequence of actions can often be

inferred from the sequence of activity boxes.

Rules and Interpretations for correct data flowgdaans.

[Type the document title] *
1) Boxes are processes and must be verb phrases
2) Arcs represent data and must be labeled with nbuasps.
3) Control is not shown. Some sequencing may bereddirom the ordering.
4) A process may be a one — time activity, or it nmaply a continuous processing.
5) Two arcs coming out of a box may indicate that lmitput are produced or that one or the
other is produced.
Example DFD

x+y) * (w+2)

y— Sum
’ Multiply
X— Suml Answer

sum L Spm 2

i

24
[Type the document title]

WEEK 5

SPECIFIC LEARNING OUTCOMES

To understand:

= Definition of flowchart

= Description of flowchart symbols

= Solving simple programming table with flowcharts

The flowchart

25
[Type the document title]

A flowchart is a pictorial representation of an éighm or of the plan of solution of a problem. It

indicates the process of solution, the relevantaims and computations, point of decision anceioth

information that are part of the solution. Flowxtkaare of particular importance for documenting a

program. Special geometrical symbols are usedtstouct flowcharts. Each symbol represents an

activity. The activity could be input/out of dategmputation/processing of data, taking a decision,

terminating the solution, etc. The symbols aregdiby arrows to obtain a complete flowchart.

Name

Oval

Parallelogram

Symbol

]

Use in flowchart

Denotes the beginning or end of the

program.

Rectangle

Diamond

Hybrid <

Directional

Denotes an input operation

Denotes a process to be carried out
eg addition, subtraction, division,
etc.

Denotes a decision (or branch) to be

made. The program should continue
along one of two routes (eg
if/fthen/ese)

Denotes an output operation

Denotes the directors of logioalo

26
[Type the document title]

arrows or in the program.
flow line l

Example 1

Draw a flowchart to find the average of four nunsbsgtored in variables A,B,C,D

27
[Type the document title]

Solution

Start

Read numbers in
A,B,C,D

Calculate the average
P=(A+B+C+D)/4

v

Write the value of P

Stop

Example 2
Draw a flowchart to find the average of four nunsbstored in variables A,B,C,D. when the value a6A

zero, no averaging is to be done.

28
[Type the document title]

Solution
Star
READ values
For A,B,C,D.
Calculate the average
Write the value of
P
Example 3

Write a flowchart to determine a student final grashd indicate whether it is pass or fail. Thelfgrade

is calculated as the average of four marks.

Solution

Start

29
[Type the document title]

Example 4

Write an algorithm and draw a flowchart that wékd the two sides of a rectangle and calculateés.

Solution

Pseudo code

* Input the Width(w) and Length(L) of a rectangle

30
[Type the document title]

» Calculate the area (A) by multiplying L with W
* Print A

Algorithm

Step 1: Input W, L
Step 2: A-L*W
Step 3: Print A.

Example 5

Flowchart

Stop
|

v

Input
W,L

4

A—L*W

2

Print A
|

==

Stop

[Type the document title]

Write an algorithm and draw a flowchart that wallculate the roots of a quadratic equation.

adé + bx +¢c=0

Hint: d = SQrt(5 — 4ac), and the roots are:
X1 = (-b + d)/2a and X2 = (b — d)/ 2a

Solution

Pseudo code

* Input the coefficients (a, b, c) of the quadratja&tion

Calculate d
Calculate X1
Calculate X2

Print X1 and X2

Algorithm

31

32
[Type the document title]
Step 1:Inputa, b, c
Step2: d—Sqrt(b*b—-4*a*c)
Step 3: X1— (-b +d)/ (2 * a)
Step 4: X2« (-b—d)/ (2* a)
Step 5: Print X1, X2

Flowchart
Star }
|
v
Input
a,b,c
|
d« Sgrt+ (b *b - 4*a*c
1
X1 — (-b + dY/ (2*a
X2 —(-b-d)/(2*a
Print
X1, X2
|
\
[Stor }
Uses of flowcharts
1 It gives us an opportunity to see the entiréesgsas a whole.
2 It makes us to examine all possible logical ontes in any process.
3 It provides a tool for communicating i.e a fldvect helps to explain the system to others.
4 To provide insight into alternative solutions.
5 It allows us to see what will happen if we chatige values of the variable in the system.

33
[Type the document title]

ADVANTAGES OF USING FLOWCHART

1. Communicationflowcharts are visual aids for communicating tlugi¢ of a system to all

concerned.
Documentation: flowcharts are a means of documientéecause:
The analyst/ programmers may leave the arrangeanghey may forget the logic of the program.

2

3

4 Changes to the procedure are more easily cdf@réohodification).
5 Flowchart can be understood by new staff comintpé company
6

Analysis: flowcharts help to clarify the logit a system i.e the overall picture of the orgatian can
be seen.

7 Consistency: A flowchart is a consistent systenresfording. It brightens @ the relationships
between different parts of a system.

DISADVANTAGES OF USING FLOWCHART
1. Complex logic- Where the logic of a problem is complex, thenthart quickly becomes clustered

and lacks clarity.

Alterations- If alterations are required the flowchart maguiee redrawing completely.
Reproduction:- As the flowchart symbols cannot be typed, rdpation of flowchart is often a
problem.

WEEK 6

SPECIFIC LEARNING OUTCOMES

To understand:

* Design algorithm for problems involving.

» Strictly sequence control structure
e Selection control structure
e [teration control structure

[Type the document title]

34

35
[Type the document title]

Designing Algorithm For Common Programming LogicuStures

Basic Coding Structures

All computer programs can be coded using only thogie structures (or programs) or combinations of

these structures:

1. Simple sequence
2. Selection
3. Repetition

The three structures are useful in a disciplingor@gch to programming because
1.The program is simplified. Only the three builgliiocks are used, and there is a single poinhtife

into the structure and a single point of exit.

2. The three coding structures allow a programetogad from top to bottom making the logic of the

program more visible for checking and for maintergan

Simple Sequence

The simple-Sequence structure consists of onerafdltowed by another. In other words, the flow of
control is first to perform operation A and theprform operation B.. A simple sequence is flowtdth

as two process symbols connected by a flowline.

Selection
The selection structure consists of a test for tmmdfollowed by two alternative paths for the gram to

follow. The programs selects one of the programtrob paths depending on the test of the condition.
After performing one of two paths, the program coihteturns to a single point. This pattern can be
termed IF .. ELSE because the logic can be stédea@ndition P and operations C and D): IF Pirie),

perform C; ELSE perform D . A flowchart for thelesdion structure consists of a decision symbol

followed by two paths, each with a process syméxmhing together following the operation symbols.

(@ Single alternative — This structure has the form:
[IF condition, Then:]
[End of IF structure]

36
[Type the document title]

Condition

bl
/

Modpile A

(b) Double alternative: This structure has the form

IF Condition, then:
[Module A]

Condition

/

Else

[Module A]

Module A

[End of IF structure]

Module
B

ie IF condition holds, then module A executed; othee module B is executed.

(c) Multiple alternatives: This structure has the form:
IF Condition (1), then
[Module A,]
Else if condition (2), then:

[module Az]

37
[Type the document title]

Else if condition (m), then;
[module Am]
Else [module B] (END OF IF structure)

Iteration Logic(Repetitive flow)
The repetition structure can also be called a Ito@ loop, an operation or a set of operatioreeated

until some condition is satisfied. The basic forfnrepetition is termed DO WHILE in the literaturé o
structured programming. In some languages, theitepestructure might be termed PERFORM UNTIL.
In the perform until pattern, the program logict$ea condition; if it is true, the program executikes
operation and loops back for another test. If thedd@ion is true, the repetition ceases.

This structure has the form:

Repeat forK=Rto Sby T:
[Module]

[End of loop]
Algorithm example for iteration or repetition
For example let us take 10 sets of numbers eaatoetining three. The problem is to get the bsgge
number in each set and print it.
Algorithm
Step 1: Read the total number of sets
Step 2: Initialize the number of the set as N=1
Step 3: Read three numbers of a set say A, B, C.
Step 4: Compare A with 3 and choose the bigger.
Step 5: Compare the bigger number with C and Chtiesbiggest
Step 6: Print the biggest number,
Step 7: Increment the number of the set by 1

(N=N+1)

Step 8: Check whether we have exceeded 10. Boet To step 3. Otherwise.
Step 9: STOP

The flow chart for the same in given below

38
[Type the document title]

WEEK 7

SPECIFIC LEARNING OUTCOMES

To understand:

» Explain modular programming concept.
* Explain top-down design technique.
* lllustrate program design with program structcinarts, hierarchical Network,

Hierarchical.

39
[Type the document title]

The Concept of Modular Programming

As program become larger, and more complex, it iImesomore difficult to write clear understandable

solutions that work correctly. The goal of modytogramming is to break up the program into small

parts that are more easily understood. The planrénding and testing can be done on these small,
relatively simple units, rather than on one lag@mplex body of code.

Programmers must develop the skill and the abibtyook at a large program and to decompose it into
individual factions. Once a programmer has leatoetiodularize programs, program will be coded more
quickly, will be more likely to work correctly, andill certainly be easier to read to be maintairsgd

others.

Virtually all computer scientists recommend modylesgramming. The only disagreement seems to be at
what point a programmer should begin writing wheg ealled “subroutines”. Many programmers wait
until programs become hopelessly complex. Therodhicing subroutine can save the day. The more
practical approach is to being using subroutinety.eaAs programs become more complex, if correct
habits need already in place, the programmer dbased to be “rescued” The solution to the progrmm

at hand. A subroutine is a group of statemenenoied to accomplish an individual task.

When a program is written with individual taskssubroutine, a mainline, or control program is nelede
This control program is sometimes called the pnogoaitiine, as it presents an overviewed of thgrm
tasks. [Another term sometimes used for the progreximtain is the driver.

Modular program planning
There are several popular methods used for plarmodular programs. Pseudo code or flowcharts maybe

used, with slight modification for the subroutime, hierarchy charts maybe used. The three metbaas
be illustrated example programming program as shostow.

40
[Type the document title]

Program example
Using modular (subroutines) approach, show the raragplan of a computer program for calculating

simple interest on a deposit by a customer.

Solution

Modular Pseudo code plan for the problem

1. Input data

1.1 Prompt and input rate, deposit amount, and reumbyears.
2. Calculations

2.1 Calculate interest = deposit * rate * years

2.2 Calculate ending balance = deposit + interest

3. Output

3.1 Print interest and ending balance

Modular flowchart plan for the problem

Program mainline Subroutines

Start

A

Input data

l

Calculations

A

Write output

End

[Type the document title]

41

Calculations

\4
/ Enter Rate

\ 4

/ Enter deposit/

\4

[Type the document title]

Calculations

Calculate interest
= Deposit * Rate *years

|

Calculate balance
= Deposit + Interest

Enter year

\4

Return

l

Return

42

Write Output
|

v

Print Interest

v

Print Balance

v

Return

Modular Hierarchy plan for the problem

[Type the document title]

43

Many programmers who write modular programs prefgaian their programs with hierarchy chart.

A hierarchy chart is used to plan and show progsarcture.

organization chart.

