)

UNESCO-NIGERIA TECHNICAL &
VOCATIONAL EDUCATION
REVITALISATION PROJECT-PHASE I

—
——
—r—
=
=
(——]

DATA STRUCTURESAND
ALGORITHMS

YEAR |- SEMESTER 2

THEORY

Table of Contents

L AT =T = St PRSP 7
=T I I T | - R N/ o 1= U 7
PrMItIVE DAtA TYPES ..uuiiieeieeeeeiieeeee s ettt eeeetttbtata s s s e e e e e e e e e e e aeeeeeeaneeeeeeeessnnnnns 7
D.) Rl e ————— 8
(o3 T (o g o LT 8
o) T T o S 8
L D= L= W1 = o PP 8
() T I8 =1 (o 8
(o) O g = T = Tox (= PP 9
T AV 11U - Vg o = U 9

WK 2-3 ..ot a e e e e e e e e e e e e eeaaaan 10
Examining the Different Classes of EAQEScoevvvvvvviviiiiiiiiiie e, 10
Directed and Undirected EAQEScooiiiiiiiiiei i 11

Weighted and Unweighted EAQEScooi e e ee e 11
WEBEBK 4 .t e e e et e e e e e e e e e e e e e e e eaaar s 14
P22y T (o {0 14
[=T0Tod [0 RSN (o [11 0] o o LS 15

WWEEK 5 ettt et e e ettt et e e e e e e eeas 16
-Finding Concatenation Of StrNGSucceeiiii e 16
-finding Length Of @ SIHNGcooviiiiii e e e e e 16
(Lo [T aTo I o EST=T 1o o T 16
e {110 [T I =1 1= 1 o] o 16
Deletion AlGOITNM: et 17
[R4=T o] F=Tot=T o g T=T o 2N [T | o o o M RRRRR 17

LAY L=< S TR 18
Addition of a new item to the liSt........ccccuviiiiiiiiii 18

LAY LS = S TR 19
Deletion of an item from alist........ooooiiiiiiiiiiii e 19

WEEBK 8-0 it a e e e eaaanan 20
B Fo TS oo = o] o T = S 20

WEEBK L0-02 .o e e e e et e e e e e e e n bbb s 23
Sort Algorithm with some features of linked liStS..........cccceeeiiiiiiiiieees 23

L AT St PP PPUPUPPRRTIN 29
SEIBCHION SO ...t eeeas 29

WK LA oot e e e e e e e e e e e e e e e eaaaeae 32
INSEITION SOMT...uttiiiiiiiiiiiiiei i e e e e e s ettt ettt e e e e e e e e e e e e e e e brrr e e e e e e e e e e e e e e e e e annns 32

WK D oot e e e e e e e e e e aeaaaaae 35
RANK SO ...t e e e e e e e e e e e e e e s s s s s nnnnne e e e e e e aeas 35

WEEK 1

This week specific learning outcome is thfa@ students should be able to use
data attribute fields, sub fields, records dihkel By this reason, the following
activities are carried out to realize thisjeative:

To explain the following terms and usingek&nt examples:
a.) Data Type.

Data type of a variable is the set of values tihatvariable may assume.
- Basic data types in Gnt char float double
- Basic data types in Pasdateger real char boolean

Primitive Data Types

A new, primitive type is definable by enumeratihg tistinct values belonging to it.
Such a type is called anumeration typdts definition has the form

TYPET =(cl, c2,...,cn)

T is the new type identifier, and the ci are they menstant identifiers.

Examples

TYPE shape = (rectangle, square, ellipse, circle)

TYPE color = (red, yellow, green)

TYPE sex = (male, female)

TYPE weekday = (Monday, Tuesday, Wednesday, Thyrdeiaday,

Saturday, Sunday)

TYPE currency = (franc, mark, pound, dollar, shijj lira, guilder,

krone, ruble, cruzeiro, yen)

TYPE destination = (hell, purgatory, heaven)

TYPE vehicle = (train, bus, automobile, boat, aind)

TYPE rank = (private, corporal, sergeant, lieuteéneaptain, major, colonel, general)
TYPE object = (constant, type, variable, proceduareglule)

TYPE structure = (array, record, set, sequence)

TYPE condition = (manual, unloaded, parity, skew)

The definition of such types introduces not onlyeav type identifier, but at the same
time the set ofidentifiers denoting the valueshaf hew type. These identifiers may then
be used as constants throughout

the program, and they enhance its understandabditgiderably. If, as an example, we
introduce variables

s, d, r,and b.