It is constructed much like an

As shown the solution belogwel A shows the entire program, which is

broken down into major program functions on theeel. The modules can be broken into smaller

and smaller parts until the coding for each fiomcbecomes straightforward. Many programmers

use a hierarchy chart to plan the overall structdire program. Then, when the individual modules

are identified, flowcharting or pseudo code willlsed to plan the details of the logic.

Interest Program

Input
Data

Calculations

Write Output

44
[Type the document title]

WEEK 8

SPECIFIC LEARNING OUTCOMES

To understand:

* Identify the problem and confirm it solvable.

* Design algorithm for the chosen method of solutith flowcharts or pseudo codes.
 Code the algorithm by using a suitable prograngnfamguage.

* Test run the program on the computer.

45
[Type the document title]

STAGES OF PROGRAM DEVELOPMENT

Before computer program is successfully writtengudnented and installed, it must have passed through
the following stages. Each stage has somethingptdribute to the accomplishment of the whole task.

The stages are:

Problem definition
Before any reasonable and meaningful program coeldritten, the problem that prompted it must have

to be defined. No one solves a problem he doekmmw. The problem to be solved by computer should
be well stated and understood before the solutitirbesworked out. From the solution, it is expegtthat

the output of the problem is known and the input e prepared to arrive at the output.

Develop the algorithm
An algorithm is a well defined set of instructiotigat is used to solve a particular problem in atdin

number of steps. It involves unambiguous statihthe procedures and steps necessary to transfam t
input data into output. It posses a little diffijuto the program planner, and once accomplished

successfully, the rest of the solution follows Basi

Plan the logic of the program/flowcharting:
The logic of the program will be planned using ahyhe program design tools it flowchart, pseud@&cod

hierarchy chart. The choice of the design toodusepends on the programmer, but the most popaotar a
most handy is the use of the flowchart to orgatheethought of the program planner and to checlafyr

logic error or misrepresentation. A flowchart ipietorial view of the program logic

Write the computer program:
After the design or planning the logic of the pmgrusing the flowchart, the next stage is the &ctua

writing of the program using any of the programmlagguages in a proper sequence. This is called,
coding of the program. This is done by strictlyeging the language syntax or following the estéileids

rules of the programming language.

46
[Type the document title]

Type the program into computer:
The next stage after writing the program, it tg Kee program into the computer. Any program thiit
be executed by the computer must be resident icdhguter memory. The typing is generally made one

line after the other.

Test and debug the program:
The moment the program has been keyed into the at@mpghe programmer is ready to see if the program

is working. The program could be translated intachne language by either a compiler or interpreter
depending on the language in use ie for BASIC @magrwhen the command RUN is typed and entered,
the program begins executing. If any rules languadproken, the program will not work. The erromgst

be removed before the program will start produdirggoutput. Testing is very necessary to ensuaettie
correct and required answers are produced as tpatou

Document the work:
Documentation helps the user to understand thergmodpetter. It identifies exactly the purpose fué t

program. It is always referred to whenever changes to be made in the program to suite new
development. It contains the following parts.

i) A statement of the problem

i) Algorithm and program plans (ie flowchart, hieraraart or pseudocode).
i) Description of input and output

iv) Program listing

V) Test data and results

Vi) Technical details and instruction for the user.

All these are assembled into a finished progranudeentation.

47
[Type the document title]

Program development/execution process

The program development stages/process is illestriatthe diagram below;

Edit/enter the program

A
Compile program

A

v Yes Determine errors
Compile/linker errors? Get back into editor
Fix program errors

v

No

Run program

l Determine error source
Yes Program (or data)
Edit program (or data)

Execute errors

A 4

No
¥ Re-think problem
Get unreasonable or | Yes Re-think program
incorrect answer: Edit program >
No
A 4

Success/documentation

48
[Type the document title]

WEEK 9

SPECIFIC LEARNING OUTCOMES

To understand:

* Explain machine language, low-level language arghHgvel languages
e Various programming languages

» Differentiate between programming languages

49
[Type the document title]

LEVELS OF COMPUTER PROGRAMMING LANGUAGES
All computers whether small or big cannot do anyghon their own. They all require a series of
instructions (i.e programs) before they can do amogessing. It is these programs that will dirtbet
computer to carry out the required task. The g have to be written out comprehensively: to
cover all possibilities: and in the right order dref the control unit of the CPU can use them

effectively.

Programs can be written in several languages. adustere are many spoken languages, there are many
computer languages. In this lecture we shall sthdydifferent levels of computer languages and the

forms.

Currently all computer languages can be grouped thtee, namely, machine languages, assembly
languages and high-level languages. Machine lagegiand assembly languages are together referred to

as low-level languages. The detail charactessifeeach group of languages are discussed below.

Low-level Languages

These group of languages are so named because thdy are very close (i.e. similar) to the langu#te
computer understands, and very remote from langusggeken by human beings. Low-level languages are

in two forms namely: machine language and assefabtyuage.

Machine language

Machine language is as old as the computer itdelis the computer’ s own language. It considtthe
code that designates the electrical states indhgpater (i.e, on or off): this is expressed as lwoiation of

Os and 1s./It is called the computer's own langubgeause codes or instructions written in machine
language can be executed directly by the compuiignput the need for any translation. This is tmdy
language that has this characteristic.

Each type of computer has its own machine langudget is to say, that different brands of compater
cannot understand programs written in another bBsandchine language. Talking specifically, a
computer made by IBM company has its own languapetwis different from the one of NCR

50
[Type the document title]

company. Even two different models of computerslenay the same company do not usually have the
same machine language. Thus programs written iohma language are said to be machine-

dependent.

Every instruction in machine language programs mspstify both the operation to be carried out as
well as the storage locations of the data itemBetaused in the operation. In form, it consistsaof

series of numbers. The operation part is calletbdg or operation code and the remaining part gives
the addresses of the data items in memory thatbeikhffected by the operation. Due to these specia

requirements machine language programming is exisecomplex, tedious and time consuming.

For example, the instruction, in machine languaganake the computer add together the numbers
currently stored in memory addresse four and sewehthen store the sum in address four will look
like this.

1A47
The first two numbers 1A is the operation codeddd in IBM 360 machine. On another machine it

will be another series of numbers different frora time given.

For effective and efficient program in machine laage, the programmer must keep track of which
memory locations have been used and the purposaatf memory location. Also the programmer
must know every operation code and the actionithauses the computer to take. It is quite leypgth

and tedious. To overcome this, the assembly layggyaame into existence.

Assembly Language

In order to relieve programmers the arduous tdsWwriding in machine language, the assembly
language was developed. It is very much similan&zhine language but instead of writing in seoies
numbers, convenient symbols and abbreviations sed.u Assembly language programming does not
require the programmer to remember numeric opcaddsaddresses. However, it still requires the

programmer to be familiar with the operation coded the methods of addressing memory locations

51
[Type the document title]

for that particular machine. This is because, dagembly language; though at a higher level, still

depend very much on the language of that particukrhines.

Programs in assembly language cannot be executectlgj it still has to be changed to the machine
language during execution. Thus we can see tkat@ddy language too is machine dependent. That is
to say, different brands of computers have diffe@ssembly language. For this reason, assembly

language is still classified as low-level language.

For the IBM 360 computer the machine language dodeass is 1A while in assembly language,
addition operation code is AR is a mnemonic for §Adegister”. For STORE operation the assembly
code is the mnemonic STO while TRA stands for TRAER Operation and MR stands for MOVE

REGISTER operation etc.

Similarly the programmer can assign a name to eahnory location. For instance address seven may
be given the name P and address four may be dgieename Q, thus the instruction.

ARP.Q
In assembly language will be executed as addingctiments of register Q to the contents of P; of

course the final result will be in register P.

As mentioned earlier, regardless of which assendilguage is used, the computer cannot directly
execute the programs written in this languagehak to be translated into the machine language by
another special purpose software called translatbhe details of the translation process shall be

studied in later lectures.

High-level languages

As computers have developed in complexity, so hanegramming languages. High-level language

programming are the result of sophistication ingpaonming languages.

The Machine and Assembly languages discussed bedgrere programmers to construct programs in a
form that does not follow normal ways of human kg, communication and language notation. To

avoid this problem High-level languages were degwetb Another name for high-level languages is

52
[Type the document title]

problem-oriented languages. With this languagegm@mmers’ attention are now directed towards
problem solving instead of operations going ondastomputer. These languages allow mathematicians
and Scientists to use common algebraic notationg€dding formulas while other lay programmers can
write their programs in ordinary sentence form.eTime and effort needed to write programs are now

reduced considerably and programs are easier teat@nd modify.

A large number of high-level languages are in wsay. In fact, more are being developed daily as
researchers are still going on.

Example of high-level languages commonly in usayadclude:

1) BASIC (Beginners All-purpose Symbolic Instructiond#)

2) FORTRAN (Formula Translator). There are many wrsiof FORTRAN However
the modern version is called FORTRAN 77

3) COBOL (Common Business Oriented Language). Therenany versions

4) "C’ language

5) PL/1

6) PASCAL (language named after an ancient French éma#ttician and inventor of

Pascal engine), etc.

Each of the high-level languages has rules thaégoliow to write instructions in them. Like
any human language, it is the duty of the programoneiser to learn the rules of the language

he wants to use.

Unlike low-level language which is machine-dependdrngh-level languages are machine-

independent. That is to say, a program writteang of the high-level languages can be run

53
[Type the document title]

with little or no changes by computer made by mdifferent manufacturers. Thus, as new
computers come into existence, programmers do an to rewrite the existing programs and

learn new language as it is the case with asseprbfyramming.

The example below shows how to add two numbers ineldriables X and Y placing the sum

in X using the most common four high-level langusage

BASIC....... LETX=X+Y
FORTRAN X=X+Y
COBOL.......... ADD Y TO X
PASCAL........ Xi=X+Y

It can be observed that the notation is very smtdahuman ways of thinking and expression

and very remote from the machine language.

54
[Type the document title]

WEEK 10

SPECIFIC LEARNING OUTCOMES

To understand:

» Explain the distinguishing features of differenbgramming languages

» Distinguish between system commends and prograenstats.

» Advantages and disadvantages of different levefga@jramming languages

55
[Type the document title]

MACHINE LANGUAGE

Machine Code or machine language is a low-levefjiaamming language that can be understood directly
by a computer’s central processing unit (CPU). Niaeltode consists of sequences of binary numbers, o
bits, which are usually represented by 1s and 0d,wehich form the basic instructions that guide the
operation of a computer. The specific set of irgtams that constitutes a machine code dependfi®n t
make and model of the computer's CPU. For instanice, machine code for the Motorola 68000

microprocessor differs from that used in the litehtium microprocessor.

Writing programs in machine code is tedious ancgtsunsuming since the programmer must keep track of
each specific bit in an instruction. Another diffity with programming directly in machine code &t

errors are very hard to detect because the progragpresented by rows and columns of 1s and 0s.

Advantages of Machine Language

1) Less code is produced

2) Storage is saved

3) User has direct control of machine instruction
4) Execution is faster as no translation is needed

5) The programmer knows all the registers and instvadhat use them.

Disadvantages of Machine Language

1) Cumbersome ie, tedious and difficult to learn

2) Programmer’s fluency is affected, thereby makirgplhograms developed inefficient.
3) The developed programs are error prone and difftoullebug (correct)

4) The performance of the system is unreliable.

ASSEMBLY LANGUAGE

Assembly language is type of low-level computergoaonming language in which each statement
corresponds directly to a single machine instructidssembly languages are thus specific to a given
processor. After writing an assembly language @agithe programmer must use the assembler spgzxific

the microprocessor to translate the assembly layegusto machine code. Assembly language provides

56
[Type the document title]
precise control of the computer, but assembly lagguyrograms written for one type of computer rbest
rewritten to operate on another type. Assemblyuagg might be used instead of a high-level langfage
any of three major reasons: speed, control, an@n@mce. Programs written in assembly languagellysua
run faster than those generated by a compilerptiassembly language lets a programmer interaettiyr

with the hardware (processor, memory, display,iapdt/output ports).

Assembly language uses easy-to-remember commaatiarth more understandable to programmers than
machine-language commands. Each machine langusigadtion has an equivalent command in assembly
language. Assembly language makes programming reasier, but an assembly language program must
be translated into machine code before it can bsenstood and run by the computer. Special utility
programs called assemblers perform the functiamaoislating assembly language code into machine.cod
Like machine code, the specific set of instructitret make up an assembly language depend on tke ma
and model of the computer’s CPU. Other programnanguages such as Fortran, BASIC, and C++, make
programming even easier than with assembly langaageare used to write the majority of programs.
These languages, called high-level languages, lasercin form to natural languages and allow very

complicated operations to be written in compacation.

Advantages of Low Level Language
1) Program translation is easier than high level |aggu
2) It affords the programmer the opportunity to untierd the internal structure of the

hardware and its registers.

Disadvantages of Low Level Language

1) Itis machine dependent, That is, cannot be traregfdéo another computer.

2) Program development is slow as the programmer tasgé detailed knowledge of the
hardware structure.

3) Program maintenance is slow and error prone.

57
[Type the document title]

HIGH LEVEL LANGUAGE

High-Level Language is a computer language thawiges a certain level of abstraction from the
underlying machine language through the use ofadattbns, control statements, and other syntactical
structures. In practice, the term comprises evempputer language above assembly language. The next
generation of language is called tH& generation. The computer programmers enjoy usiisglanguage
because it gives them the fluency, the flexibiatyd the opportunity to express their thought toltest of

their ability. The languages of this generatiom ealled High level language. The high level laagps are

referred to as machine language and assembly Ilgagua

Advantages of High Level Language
2) It makes programming easier for the human being.

3) High level instructions are easier to understartifaster to code.
4) Error correction and resting of program is easier

5) They are machine independent. That is, prograrttemrfor computer can be transferred to

another computer with little or no modification.

Disadvantages of High Level Languages

1) High level language tends to be inefficient in tise of CPU and other facilities.
2) Machine code instructions are produced and thamnesymore storage spaces.
3) More time is required to run the program as it teese translated.

WEEK 11

SPECIFIC LEARNING OUTCOMES

To understand:

* Debugging.

* Identify sources of bugs in a program

* Explain syntax, run-time and logical errors.

« Identify techniques of locating bugs in a program
» Explain program maintenance.

* Distinguish between debugging and maintainingogam

[Type the document title]

58

59
[Type the document title]

THE CONCEPT OF DEBUGGING AND MAINTAINING PROGRAM

Debuggingis the art of diagnosing errors in programs arerdaning how to correct them. "Bugs" come
in a variety of forms, including: coding errors,sdgn errors, complex interactions, poor user iaissf
designs, and system failures. Learning how to debpgogram effectively, then, requires that yourea
how to identify which sort of problem you're loogiat, and apply the appropriate techniques to phiei
the problem.

Bugs are found throughout the software lifecyclbe programmer may find an issue, a software tester
might identify a problem, or an end user might ream unexpected result. Part of debugging effebtiv
involves using the appropriate techniques to getes®ary information from the different sources of
problem reports.

Debugging is described as identification and rerho¥docalized implementation errors or bugs from a
program or system. Program debugging is often suggdy adebug tool, a software tool that allows the
internal behavior of the program to be investigatedrder to establish the existence of bugs. Tbad
typically offer trace facilities and allow the ptarg of breakpoint in the program at which execution is to
be suspended so that examination of partial remuftessible and permit examination and modificatd
the values of program variables when a breakpsirgached.

In computer program/software, a bug is an erraoding or logic that causes a program to malfunctio

to produce incorrect results. The computer softw@ebug tool) is used to detect, locate, and correc
logical or syntactical errors in a computer progr&milarly, in hardware, a bug is a recurring pbgb
problem that prevents a system or set of comporetsworking together properly. To detect, located
correct a malfunction or to fix an inoperable sygstehe termtroubleshoot is more commonly used in
hardware contexts. The three major program eregrsamntax error, logical error and run-time error.

Sources of bugs in a program

With coding errors, the source of the problem \igth the person who implements the code. Examples o
coding errors include:

+ Calling the wrong function ("moveUp", instead ofdueDown")

« Using the wrong variable names in the wrong plgcesoveTo(y, x)" instead of "moveTo(x, y)")
« Falling to initialize a variable ("y = x + 1", whex has not been set)

« Skipping a check for an error return

Software users readily see some design errorsewilmibther cases design flaws make a program more
difficult to improve or fix, and those flaws are tnobvious to a user. Obvious design flaws are often
demonstrated by programs that run up againstthiéslof a computer, such as available memory, alvkal

60
[Type the document title]

disk space, available processor speed, and ovenwitginput/output devices. More difficult designas
fall into several categories:

+ Failure to hide complexity
« Incomplete or ambiguous "contracts"
« Undocumented side effects

Complex interactivity bugs arise in scenarios whartdtiple parts of a single program, multiple praps,
or multiple computers interact.

Sometimes, computer hardware simply fails, and sually does so in wildly unexpected ways.
Determining that the problem lies not with the waite itself, but with the computer(s) on whichst i
usually complicated by the fact that the personudging the software may not have access to the
hardware that shows the problem.

Preventing Bugs

No discussion of debugging software would be cotepldthout a discussion of how to prevent bugs in
the first place. No matter how well you write cotfeyou write the wrong code, it won't help anyotife.
you create the right code, but users cannot wagkutter interface, you might as well have not writtee
code. In short, a good debugger should keep an mjeh about where the problem might lie.

Although it is outside the scope of this discussiordescribe the myriad techniques for avoidingshug
many of the techniques here are equally usefut #itefact, when you have a bug and need to undbver
and fix it. Thus, a brief discussion follows.

Methods of debugging

Understand the Problem

In order to write effective software, the developaust solve the problem the user needs solved.sUser
naturally enough, do not think in strict algorithmgindowing systems, web pages, or command line
interfaces. Rather, users think of their problemshe way that they think of their problems (ydgttis
circular).

Sit down with the intended user, and ask them wiey want from the software. Users frequently want
more than software can actually deliver, or havetremlictory aims, such as software that does nmre,
doesn't require that they learn anything new. brtslask the users what their goals are. Absersetigoals,
users will keep reporting bugs that do not addoug toherent whole.

61
[Type the document title]

Basic debugging techniques/steps

Although each debugging experience is unique, iceganeral principles can be applied in debugging.
This section particularly addresses debugging so#yalthough many of these principles can also be
applied to debugging hardware.

The basic steps in debugging are:

« Recognize that a bug exists
» Isolate the source of the bug
+ ldentify the cause of the bug
- Determine a fix for the bug

« Apply the fix and test it

Recognize a bug exists

Detection of bugs can be done proactively or pasgiv

An experienced programmer often knows where eamgsnore likely to occur, based on the complexity o
sections of the program as well as possible dataigiion. For example, any data obtained from a use
should be treated suspiciously. Great care shaaltihken to verify that the format and content ef data

are correct. Data obtained from transmissions shbal checked to make sure the entire message (data)
was received. Complex data that must be parsedapaicessed may contain unexpected combinations of
values that were not anticipated, and not handbecectly. By inserting checks for likely error sytoms,

the program can detect when data has been corrapteat handled correctly.

If an error is severe enough to cause the progoararininate abnormally, the existence of a bug &0
obvious. If the program detects a less seriouslenofthe bug can be recognized, provided errorcaridg
messages are monitored. However, if the error mnand only causes the wrong results, it becomesgm
more difficult to detect that a bug exists; thiegpecially true if it is difficult or impossible tverify the
results of the program.

The goal of this step is to identify the symptorhghe bug. Observing the symptoms of the problemdeu
what conditions the problem is detected, and whakvaround, if any, have been found, will greatstth
the remaining steps to debugging the problem.

Isolate source of bug

This step is often the most difficult (and therefeewarding) step in debugging. The idea is totifien
what portion of the system is causing the errorfodnnately, the source of the problem isn't alwtyes
same as the source of the symptoms. For exampe, iffiput record is corrupted, an error may nouocc

62
[Type the document title]

until the program is processing a different recad,performing some action based on the erroneous
information, which could happen long after the relo@as read.

This step often involves iterative testing. Thegyesnmer might first verify that the input is coremext if
it was read correctly, processed correctly, eta. iodular systems, this step can be a little edsyer
checking the validity of data passed across inteddbetween different modules. If the input wasestr
but the output was not, then the source of ther ésrwithin the module. By iteratively testing inguand
outputs, the debugger can identify within a feve$irof code where the error is occurring.

Identify cause of bug

Having found the location of the bug, the next stefo determine the actual cause of the bug, winigjht
involve other sections of the program. For examplé, has been determined that the program faults
because a field is wrong, the next step is to iflenthy the field is wrong. This is the actual soerof the
bug, although some would argue that the inabilftg program to handle bad data can be considebed a
as well.

A good understanding of the system is vital to esstully identifying the source of the bug. A texin
debugger can isolate where a problem originatdsply someone familiar with the system can acalyat
identify the actual cause behind the error. In s@ases it might be external to the system: thetidata
was incorrect. In other cases it might be due kogec error, where correct data was handled inobiyre
Other possibilities include unexpected values, whbe initial assumptions were that a given fiedah ¢
have only "n" values, when in fact, it can have epas well as unexpected combinations of values in
different fields (field x was only supposed to havat value when field y was something different).
Another possibility is incorrect reference dataglsas a lookup table containing incorrect valuéstice to

the record that was corrupted.

Having determined the cause of the bug, it is adgdea to examine similar sections of the codee®if
the same mistake is repeated elsewhere. If the wase clearly a typo, this is less likely, buth&toriginal
programmer misunderstood the initial design ancéquirements, the same or similar mistakes cowe ha
been made elsewhere.

Determine fix for bug

Having identified the source of the problem, th&triask is to determine how the problem can bedfixe
An intimate knowledge of the existing system iseesigl for all but the simplest of problems. Thss i
because the fix will modify the existing behavidrtbe system, which may produce unexpected results.
Furthermore, fixing an existing bug can often aittreate additional bugs, or expose other bugsvibat
already present in the program, but never exposeduse of the original bug. These problems are ofte
caused by the program executing a previously usdebranch of code, or under previously untested
conditions.