VAR s: sex

VAR d: weekday

VAR r: rank

then the following assignment statements are plessib

s := male

d := Sunday
r := major

b := TRUE

Evidently, they are considerably more informatilvart their counterparts
s:=1d:=7r:=6b:=2which are based onassumption that c, d, r, and b are defined
as integers and that the constants are mappedtant@tural numbers in the order of
their enumeration.

b.) File
Afileis a collection of logically related records sthan electric devices; e.g

students file, stock file, employee &ie.

ATTRIBUTES NAME AGE SEX MATRIC NO
VALUES Paul 21 Male 800654
c.) Record:

A record is a collection of logically related data fields;g Data relating to students in
students file. In a database table records ardlysanaows. Therefore, the table below
has three (3) records.

d.) Field:

A field is consecutive storage position of values. Itusi& of data within a record e. g
student’s number, Name, Age. In a database cofiiedgid are usually in columns of a
given table.

e.) Data item

Data items for example , date are called grtems if they can be divided into
subsystems.

f.)sub field

The date for instance is represented bydag the month andumber is called an
elementary item, because it can not be subletl into sud-items otherwise known
assub fieldscalled . Itis indeed treated as a sinthen.

g.) Character

is the smallest unit of information. It indes letters, digits and special symbols
such as + (Plus sign), _(minus sign), \, /, $,at A,B,...Z etc. Every character
requires onebyte of memory unit for storage in computer syste

h.)Value range:

All possible values that could be assigneda given atttibute of an entity set
is called the range of values of the laitie.

WEEK 2

This week specific learning outcome is thla@ students should be able to use
symbols, relations and graphs. By this reasbr, following activities are carried out
to realize this objective:

Examining the Different Classes of Edges

Graphs, in their simplest terms, are a collectibnaales and edges, but there are different
kinds of edges:

1. Directed versus undirected edges

2. Weighted versus unweighted edges

When talking about using graphs to model a problem,usually important to indicate
what class of graph you are working with.

Figure 1 shows three examples of graphs. Notidegifagphs, unlike trees, can have sets
of nodes that are disconnected from other sete@dés For example, graph (a) has two
distinct, unconnected set of nodes. Graphs cancalsi@in cycles. Graph (b) has several
cycles. One such is the path fromte v to v4 and back to ¥ Another one is fromao

V2 10 5 10 V5 to vy and back to v (There are also cycles in graph (a).) Graph ¢esdot
have any cycles, as one less edge than it doesarwhhodes, and all nodes are
reachable. Therefore, it is a tree.

ON/ O
28

(a) (b) (c)

Figure 1. Three examples of graphs

10

Directed and Undirected Edges

The edges of a graph provide the connections beteree node and another. By default,
an edge is assumed to be bidirectional. That theife exists an edge between nodes
andu, it is assumed that one can travel freto u and fromu to v. Graphs with
bidirectional edges are said todredirected graphsbecause there is no implicit direction
in their edges.

For some problems, though, an edge might infereavealy connection from one node to
another. For example, when modeling the Internet @=ph, a hyperlink from Web page
v linking to Web page would imply that the edge betweeo u would be

unidirectional. That is, that one could navigatariiv to u, but not fromu tov. Graphs

that use unidirectional edges are said tdibected graphs

When drawing a graph, bidirectional edges are drasva straight line, as shown in
Figure 1. Unidirectional edges are drawn as anngrsbowing the direction of the edge.
Figure 2 shows a directed graph where the noded/alepages for a particular Web site
and a directed edge fronto v indicates that there is a hyperlink from Web page

Web pagev. Notice that bothu links tov andv links tou, two arrows are used—one from
v to u and another from tov.

Privacy. him

About htm

Products.aspx Contact. aspx

Figure 2. Modédl of pages making up a website

Weighted and Unweighted Edges

11

Typically graphs are used to model a collectiottlihgs" and their relationship among
these "things.” For example, the graph in Figured?leled the pages in a Web site and
their hyperlinks. Sometimes, though, it is impotteEnassociate some cost with the
connection from one node to another.

A map can be easily modeled as a graph, with ties@as nodes and the roads
connecting the cities as edges. If we wanted terdene the shortest distance and route
from one city to another, we first need to assigost from traveling from one city to
another. The logical solution would be to give eadge aveight such as how many
miles it is from one city to another.