63
[Type the document title]

In some cases, a fix is simple and obvious. Thesecially true for logic errors where the orididesign
was implemented incorrectly. On the other handth& problem uncovers a major design flaw that
permeates a large portion of the system, thenixheifjht range from difficult to impossible, requig a
total rewriteof the application.

In some cases, it might be desirable to impleméljuak fix", followed by a more permanent fix. Bhi
decision is often made by considering the sevevigbility, frequency, and side effects of the plem, as
well as the nature of the fix, and product schesl(geg., are there more pressing problems?).

Fix and test

After the fix has been applied, it is importanttést the system and determine that the fix hanttles
former problem correctly. Testing should be done tf@o purposes: (1) does the fix now handle the
original problem correctly, and (2) make sure tlehfisn't created any undesirable side effects.

For large systems, it is a good idea to have regmedestsa series of test runs that exercise the system.
After significant changes and/or bug fixes, thessts can be repeated at any time to verify thasyseem
still executes as expected. As new features areda@diditional tests can be included in the tagt.su

The diagram below illustrates the fix and test apph of debugging a program.

Edit/enter the program

A
Compile program

A

v Yes Determine errors
Compile/linker errors? Get back into editor
Fix program errors

\4

No

Run program

l Determine error source
Yes Program (or data)
Edit program (or data)

A 4

Execute errors

No
Y Re-think problem
Get unreasonable or | Yes Re-think program
incorrect answer: Edit program >
No
A 4

Success

64
[Type the document title]

Syntax of a program

The syntax of a program is the rules defining thgal sequences of symbolic elements in a particular
language. The syntax rules define the form of wericonstructs in the language, but say nothing tatheu
meaning of these constructs. Examples of constaretsexpressions, procedures and programs.

Programming Errors
Error simply means mistake. That is errors occupnograms as a result of system failure (hardware)
wrong code/instructions (software) and human effbere are four categories of programming error;

Run-time errors (execution error)

Is an error that occurs during the execution pfagram In contrastcompile-time errors occur while a
program is beingompiled Runtime errors indicateugsin the program or problems that the designers
had anticipated but could do nothing about. Fomgxda, running out ofnemorywill often cause a
runtime error.

Note that runtime errors differ from bombs crashesn that you can often recover gracefully from a
runtime error.

Run-time errors have the following basic charastas;

* Program is compiled OK, but something goes wrominduexecution e.g division by zero or an
attempt to read data that does not exist.

» Detected by the computer run-time system

= Computer usually prints error message and stops.

Define logical errors

A problem that causes a program to produce inwvalighut or to crash (lock up). The problem is either
insufficient logic or erroneous logic. For exampdeprogram can crash if there are not enough walidi
checks performed on the input or on the calculatibtremselves, and the computer attempts to diwde b
zero. Bad instruction logic misdirects the comptivea place in the program where an instructiorsdox
exist, and it crashes. .

A program with bad logic may produce bad outpuhwiit crashing, which is the reason extensive tgstin
is required. For example, if the program is supgdseadd an amount, but subtracts it instead, lodjolubd
results, although the computer keeps running.

Logic errors have the following basic characterssti

65
[Type the document title]

= Program compiles and executes OK but produces @aqgb or incorrect results.
= Detected by programmer (i.e You!)
= Hardest to detect, locate and find.

Define syntax errors (compilation error)

Syntax error is a programming error in which thangmatical rules of the language are broken. That is
program errors that occur due to violation or deshbnce of rules of the programming language. When
syntax error occurs, the program execution is inatlil the error or bug is detected, located andemed.
Syntax errors can be detected by the compilerkerdemantic errors which do not become appareiit unt
run-time.

Run-time errors have the following basic charastas;

= Error in the form of statement: misspelled wordmnatched parenthesis, comma out of place

= Detected by the computer at compiler time

= Computer cannot correct error, so object progranoiggenerated and thus program is not executed
= Computer (compiler) prints error messages, butisoas to compile.

Linker errors: These types of errors have the following basic attaristics;
= Prevents the generation of an executable image
= Common linker errors;
o specifying the wrong header file
o disagreement among the function prototype, funatieimition and calls to that function

The difference between run-time, logical and syntarrrors?
« Students should identify the differences from thewee explanations.

Program maintenance

Program/software maintenance is the modificatioa ebftware product after delivery to correct fautd
improve performance or other attributes, or to addwe product to a modified environment. This
international standard describes the 6 softwar@t@aance processes as:

1. The implementation processes contains softwareapaéipn and transition activities, such as the
conception and creation of the maintenance planptieparation for handling problems identified
during development, and the follow-up on productfguration management.

2. The problem and modification analysis process, Wwiscexecuted once the application has become
the responsibility of the maintenance group. Thanteaance programmer must analyze each
request, confirm it (by reproducing the situatiang check its validity, investigate it and propase
solution, document the request and the solutiorpgsal, and, finally, obtain all the required
authorizations to apply the modifications.

66
[Type the document title]

e

The process considering the implementation of tbdification itself.

4. The process acceptance of the modification, byldhgadt with the individual who submitted the
request in order to make sure the modification ke a solution.

5. The migration process is exceptional, and is neot phdaily maintenance tasks. If the software
must be ported to another platform without any geam functionality, this process will be used
and a maintenance project team is likely to begassi to this task.

6. Finally, the last maintenance process, also antewvbith does not occur on a daily basis, is the

retirement of a piece of software.

Categories of Program maintenance
E.B. Swansornitially identified three categories of maintecancorrective, adaptive, and perfective.

- Adaptive maintenance: Modification of a softwaredguct performed after delivery to keep a
software product usable in a changed or changimgamment.

« Perfective maintenance: Modification of a softwpreduct after delivery to improve performance
or maintainability

Preventive maintenance: Modification of a softwmareduct after delivery to detect and correct lafantts
in the software product before they become effediawlts.

Difference between program maintenance and debuggin

A common perception of maintenance is that it isatyefixing bugs However, studies and surveys over
the years have indicated that the majority, ovén806f the maintenance effort is used for non-cdivec
actions. Key findings shows that program mainteparsc really evolutionary developments and that
maintenance decisions are aided by understandireg thwppens to systems (and software) over time.
While Debuggingis a very important task in the software developim@arocess, because an erroneous
program can have significant consequences forsgssu Some languages are more prone to some Kinds o
faults because their specification does not requaompilersto perform as much checking as other
languages. Use of a static analysisl can help detect some possible problems.

67
[Type the document title]

WEEK 12

SPECIFIC LEARNING OUTCOMES

To understand:

*Employ structured approach to both flowcharting and program development.

68
[Type the document title]

THE CONCEPT OF GOOD PROGRAMMING PRACTICE

Structured Programming is a general term referttgrogramming that produces programs with clean
flow, clear design, and a degree of modularityierdrchical structure. Benefits of structured pemgming

include ease of maintenance and ease of readdbylibgher programmers.

Structured Programming is one step beyond modular programming with ginesl for “good” modules
and “poor” modules. The structured programmingdglines also define “proper” flow of control and
coding standards (such as indentation). In margel@programming projects where statistics have been
kept, it has been shown that structured programinasgmany demonstrable advantages over the okl styl

unstructured programs, such as:

Programs are more reliable. Fewer bugs appdasiing and later operation.
Programs are easier to read and understand

Programs are easier to test and debug.

P w0 PR

Programs are easier to maintain.

Most commercial programming shops report that astl®0 percent of programmer time is spent making
changes and correction in existing programs rattem developing new programs (some report more than
90 percent maintenance). Anything that will saagetin correction and maintenance can save a coynpan
considerable money. It is easy to see why mostoerial stops hiring programmers insist on struedur

programming techniques.

The current definition of structured programmingliudes standards for program design, coding and
testing that are designed to create proper, reljadrhd maintainable software. These standardadacl

coding guidelines and rules for flow of control anddule formation.

69
[Type the document title]

Structured Coding Guidelines

The structured coding guidelines are designed tcerpaograms more reliable and easier to understand.

Use meaningful variable names

Code only one statement per line.

Use REMarks to explain program logic.

Indent and align all statements in a loop.

Indent the THEN and ELSE actions of an IF staem

a kr 0N e

Flow of Control

In 1964, Italians Bohm and Jacopini proved matherally that any program logic can be accomplished
with just three control structures. Within a feeays, studies were done declaring the GOTO statetmen
be harmful to good programming. In fact, in congams of selected large programming projects, there

was a direct correlation between the number of GAEBements and program bugs found.

BASIC was not designed as a structured languagesdiae of the current additions to the language now
permit the programmer to adhere to the three “pfopenstructs. All programming can be done with

combinations of these three construct.

Iteration — This is the loop structure. The BASIGtement learned for looping are the WHILE/WEND.

Others include;

- Looping
+ Do...Loop Statement
« For...Next Statement

Visual Basic allows a procedure to be repeatedasyrtimes as long as the processor could supploig. T
is generally called looping .

70
[Type the document title]

Do...Loop Statement
Repeats a block of statements while a conditidrrie or until a condition becomé@3gue.
Syntax

Do [{ While |Until } condition]
[statements]

[Exit Do]

[statements]

Loop

Or, you can use this syntax:
Do

[statements]

[Exit Do]

[statements]

Loop [{ While | Until } condition]

TheDo Loop statement syntax has these parts:

Part Description

Condition Optional. Numeric expression or stringmession that igrue or False. If
condition is Null, condition is treated &alse

Statements One or more statements that are repghiied or until, condition iSrue.

Remarks

Any number ofExit Do statements may be placed anywhere irtbe.Loop as an alternate way to exit a
Do...Loop. Exit Do is often used after evaluating some conditiongf@mple]f...Then, in which case
the Exit Do statement transfers control to the statement inmtedgl following theLoop.

When used within nestddo...Loop statements:xit Do transfers control to the loop that is one nested
level above the loop wheEexit Do occurs.

71
[Type the document title]

Example

This example shows hol@o...Loop statements can be used. The irlber..Loop statement loops 10
times, sets the value of the flagRalse and exits prematurely using t&&it Do statement. The outer loop
exits immediately upon checking the value of tlagfl

Dim Check, Counter
Check = True: Counter = 0 ' Initialize variables.
Do 'Outer loop.
Do While Counter <20 ' Inner loop.
Counter = Counter + 1 ' Increment Counter.
If Counter = 10 Then 'If condition is True
Check = False ' Set value of flag tesEal
Exit Do ' Exit inner loop.
End If
Loop
Loop Until Check = False ' Exit outer loop immediately.

For...Next Statement

Repeats a group of statements a specified numhlenes.
Syntax

For counter= startTo end [Step step]

[statements]

[Exit For]

[statements]

Next [counter]

TheFor...Next statement syntax has these parts:

Part Description

Counter Required. Numeric variable used as a loopter. The variable can't be a
Boolean or an array element.

Start Required. Initial value of counter.

End Required. Final value of counter.

Step Optional. Amount counter is changed each timaugh the loop. If not

72
[Type the document title]

specified, step defaults to one.

Statements Optional. One or more statements betik@eandNext that are executed the:
specified number of times.

Remarks

The step argument can be either positive or negaiilie value of the step argument determines loop
processing as follows:

Value Loop executes if
Positive or 0 counter <= end
Negative counter >=end

After all statements in the loop have executeq) ®@dded to counter. At this point, either tretesnents
in the loop execute again (based on the samehstaused the loop to execute initially), or thepl is
exited and execution continues with the statem@tdwing theNext statement.

Tip Changing the value of counter while inside gloan make it more difficult to read and debug your
code.

Any number ofExit For statements may be placed anywhere in the loop aliernate way to exiExit
For is often used after evaluating of some conditiongikampldf...Then, and transfers control to the
statement immediately followingext.

You can nesFor...Next loops by placing onEor...Next loop within another. Give each loop a unique
variable name as its counter. The following corctton is correct:

Forl=1To 10
ForJ=1To 10
ForK=1To 10
Next K
Next J
Next |

Note If you omit counter in &lext statement, execution continues as if counterdsided. If aNext
statement is encountered before its corresporféimgtatement, an error occurs.

73
[Type the document title]

Example
This example uses thr...Next statement to create a string that contains 1@mests of the numbers 0
through 9, each string separated from the othex fingle space. The outer loop uses a loop counter
variable that is decremented each time througtoibie
Dim Words, Chars, MyString
For Words = 10To 1 Step-1 ' Set up 10 repetitions.

For Chars =0ro 9 ' Set up 10 repetitions.

MyString = MyString & Chars ' Append numberstring.
Next Chars 'Increment counter

MyString = MyString & " " ' Append a space.
Next Words

Example
For counter=1to 10
display.Text=counter
Next
Example
For counter=1 to 1000 step 10
counter=counter+1
Next
Example
For counter=1000 to 5 step -5
counter=counter-10

Next

One Entry, One Exit.

74
[Type the document title]

The primary rule for program modules is the eacldu® must have only one entry point and one exit
point. So even though BASIC will allow a GOSUBadine number within a subroutine and will allow

multiple RETURN statements, such violations of ‘thiee-entry, one exit” rule should be avoided.

The “Black Box” Concept

A “black box” (program module) is designed to acphish a task. Generally, some data is input to the
module, a transformation occurs, and data is outpuat the module . the details of what happensiwit
the “black box” are not important to the overalbgram. What is important is that for a given inghe
module will reliably produce the correct outputhal module could be replaced by another — perhaps i
another language such as assembler — without aiatige rest of the program. It is important thethe

module “stand alone.”

Module Cohesion

Choosing the correct statements to combine intoutead an important skill for programmers to deyel

“Good” or “bad” module design is often an elusiwacept when beginning to modularize programs.

Cohesion refers to the internal strength of a maditl is an indication of how closely related eatlhe
statements in a module are to one another. Assemiés increased, module independence, clarity,

maintainability, and portability are increased.

Module Coupling

Coupling refers to the connections, or interfabe$ween modules. As a general rule, modules shmld

loosely coupled; that is, what goes on inside ondute should not affect the operation in other nteslu

The control for execution of program modules muasinie from above.” Looking at a hierarchy chart, a
lower level module cannot determine what a higheell module should do — or even a module at theesam
level. For example, do not allow the detail readtine to determine that it is time to do finalaiot

calculations. That decision must be made by thialme.

75
[Type the document title]

When a decision will determine what function tofpen, place that decision at as high a level asipts

Good programming practice

Good Programming Concept or Style makes code/pnogasier to maintain and modify. Maintaining and
modifying code is made much easier by followingwa bften-overlooked techniques.

Whether the original programmer or someone elséisné® make a change in the code the job is much
easier if the original programmer used lots of cants, gave the variables and constants descriptive
names, and sketched out the basic structure gfrtdgram at the very beginning in pseudo-code.

Using Comments in Code

The use of comments can mean the difference betweda which any competent programmer can
maintain or modify and a program that even theioalgprogrammer has trouble figuring out. Every

routine should start with at least one comment tmaduments the purpose of the routine and any non-
obvious dependencies or effects that the routingmase on other portions of the program.

In a development environment in which several paogners will be contributing code, adding a comment
identifying the person who wrote the code will dégly help others to know who to ask if a question
should arise.

Using Descriptive Names for Variables, Constants ahFunctions

It can be very tempting to use short names foraldes and constants but it is not a good progragmin
practice. A name such &ateOfBirth is much easier for other programmers to underdtaaatiob.

Global variable names can all start with a lowesecqy" so that any programmer looking at the codle w
instantly know which entities are local and whigk global. Likewise, a lower case "k" can be thetfi
letter of constants. This type of self-documentiogle greatly reduces the need for comments and some
typical errors.

Using Pseudo-code in Comments

When first developing the structure of a programaih be very helpful to write out the different tiaes in
pseudo-code. This is language which resembles ss cvetween English and the programming language
that the code will eventually be written in.

76
[Type the document title]

Using pseudo-code allows the programmer to conatentm the conceptual aspects of the program withou
being distracted by syntax rules. The pseudo-cadeatso be the basis of the comments so it carerserv
two purposes.

Using Modular Coding

Whenever possible, the lines of a routine shoulcefitirely on one screen of the editor. By keeping
routines short, it is easier to comprehend them sawl errors. Having short routines also forces the
programmer to break each task into distinct sukstasach of which is easier to maintain and mouiifthe
future.

Modular coding also has the advantage of creaiugable routines that can be used in other programs
Once a routine is debugged and verified it is edasieopy and paste it into another program thawrite
it all over again.

Following these simple suggestions will make a progner's code easier to maintain and modify. It may
seem like more work, but in the end the net rasudteater efficiency and fewer mistakes.

77
[Type the document title]

WEEK 13

SPECIFIC LEARNING OUTCOMES

To understand:

* Employ program documents technique HIPS, data flow diagram, pseudo-cal.

* Explain graphic user interface, GUI.

* Define interactive processing.

78
[Type the document title]

Program documentation concepts
Program documentations

This is the act of keeping/maintaining all materidiat serve primarily to describe a system/progaach
make it more readily understandable rather thawatatribute in some way to actual operation of the
system. Documentation is frequently classified atiog to purpose; thus for a given system there bey
requirements documents, design document, and so on.

Why is program documentation important?

1) The main purpose of program documentation isdéscribe the design of your program. The
documentation also provides the framework in whilplace the code. as coding progresses, the sode i
inserted into the framework already created by ghegram documentation.

2) Documentation is important to tell other prograens what the program does and how it works. In the
“real world" and in some classes here at BGSU, naragiers often work in teams to develop code.
Documentation helps others on the team to undetstanr work.

3) Maintenance and debugging are needed soonateorfbr most programs and these are frequentlg don
by someone other than the original programmer. B@uation can help the programmer who is making
the modifications understand your code.

4) Documenting your program during development $iglpu to maintain your sanity.
When should program documentation be done?

When designing your program, you must spend tinmeifig about how to structure your program, what
modules are needed, and the algorithms and pracgesewill use in the modules. You must think about
what sort of data structures and objects (e.gayarffiles or linked lists) are needed. This thigkmust be
done before you start coding, or you will find yself wasting time writing useless code that is ffll
errors. It is very important to record this creatprocess so that the programmers that follow younat
duplicate work that you have already done.

Before writing the code, you should write the doemtation to describe the design of each comporfent o
your program. Writing documentation for the modubegore writing the code helps you define exactly
what each module should do and how it will intenath other modules. Focusing on the design and the
steps needed to solve the problem can help preveors in the completed program.

79
[Type the document title]

What information should be in the program documentaion?

For an individual module, it is important to recddd who has written the module, (2) when the medul

was written or modified, (3) why the module wastten or modified, (4) how the module interacts with

other modules, (5) what special algorithms weredudeany, and (6) acknowledge outside sources for
ideas and algorithms.

For data structures, it is important to recordWhpgat data structure is used, (2) why a particuliarcture
was used, (3) what data is contained in the strecand (4) how the data structure is implemented.

Goals of good documentation:

Aid in designing good programs

Aid in debugging programs

Make programs clear and understandable once written
Make structure of program well-organized

PwbE

Good documentation is a great aid to producingrcheell written, and understandable programs, Gard
save much programming and computing time. Goodumbentation is especially necessary for
programming projects requiring either a long peraddime by one programmer, any period of time by
more than one programmer, or modifications to amgecby another other than the original author. dG00
documentation techniques can be helpful in theWalg ways:

Program Design

Many beginning programs seem to write programs aphlazard and unplanned ways, and often add
comments only after the program is running. Thethod not only leads to poorly-structured programs,
but also usually results in wasted time, and isfeasible except for relatively trivial programs.

A much better method is to write most of the olletamments with a flow chart first, specifying the
structure and convention of the program, and theting the program to fit. This usually leads teaner-
coded, well-structured programs, which are produicedess time than those written by most novice
programmers.

Program Debugging

Program debugging is aided by documenting a progb&fiore and during its creation, rather than
afterward. Many mistakes can be avoided by hayrggramming conventions well specified before
writing the code. The very act of adding a comment statement often helps identify errors in the
statement, because it forces the programmer t& @out the function of the statement. Finallypdo

80
[Type the document title]

documentation is useful if help is required fronmgone else, since it aids one in the understaritieg
program quickly. (It also makes other people mondne willing to look at the program)

Program Modifications

Clear and complete documentation is absolutelyliralde with a program must be modified, especilly
anyone but the original programmer is making thaenges. It may be noted that useful programs tend t
be modified often.

Program documentation techniques

When using an object oriented programming languageh as C++, programmers often create their own
classes and then declare objects of these class.tyjmese programs are frequently composed of alever
fles — one or more header files containing clag$initions, implementation files containing class
functions, and a file containing the main prograrhe following describes what documentation should
appear in each of these files.

Header files

Documentation in the header file must clearly déscthe class interface. That is, the task perforime
each member function should be described so thirat program which has declared objects of thas<
type will know exactly what this class can do. Thiscumentation should be written so even a non-
programmer can understand it. Header file docuntientashould appear before the class declaration
statement and contain the following.

HIPS

Human Interactive Proofs (HIPs) are challenges meant to be easily solvedusgans, while remaining
too hard to be economically solved by computer®sHire increasingly used to protect services agains
automatic script attacks. To be effective, a HIPstrhe difficult enough to discourage script attablgs
raising the computation and/or development codireéking the HIP to an unprofitable level. At tlzane
time, the HIP must be easy enough to solve in dalaot discourage humans from using the serviadyE
HIP designs have successfully met these criteria.

However, the growing sophistication of attackersl aorrespondingly increasing profit incentives have
rendered most of the currently deployed HIPs vablker to attack. Yet, most companies have been
reluctant to increase the difficulty of their HIRw fear of making them too complex or unappealing
humans. The purpose of this study is to find theuai distortions that are most effective at foiling
computer attacks without hindering humans. Therdaution of this research is that we discovered;tha

81
[Type the document title]

I. Automatically generating HIPs by varying particuthstortion parameters renders HIPs
that are too easy for computer hackers to break,hyenans still have difficulty
recognizing them, and

il. It is possible to build segmentation-based HIPst thie extremely difficult and
expensive for computers to solve, while remainiggtively easy for humans.