Figure 3 shows a graph that represents severeas daritisouthern California. The cost of
any particular path from one city to another isghen of the costs of the edges along the
path. The shortest path, then, would be the pat the least cost. In Figure 3, for
example, a trip from San Diego to Santa Barbad Gsmiles if driving through

Riverside, then to Barstow, and then back to SBathdara. The shortest trip, however, is
to drive 100 miles to Los Angeles, and then anoB@eup to Santa Barabara.

Santa Barbara

Barstow

Malibu

Palm Springs
75

Los Angeles

15

San Diego

Figure 3. Graph of California citieswith edges valued as miles

Realize that directionality and weightedness ofesdaye orthogonal. That is, a graph can
have one of four arrangements of edges:

« Directed, weighted edges

12

Directed, unweighted edges
Undirected, weighted edges

Undirected, unweighted edges

The graph's in Figure 1 had undirected, unweightiges. Figure 2 had directed,
unweighted edges, and Figure 3 used undirectedghesl edges.

13

WEEK 4

This week specific learning outcome is tlla¢ students should be able to write
simple programs to carry out set operati@ysthis reason, the following
activities a of a computer or other machine.

Once again, it is important to understand fbiowing data types :

Recall that primitive (Also called built in) eg &dgers, real, pointers,
booleary They are native or local to the language. Theuagg knows their
structure. They are part of the original design .
User-defined types: the language designer provalgties for

the user or programmer to defines his own datastyipés also called type
constructor. Eg arrays in Fortran is the type aowsor. Similarly, in Pascal we
have: Type small Array = array 1:10 of integer

ThisAarrayAis a type constructor and is used to generate aymcalled
small array.
As a result of the user-defined type above, wehzare:
VAR X: small array: Just as we can have
VAR I: integer (i.e | is of type integer)

Here, both integer and small array are data tikes< and | and are both
variables.

An array is type constructor which helps to camstarray types. The 2
popular types constructors are:

1) Arrays
2) Records
e.g Type Person = Record
name :string
age sinteger

occupation : sfrin
M/status (single/married)

Person here is a data type of record type and whaeze: VAR X,Y,Z :person.
Values can also be assigned to X as: x:=
PersonfJohr@10@tudentsfsingle).

Other type constructors are:

a) Enumeration

14

Sets d) Sequence e) Relatién
Problem: Find the greatest common divisor (GCD) of tweegdrs, m and n.

Euclid's Algorithm

while m is greater than zero:
If n is greater than m, swap m and n.
Subtract n from m.
nis the GCD
Program (in C):
int gcdint m, int n)
[* precondition: m>0 and n>0. Let g=gcd(m,n). */
{ while(m>0)
{ I* invariant: gcd(m,n)=g */
iftn>m)
{intt=m;m=n;n=t;}/*swap *
Fm>=n>0%
m-=n;
}

return n;

}

15

WEEK 5

This week specific learning outcome is thkla¢ students should be able to solve
problems requiring the application of stringngth, assignment, selection, insertion.

-Finding Concatenation of Strings

Let S1 and S2 be strings, the string congistinthe characters of S1 followed by
the characters of S2is called concatenaticdiloand S1.

This is donated by S1//S2. E.g. “STARLETSTTDEFEAT”//'"EA..GLET”

A string Y is called a substring of a stridgif there exist strings X and Z such
that S=X/IYIIZ.

-finding Length of a string

The general form is LENGTH(string) and thigll return the number of
character(s) ina giving string.

i.) LENGTH('student’)=7

ii.) LENGTH()=0

jii.) LENGTH(T)-(K+L-1)=LENGTH(T)-K-L+1

-finding Insertion

Suppose we want to insert a strings ina giegh T so that S starts in position K.
We denote this operation as INSERT(text, pwsistring). EQ.