HIPs, or Human Interactive Proofs, are challengeanhto be easily solved by humans while remaining
too hard to be solved economically by computers.ifkstance, a HIP challenge (or HIP) could be abpix
image of distorted characters, and the proper respavould be the ASCII string of corresponding
characters. HIPs are increasingly used to proteeices against

automatic script attacks. Examples of such seniiugdade email (spam), online registrations (fradelnial

of service, or DoS), ticket/event reservations (Pasline voting (stuffing), login (DoS), chat rogm
weblogs, etc.

Many companies such as Yahoo, Microsoft, TicketiiasRegister.com, and Google, are currently using
HIPs to protect their online services. To be effegta HIP must be difficult enough to discouragap
attacks by raising the computation and/or develagmests of breaking the HIP to an unprofitableslev
At the same time, the HIP must be easy enough to

not discourage humans from using the service.

Early HIP designs have successfully met theser@itBor instance, when MSN Hotmail deployed itstfi
HIP, hotmail registrations dropped by 19% withaupacting customer support inquiries. A study of the
data revealed that the drop corresponded to mealLants acquired by

scripts for the purpose of spamming. However, tlosving sophistication of attackers and increasirafip
incentives have rendered most of the currentlyaegal HIPs vulnerable to attacks. Yet, most congmni
have been reluctant to increase the difficultyhaifit HIPs.

An example character based H@® fear of making them too complex or unappeatm¢pumans. This has
raised an important question: Is it possible toigite®iuman-friendly HIPs that are easy for humants bu
difficult for computers? Work on distinguishing cpaters from humans traces back to the originaing

test which asks that a human distinguish between andthman and a machine by asking questions of
both. In contrast, we are interested in buildirgpenputer program designed to distinguish betweeithan
computer program and a human.

Such programs have been called reverse Turing tedts, or CAPTCHAs (Completely Automated Public
Turing Tests to Tell Computer and Human Apart).dverview of this work can be found in. Construction
of HIPs of practical value is difficult becausesitnot sufficient to develop challenges to whichmams are
somewhat more successful than machines. This musedhe cost of failure from using machines teesol
the puzzles may be very small. In practice, if arants to block automated scripts, a challenge atiwh
humans are about 90% successful and machines aseid@éssful, may not be sufficient, especially when

82
[Type the document title]

the cost of failure and repetition is low for thachine. At the same time, the identical challengstmot
put too much burden on the human in order to ad@douraging the use of the service.

Data flow diagram
Data flow diagrams with Concept Draw PRO

Data flow diagrams (DFD) are the part of the SSADMthod (Structured Systems Analysis and Design
Methodology), intended for analysis and informatgystems projection. Data flow diagrams are intdnde
for graphical representation of data flows in théimation system and for analysis of data proogssi
during the structural projection. By means of daiev diagrams it is possible to show visually theriw of

the information system and results of this workteDidow diagram visualizes processes, data depaesto
and external entities in information systems artd flaws connecting these elements.

Data flow diagrams consist of following components:

« Processes and functions which represent actiorgehag in information system,;

- External entities which represent in the systema dejoing and outgoing from it;

- Data depositories which represent places in systeere data can be saved for definite period of
time;

- Data flows, indicating direction and character afadflowing in the considered information system.

Diagram element Graphical presentation
Process —
| Process '|
J
Y, /
e

External Entity
External
Entity
Data Store
Database

Data Flow TLITET

83
[Type the document title]

This variant of presentation of data flow diagrabfeats got the name of Yourdon ? de Marco notation.

Database ———» Process J|—aur Enity

r
e

T o

Objects of data flow diagrams are interpreted enftllowing way:

« Processes transform input data flows into outpta taws;
- Data depositories serve only for keeping of ingadatp and do not change them,;
- Data flows changes in external entities do not ictered.

Every diagram object should have a name. Each fitatais denoted with indication of transferred data
and with the possibility of indication of the forinaf these data. Data flow diagram should not ingol
more than 10 objects, excluding arrows, represgrdata flows. In case of more complicated systeen th
totality of several objects (as a rule, procesgeaghited and represented on the diagram in the fifrone
object. This complicated compound object is presnb the form of a separate flows diagram. Each
component has a number, at this, diagrams illusgatompound objects are numerated starting froen th
number of an object which they describe. For exanspmponents of the diagram of the descriptionnof a
object with number 5 will be numerated 5.1, 5.2 etc

For clearness there is a possibility to duplicatéations of used data depositories and externatiesnt
Processes can?t be duplicated. For example if lomesame data depository is used in several differen
processes it is better to duplicate it on the @agbut not to create several intricate data flonevas from
one object to several processes. This concernsnektentities as well. Duplicates of data depos®are
marked with the double line from the left side,ezrtl entities duplicates - with the asterisk.

Data flows on the diagram can ramify and merge thgtlies branching or confluence of data in the
information system.

- Qrders 7 b
5 ;.
' i [Materialz |
Supplier Matetialz 5 I. St |\
< F aym ents \ 2N
\\,_ i _,-*'/
Y Cutput
i —— \ Plan
Selected " Cutput
Orders \"'-. Flan
Orders f Orders | Cistput
| Processing J FPlans
__.I'
y :
Y . o]
Cuztom et -yl | Cutput
Orders | Plan
Productive ¥
capadty 7 R
P roduction <l plan / Plm e !
Customer Planz e | ; \
,P"' — capadty |
V' planming £
. S "-_‘ /z'
/ ™ Productive ™ il
Pay Billz | ik T (Qi-dleted capacit T
i Product . FAY
\ plan
L 1 Ordered T~ —
- ¥
N :_/- Product { L \
\\\.")) |7
| Sales & 4"‘. P roduction r
'_\\ ¢ "-.\ . //

84
[Type the document title]

I aterialz

Thus the information system is represented by angain the form of the high level DFD in which ebis
are worked out in details by diagrams of the lolggel with the preset level of detailed elaboratidhere

is also another way of looking at which all eveimgshe system are described at once and each event
represented in the form of process transforming @latvs, further these subruns are grouped forrggtt
diagrams of the higher level.

Pseudo — code

This section should describe, in an easily readabte modular form, how the software system willvsol

the given problem.

The term “pseudo code” is not intended to refea forecise form of expression. Rather it referssiog
standard English terms in a restricted manner seridge the algorithmic process involved. Good pseud
code must use a restricted subset of English,dh auwvay that it resembles a good high level prognang
language. Pseudo code must be formatted similarlgctual code. The pseudo code description of the
problem should state the problem solution so cletlvht it can easily be translated to the programgmi
language to be used. Thus, it must include flowanftrol. The pseudo code for the system driver lshou

85
[Type the document title]

appear first. The pseudo code for subroutinesspséem component should be grouped together, tvith t
component identified.

Graphic user interface (GUI)

In computer sciencandhuman-computer interactiptheuser interface (of a computer program) refers to

the graphical, textual and auditory information fitegram presents to the user, and the controleses

(such as keystrokes with tlemputer keyboardnovements of theomputer mouseand selections with
thetouchscreenthe user employs to control the program.

Currently (as of 2008the following types of user interface are the themsnmon:

« Graphical user_interfaces accept input via devices such as computer keybaaddmouse and
provide articulated graphical output on the comput®nitor. There are at least two different
principles widely used in GUI desigi®bject-oriented user interfac€®0UIs) andapplication
oriented interfaces.

+ Web-based user interfacesor web user interfaces(WUI) accept input and provide output by
generatingveb pagesvhich are transmitted via tHaternetand viewed by the user usingaeb
browserprogram. Newer implementations utilidava AJAX, Adobe Flex Microsoft .NET, or
similar technologies to provide realtime control anseparate program, eliminating the need to
refresh a traditional HTML based web browser.

Interactive processing

Definition: Interactive processing is the performance of taska computer system that involves continual
exchange of information between the computer anmskg the opposite of batch processing.

86
[Type the document title]

WEEK 14

SPECIFIC LEARNING OUTCOMES

To understand:

* The concept of OO programming.

* the features of OO programming.

* the concept of properties, events, objects and classes.

87
[Type the document title]

Object oriented (00) program

Object-oriented languages are outgrowths of funefidanguages. In object-oriented languages, tle co
used to write the program and the data processetieoprogram are grouped together into units called
objects. Objects are further grouped into classbgh define the attributes objects must have.

A simple example of a class is the class Book. @bjwithin this class might be Novel and Short gtor
Objects also have certain functions associated thén, called methods. The computer accesses antobj
through the use of one of the object’'s methods. mbthod performs some action to the data in theabbj
and returns this value to the computer. Classesbpcts can also be further grouped into hierasshie
which objects of one class can inherit methods filamother class. The structure provided in object-

oriented languages makes them very useful for coateld programming tasks.

Features of OOP

Object-oriented programming (OOP) languages, ssc@+a+ and Java, are based on traditional high-level
languages, but they enable a programmer to thiikrms of collections of cooperating objects indte&

lists of commands. Objects, such as a circle, h@eperties such as the radius of the circle and the
command that draws it on the computer screen. €asisobjects can inherit features from other elass
objects. For example, a class defining squaresntaarit features such as right angles from a alafsing
rectangles. This set of programming classes siraplthe programmer’s task, resulting in more “réilesa
computer code. Reusable code allows a programmesdacode that has already been designed, written,

and tested. This makes the programmer’s task easidiit results in more reliable and efficientgnams.

Object-oriented programming began with Simula, @pmming language developed from 1962 to 1967.
Simula introduced definitive features of OOP, imthg objects and inheritance. Graphical user iataf
(GUI) is a feature that allows the user to selechimands using a mouse. GUIs became a central éeaftur

operating systems such as Macintosh OS and Windows.
Objects oriented programming languages

The most popular OOP language is C++, VB, JAVA, BAg, COBOL, Java, an OOP language that can

run on most types of computers regardless of platfdn some ways Java represents a simplified eersi

88
[Type the document title]

of C++ but adds other features and capabilitiesvall, and it is particularly well suited for writn

interactive applications to be used on the Worldi&Wiveb.

Java

Java is an object-oriented programming language fcilitates the distribution of both data andam
applications programs, called applets, over therhgt. Java applications do not interact directithva
computer’s central processing unit (CPU) or opetasystem and are therefore platform independent,
meaning that they can run on any type of persooalptiter, workstation, or mainframe computer. This
cross-platform capability, referred to as “writecenrun everywhere,” has caught the attention afiyma
software developers and users. With Java, softwakelopers can write applications that will run on
otherwise incompatible operating systems such asdéws, the Macintosh operating system, OS/2, or
UNIX.

To use a Java applet on the World Wide Web (WWW)e-dfistem of software and protocols that allows
multimedia documents to be viewed on the Internetise&r must have a Java-compatible browser, such as
Navigator from Netscape Communications Corporatioternet Explorer from Microsoft Corporation, or
HotJava from Sun Microsystems. A browser is a saféwvprogram that allows the user to view text,
photographs, graphics, illustrations, and animatiamn the WWW. Java applets achieve platform
independence through the use ofidual machine, a special program within the browser software that
interprets the bytecode—the code that the appletrigen in—for the computer's CPU. The virtual
machine is able to translate the platform-indepehbtgtecode into the platform-dependent machinescod

that a specific computer’'s CPU understands.

Applications written in Java are usually embeddeWieb pages, or documents, and can be run by rgjcki
on them with a mouse. When an applet is run froivied page, a copy of the application program is &ent
the user's computer over the Internet and storetthencomputer's main memory. The advantage of this
method is that once an applet has been downloddeah be interacted with in real time by the uJdns

is in contrast to other programming languages usearite Web documents and interactive programs, in

which the document or program is run from the seceenputer.

89
[Type the document title]

WEEK 15
Visual Basic

Step in Developing Applications

The visual Basic development environment makes building an application a straight forward proces:

There are three primary steps involved in building a visual Basic application.

(2)
3)
(4)

Note:

(2)

3)

(4)

Draw the user interface by placing controls on the form.
Assign properties to controls.

Attach code to control events (and perhaps write other procedures)

These same steps are followed whether you are building a very simple application or on
involving many controls and many lines of code.

The event — driven nature of visual Basic allows you to build your application in stages and tes
it at each stage. You can build one procedure, or part of a procedure, at a time and try it until
works as descried. This minimizes errors and gives you, the programmer, confidence as yol

application takes shape.

As you progress in your programming skills, always remember to take above sequentia
approach to building a visual Basic application Build a little, test a little, modify a little and test

again. You will quickly have a completed application.

Microsoft VB is the fastest and easiest way to create applications for Microsoft windows.
The visual part refers to the method used to create the graphical user interface (GUI).
The Basic part refers to the BASIC Beginners All — Purpose symbolic construction code

Language.

With VB an individual can build simple applications in minutes. VB enables you to write object

oriented programmes or simple programs.

90
[Type the document title]
VB editions:- Learning editions
Professional Edition

Enterprises edition

How windows work
Windows is an GUI operating system. With GUI itiBasecognized graphic icons be selected using the
mouse and commands chosen from menus, This is gasiér for the user than typing in the specifiedin
of code that were required by MS-Dos in order tdgyen basic operations.
In GUI operating system, more than one applicatimm be open at the same time. Processor timefisdsha

between computing tasks and this called multitagkin

The Visual Basic environment
The Visual Basic environment is made up of severatiows. The initial appearance of the windows on

your screen will depend on the way your environniest been set up.

i
o i e fuer fyes fin o I fem WIS S " Tolar
B e b0 " : el femims |
] e et af
,ﬁ i |
L1 ‘.J 2% P B Pt 1
Al = oo il
il “‘““———______F‘ru:uject Explarer
i Anciowy
E3T 3
[T
G—-‘ Frririiy b | 31
2| i e [re—]|
E! : ; 2| Propetties
= . : Lt Wincloy
\ Farm Designet vWindow nl ;
n\ Er— B
/ L :
Tookg SR
o | Form Layout
ﬁ T windo

The tool bar The Visual Basic tool bar functiorieelithe tool bar in any other Microsoft applicatidi.
provides shortcuts for many of the common operatiognmands. It also shows you the dimensions and

location of the form currently being designed.

91
[Type the document title]

Project | - Microsoft Views! Basic [design] =10 2
Pl L s Bopt Poetss (efosg o Oneey [Repan Seom Bddire Wewles Hels
(=i =TS H B R R REE i [T 400 5 s

The tool box The tool box gives you access to therols that you use on a form.

et A control is an object such as a button, labelrat.g
; E Controls are used on forms to display output oriryait.
o = Each control appears as a button in the tool bothdfcontrol you are looking for is not
_Fﬂ rd the toolbox, select Components from the Projectunen
v If the tool box is not displayed on your screenjfat any time during the exercises !
1 _‘ close it, choose Toolbox from the View menu.
6~
Gl &
s |
The form designer window

This window is where you design the forms that maxe/our user interface.

=imil
(@ raems Y

If the form designer window is not displayed on ysareen, or if at any time during the exercises yo

close it, choose Object from the View menu.

The properties window :
A form, and each control on it, has a set of progemhich control its characteristics such as,gpsition
and color.

92
[Type the document title]

The properties window lists all the properties atoal has and their value. The default value of@pprty
can be changed by setting the property value usiveg properties window when you design your
application or changed by assigning a new valumde while your application is running. If the peoies
window is not displayed on your screen, or if ay dime during the exercises you close it, choose

Properties Window from the View menu.

The project explorer window
A project is a collection of the forms and codet timake up an application. Each form in your appicca
is represented by a file in the project exploremdaiw.

Projecl - Project] E]

TES || En

- -(j Projecl] (Project i}
3 Far

A form file contains both the description of theesn layout for the form and the program code astat
with it. If the project explorer window is not digged on your screen, or if at any time duringekercises

you close it, choose Project Explorer from the Vieenu.

The form layout window
Move the form in the screen in this window to det position of your form when your application is

running.

ey «| You may wish to close the form layout windao allow more space for t

properties window. To open the window again, seferim Layout Window fror

the View menu.

93
[Type the document title]

Starting Visual Basic
+ From theWindows Start menu, choosd’rograms, Microsoft Visual Studio 6.0 and then

Microsoft Visual Basic 6.0.
« Visual Basic 6.0 will display the following dialdgpx as shown in this figure

: H%bﬂmﬁﬁgtgﬂ

F 5] 1yl |_ :|:..'I_||_||

For

Stopping Visual Basic

« From theFile menu, choos&xit and then Microsoft Visual Basic 6.0. ask you teesahanges in

your project.
Getting online help

If you've used online help before, you may not khyjou need to read this section. Although you migit
able to figure out Visual Basic's online help yalirsthe help is fairly advanced and varies fromstrather

94
[Type the document title]

online help you may be used to. This topic sectiescribes some of the help tools available fronmiwit

Visual Basic.

The content-sensitive nature of Visual Basic's tsigtem extends to almost every menu option, screen
element, control, window, and language command. Wjlwa1 want help and aren't sure exactly where to
turn first, press F1 and let Visual Basic give trya For example, if you think you need to use Bieture

Box control but want to read a description firstnb@ke sure that you have the right control, click t
Toolbox's Picture Box control and then press Fsudl Basic sees that you've clicked the Picture &uk

returns with the help screen shown in this figure

E? MSDM Library Visual Studio 6.0
File Edit Wwiew Go Help

<= S < | fat
S oy Locate Eack Farward Stop Fefreszh Home Frint

PictureBox Control

See Also Froperties MMethods Ewvents
A PictureBox control can display a graphic from a bitmap, icon, or metafile, as well

as enhanced metafile, JPEG, or GIF files. It clips the graphic if the control isn't large
enough to display the entire image.

Swyntax
PictureBox
Remarks

You can also use a PictureBox control to group OptionButton controls and to
display output from graphics methods and te=xt written with the Print methaod.

To make a PictureBox control automatically resize to display an entire graphic, set
its AutoSize property to True.

To create animation or simulation, you can manipulate graphics properties and
methods in code. Graphics properties and events are useful for run—-time print -

Click any screen element and press F1 for help

Throughout the help screens, Microsoft has scatteuenerous links to related topics. When you choly
underlined word or phrase inside a help window,uslisBasic responds with a pop-up definition or an
additional help screen. Often, so may related ®pfpear throughout the help system that when lcki ¢
a link, Visual Basic displays a scrolling TopicsuiRd list, from which you can choose the descripthuat

most closely matches the topic you need.

95
[Type the document title]

E? MSDN Library Visual Studio 6.0

File Edit Wew Go Help
P L e 2 O o &
Shaw Locate Frevioos el Back Forward Stop Refresh Home Prirt
M
Pic Topics Found g]
Seo | Click atopic. then click Display.
Title I Location A
A Picd |[EEEEEEE Yizual Basic Reterence ! b weell
as arl | Cls Method "-.-"!sualEas!u: Reference £ 't large
SR Drag kethod Yizual Bazic Reference
Lire Method Wisual Basic Reference
LinkExecute Method Wisual Basic Reference
Syntd | LinkPoke Method izual Basic Beference
LinkRequest Method Yizual Basic Reference w
Picty € |
Remi Diizplay | Cancel
You can also use a PictureBox contral to group OptionButton contrals and o
display output from graphics methods and text written with the Print method.
To make a PictureBox control automatically resize to display an entire graphic, set
its AutoSize property to True,
To create animation or simulation, vou can manipulate graphics properties and
methods in code. Graphics properties and events are useful for run-time print -

Help links often provide several alternatives.

When you click an Example hypertext link, Visualsi&adisplays a window similar to the one shown in
Figure. Although the help might look ambiguous lais tpoint, you'll grow to appreciate the helpful
suggestion when you begin learn the Visual Basiguage. The Example help link shows you real Visual
Basic language code that uses the item you've seeplidnelp for. As a programmer, you'll therefore se
how to implement the item inside your own VisualsBacode by looking at the sample Visual Basic

provides.

96
[Type the document title]

E? MSDN Library Visual Studio 6.0 M(=1E3
File Edit Yew Go Help

e =2 @ [M &

Shiow Back Fomward Stop Refresh Home Frirt

BackColor, ForeColor Properties Example

This example resets foreground and background colors randomly twice each
second for a form and PictureBox control, To try this example, paste the

Visual Basic shows you sample code that uses thygepty or control.
The Help Menu

When you choose the first topic on thelpilmenuNcrosoft Visual Basic Topics, Visual Basic displays
help dialog box . This dialog box contains the Wis\adows-like help tools. You can open and cldse t
book icons on the Contents page to read abouteiffé/isual Basic topics. You can search for aipalr
topic in the index by clicking the Index tab. Ta#ébe every occurrence of a particular help refexemord

or phrase, you can click the Find tab to build anpoehensive help database that returns multiple
occurrences of topics.

Project - Microsoft Yisual Basic [design]

File Edit Miew Project Format Debug Bun Query Diagram Tools Add-Ins Window | Help

Index...
2
Y Search...

Eﬁ’ Technical Support
Microsoft on the Web k

About Microsoft Visual Basic. ..

B=)E3

Example :

Get an instant definition for help links with a tkat underline.

97
[Type the document title]

Pop-up definition, Hyperlinks

Close the help window by clicking the window's &dzutton.

E? MSDN Library Visual Studio 6.0

Fil= Edit Wiew Go Help

= > O o &
Show Locate Back Forward Stop Refresh Home Print

Shape Control

See Also Froperties Methods

The Shape control is a graphical control displayed as a rectangle, square,
oval, circle, rounded rectangle, or rounded square.

Syntax
Shape

Remarks

Opening Application
To open a project, you can do one of two things:

+ Click File menu , Open project...

. Click the tool & and specify the project you wanbpen.

Then select Hello project and press Open.

98
[Type the document title]

Open Project

E =izting] Hecent]
Look ir: | = Lab ~| += cF EE-
Filez of wpe: |F'roiect Files [*.vbp:".mak. ”.«bal - Cancel
Help

The project window will display the file “Hellorn” from your project.

Project - Projectl

E B &

- g Project1 {Hello.vbp)
=23 Forms
B ol (Hello, Frm)

Creating Simple application (Wizard)

You start the application wizard from the New Pcbjdialog box or by choosing New Project from thie F
menu. Click the VB Application Wizard icon to statte wizard. This Figure shows the application

wizard's opening screen.

99
[Type the document title]

2 Application Wizard - Introduction

The application “Wizard will help wou creake a newvs Yisual Basic

Application.

You can press Back at anw time to change wour selections.

Flzase click Mext ta begin.

From wahak profile do wou wankt ko load wour sekkings?

|(N0ne) - so0
Help Zancel P ResE =TT i

Example

Assuming that you started the application wizardhi& previous section, follow these steps to byddr

first application:

1- Click the Next button to display the Interface Tygialog box. The wizard can generate one of

three types of user interfaces for the applicayionre generating:

— MDI (Multiple Document Interface) lets you create ppogram window that contains
embedded windows called child windows.

— SDI (Single Document Interface) lets you createagmm with one or more windows that
exist at the same level (not windows within winddws

— Explorer Style lets you create programs that sona¢wiake on the Books Online
appearance, with a summary of topics or windows left pane and the matching program

details in the right pane.

2- The MDI option should already be selected. If wbitk the MDI option.

& Application Wizard - Interface Type E]

wehak twpe of inkerface would wou like For wour application?

Hink! f+ Multiple Document Interface (MDI)
Consisks of a main windows

which visually contains child ™ single Docurnent Interface (SDI)
windows,

" Explorer Stvle

we'hat name do wou wank For the application?

Projeck1

Help cancel | [[IIZEatk ek > | Einish |

[Type the document title]

100

3- Click Next to display the menu selection dialog b¥ru can select certain menu options that will

appear on your application's menu bar. By usingdihg box's options, you can help ensure that

your application retains the standard Windows papgilook and feel. (You can add your own

menu options after the wizard generates the prdgramtial shell.) For now, leave these options

selected: File, Edit, Window, and Hbel

& Application Wizard - Customize Toolbar

Customize the toolbar by mowing the desired buttons to Ehe lisk on the right, Change the order
with the upfdown arrows and add exkternal images with the image butkon. ¥You may also
dragfdrop From list ko lisk,

D & & (@@l =|sr|o| ===

3 rew

[Separator] -~ A -~
YT = Open
4 Back j m Sawve
— Bukkon ﬂ [Separator] 3
E} Carmera EFPrint
> Delete J [Separator]
FuyiDisconneck Met Drive J 3 ocue
Diouble Underline ot Copy ~
< | E | B | > Reset |

Help Cancel | = Back TTTRERE S Einish |

& Application Wizard - Menus

Select the Menus and Sub Menus vou wveould like in wour
application?

You can always use the Menu Editkor Eo modify the nenus after
Ehe application is created.

Sub Menus

w| SEEdik E w| EapeEn. .. ﬂ
| Bl > v B lose >
ETools w| [Separator] =
L=k g Ta EaTRY) | BSane
*|

w| EHelp w| Save SOs. .,
-+ W Save agdl

w'| [Separator] ol Resek |

Help Cancel | = Back ek =3 Einish |

[Type the document title]

101

4- Click Next to display the wizard's Resources diddog. A resource might be a menu, a text string,

a control, a mouse cursor, or just about any itesh appears in a program.

B Application Wizard - Resources

FResource Files make ik easy to distribute wour produck in
rmultiple languages and can increase performance.

The resource File will be stored in memory by the Resource
Editor add-In until Ehe project has been sawved. Once sawved,
Ehe .res File will appear in Ehe project lisk under the Related
Documenkts category.

iould wou like o use a3 Resource File For the strings in wour
applicaktion?

7 Yes &= Mo

Help —ancel = Back.

Eini=h

5- Click Next, you'll bypass the Internet connectivitialog box because you don't need to add such

connectivity to your first application shell.

& Application Wizard - Internet Connectivity

FMoke: These Features require
that wour users already hawve
an Internst provider!

The wizard can prowide wou with a cuskom web Browser and
can add a jump ko wour home page!

Do wou wank wour users ko be able ko access the Internet Fram
wour application?

T wes = Mo

Help

Zancel | = Back MexkE = Eini=h

6- Determines which forms appear in your application:

[Type the document title]

102

« A splash form is an opening title form that youersssee when they first run your application.

« Alogin form requests the user's ID and passwaor@dase you want to add security features to

your application.

+ The options dialog box gives users the ability wdify certain application traits.

« The About box is accessed from most Windows Helmuseand provides your program

description and version.

2 Application Wizard - Standard Forms g]

Wiould vou like ko include any of these standard Forms in your
application?

[splash screen at application start up

[Login dialog to accept an ID and Password
[options dialog For custom sekkings

[about Box

To include any cuskom Form templates, click here.

Form Templates. ..

Help

Zancel = Back Finish

103
[Type the document title]

8. Check the About Box but leave the other optionshenked.
9. Click the Next button twice to display the finalpdipation wizard dialog box. (You'll bypass the

database access dialog box because you won'trlevireg database data in this first application.)

2 Application Wizard - Data Access Forms

Would vwou like ko generate Forms based upon tables and
queries From wour dakabase(=)?

Craka Forms:

Create Mew Form... |

Einish |

Help Cancel = Back

10.Click the Finish button. The wizard generates tppliaation before your eyes. You'll see the
wizard generating forms and titles; without the avd, you would have to perform these steps

yourself. When finished, the application wizardpiiay's a dialog box to tell you that the application

is completed.

B Application Wizard - Finished!
The application YWizard is Finished collecting information.
Press Finish ko build wour application.

To whak profile do wou wank ko save wour sektings?

To see a summary repork, click Wiew Repork.

Wiews Repork

Help Zancel = Back | Finish I

104
[Type the document title]

11.Click OK to close the final application wizard digl box. A summary report appears, to describe

the generated program.

Application Created

L The Application has been created.,

[Don't show this dialog in the Fukure,

Running your application

Now that the form is complete you can see it ioacby running it.

When you have written code for the buttons, runrhmgy application will allow you to activate the eod

For now your buttons will not do anything.

Stop Button

. Project] - Microsolt Visueal Basic [design]

=lml

fla (2 e frowrt Fpmat [soog B Query Disgem Joss gkl Sindos Heo

I;"_'!'lﬁ Sl = e 'H“ﬁ‘!&'ﬂ‘q,h B atineme . 3 ese.

Start Button

Your form will appear like a window from any othdicrosoft application.

Creating Executable File
- Click File, Then Make Projectl.exe...

Eile Edit i
Flewvs Projeck
= open Project. ..

add Project. ..
Eemowve Project

=l Save Projsc £

Sawve Projeck As. ..

=]

= ok EE-

I Setup Ao zrae
IC=y Templake ey vEs

I Tsal EvIsoaTa
ICywwizards

A<=

Al ocwvPack

Fil= hame=:

Ok I
Cancel
Help
Options.__

Saving your application

The last step in this chapter is to save your appbn so that you can use it for the exercise= liat the

book.

wy. Project] - Microsolt Vissl Rasic [design] =

Ble Bl e Fpalsit P [ty fur Giees Dagee lows A030-Is Bedes el

“P_‘l".‘l'-‘lﬂﬂ Bl LR TSR et ol s 110l 0

|
Save Button

[Type the document title]

105

Visual Basic first asks you to save the form anehtlthe project file. Remember that each represents

separate file.

[Type the document title]

Always take care to ensure that you save all ee that make up a project.

List of Computer Programming Languages
ADA Augusta ADA Byron (Lad197¢Derived from Pascal, used primarily by the military

Lovelace)

ALGOL ALGOrithmic Language 196CFirst structured procedural programming languagsed

mainly for solving math problems.

APL A Programming Language 1961interpreted language using a large set of spegmbsls an

terse syntax. Used primarily by mathematicians.

BASIC Beginners AllPurposi196:Very popular highevel programming language, freque
Symbolic Instruction Code used by beginning programmers.

C Predecessor was B197zCompiled,structured, programming language commonly
Laboratory's 1972 in many workplaces because its programs are easgrisfe
Programming Language between different types of computers.

C++ Advanced version of C. 198EC++ is used in numerous fields, such as accouuaiay

Developed at ATT Bell Labs finance systems, and computer-aided design. Sugppbject
oriented programming.

COmmon Business-Orientei195SEnglish-like programming language, emphasizes data
COBOL Language structures. Widely used, especially in businesses.

FORTH FOURTH-Generation 197CInterpreted, structured language, easily extendeulides
language (4 GL) high functionality in limited space.

106

[Type the document title]

Fortran FORmula TRANSslation 1954Initially designed for scientific and engineeringes, a high-
level, compiled languageow used in many fields. Introdug
several concepts such as variables, conditionareents,
and separately compiled subroutines.

HTML HyperText Markup Languag198<Designed for publishing hypertext on the Internet.
JAVA Sun Microsystems develope199COriginally developed for use in set-top boxes, sraoned to

drank a lot of coffee when the World Wide Web in 1994,
coding for this.
LISP LISt Processing 196CA list-oriented programming language, mainly used t

manipulate lists of data. Interpreted languagesrottsed in
research, generally considered the 'standard’ yegtor
Artificial Intelligence (Al) projects.

LOGO Derived from Greekogos, = 196&Programming language often used with children. kfeata

meaning word simple drawing environment and several higleeel feature
from LISP. Primarily educational.
Modula-MODULAr Language, 198CLanguage that emphasizes modular programming. e
2 designed as secondary pha: language based on Pascal, characterized by lastiarndard
of Pascal (Niklaus Wirth functions and procedures.
devised both)
Pascal Blaise PASCAL, 1971Compiled, structured language, based on ALGOL. Athda
mathematician and inventor types and structures while simplifying syntax. LBe
first computing device language, it is a standard development language for

microcomputers.
PERL Practical Extraction and 198¢€lt is a text-processing language that looks likmnbination

Report Language of C and several Unix text processing utilities.
PILOT Programmed Inquiry, 196S€Programming language used primarily to create apgtins
Language Or Teaching for computer-aided instruction. Contains veryditslyntax.

PL/1 Programming Language On1964Designed to combine the key features of FortranBOO,
and ALGOL, a complex programming language. Compilg
structured language capable of error handling and
multitasking, used in some academic and research
environments.

SGML Standard Generalized Marki198€Designed as a metalanguage, it is used as anaiitaral
Language standard for the description of marked-up electroext.

SQL Structured Query Language 198€Designed to be used for creating complex datalases
accessing data in a relational database.

VB Visual Basic 199CSometimes called the Rapid Applications Development
system, is used to build applications quickly.

XML Extensible Markup Languag1977Used for creating arbitrarily-structured documeand Web

d

pages; it is commonly associated with the Internet.

107

	Cover
	Table of Contents
	WEEK 1
	WEEK 2
	WEEK 3
	WEEK 4
	WEEK 5
	WEEK 6
	WEEK 7
	WEEK 8
	WEEK 9
	WEEK 10
	WEEK 11
	WEEK 12
	WEEK 13
	WEEK 14
	 WEEK 15
	Returt to Table