INSERT('ABCDEFG’, 3,’XYZ")="ABXYZCDEFG’

-finding deletion
The general formis DELETE(text,position,lengtg)

i) DELETE(ABCDEFG’4,2)="ABCFG’
ii.) DELETE(ABCDEFG’,0,2)="ABCDEFG’
iii.) DELETE(T,K,L)=SUBSTRING(T,1,K-1)//SUBSTRING(T,K+L ENTGH(T)-K-

L+1)

iv.) DELETE(T,0,L)=T

16

v.) DELETE(T,INDEX(T,P),LENGTH(P))=DELETE(‘ABCDEFG’,INEX(‘ABCD
EFG','CD’) ,2)="ABEFG’

Deletion Algorithm

A text T and a pattern P are in computegmory. This algorithm deletes every
occurrence of PinT.
i.) Find index of P in T. Set K=INDEX(T,P)
ii.) Repeat while K not equal to O
a. [Delete P from T.]
Set T:= DELETE(T,INDEX(T,P),LENGTH(P))

b. [Update index]
Set K:= INDEX(T,P)
[End of loop]
iii.) Write: T.
iv.) Exit.

REPLACEMENT

Suppose ina given Twe want to repldee first occurrence of a patter P1 by a
pattern P2, we will denote this operation HFPRACE(test,patternl,pattern2)
REPLACE('XABYABZ,'AB’,'C")="XCYABZ’
REPLACE('XABYABZ,'BA’,'C")="XABYABZ’

This could also be done using the followialgorithm:

Replacement Algorithm

1. [Find index of P] Set K :=INDEX(T,P)
2. Repeat while K>0:
a.) [Replace P by Q] Set T:=REPLACE(T,P,Q)
b.) [Updarte] Set K:= INDEX(T,P)
[Eend loop]
3. Write: T
4. Exit.
Exercise
a.) T=XABYABZ
P=AB
Q=C
REPLACE(T,P,Q)

b.) If T=XAB
P=A
Q=AB
REPLACE(T,P,Q).

17

WEEK 6

This week specific learning outcome is tkfa¢ students should be able to add a
new itemto the list.

Addition of a new item to the list

The pseudocode for the algorithm to addew name to the list is as follows:
Here are the steps:
Begin procedure
Node [next free].name=new name
P=start
Follow pointers until node[p].pointer points doname > new name
Temp=next free
Temp = next free
Next free=node[]next free].pointer
Node [temp]. pointer = node [p].pointer
Node [p] . pointer = temp
End procedure

18

WEEK 7

This week specific learning outcome is thtla students should be able to write
the procedure for deleting an item from a linkest .

Deletion of anitem from alist
Begin procedure
If start =0 then write ‘listis empty’ andkieprocedure.
P=start
If deletename = node][start].name then
Temp = node[start].pointer
Node[start].pointer = next free
Next free = start
Start = temp
Else
While deletename< > node [node].pointer].pointer
P = [node[p].pointer
Endwhile
(node[p) now points to the node to be ddleteljust the pointers)
Temp = node [p].pointer
Node[p].pointer = node[temp].pointer
Node[temp]. pointer = nextfree
Next free =temp

endif

19

WEEK 8

This week specific learning outcome is thtla students should be able to write
program sample to show basic graph class.

Basic graph class

The following code shows a basic graph class. The HashMap akeldList classes are
the ones you have used in previous chapters. Alternatively}godd use the equivalent
Java Collections Framework classes.

/**

* class Graph

*/
public class Graph{

protected HashMap adjacencyMap;

/**

* Initialize this Graph object to be empty.
*/

public Graph()

{

adjacencyMap = new HashMap();

/**

* Determines if this Graph contains no vertices.

*

* @return true - if this Graph contains no vertices.
*/

public boolean isEmpty()

{

return adjacencyMap.isEmpty();

}
/**

* Determines the number of vertices in this Graph.

*

* @return the number of vertices.

20

*/
public int size()

{

return adjacencyMap.size();

}

/**

* Returns the number of edges in this Graph object.

*

* @return the number of edges.

*/

public int getEdgeCount()
{

int count = 0;

for (int i=0;i<adjacencyMap.CAPACITY;i++){
if (adjacencyMap.keys]i] '= null){

LinkedList edges = (LinkedList)
adjacencyMap.get(adjacencyMap.keys]i]);
count += edges.size();

}
}

return count;

}

/**

* Adds a specified object as a vertex

*

* @param vertex - the specified object

* @return true - if object was added by this call
*/

public boolean addVertex (Object vertex)

{

if (adjacencyMap.containsKey(vertex))
return false;

adjacencyMap.put (vertex, new LinkedList());
return true;

}

/**

* Adds an edge, and vertices if not already present*

21

* @param v1 - the beginning vertex object of the edge
* @param v2 - the ending vertex object of the edge

* @return true - if the edge was added by this call

*/

public boolean addEdge (Object v1, Object v2)

{

addVertex (v1); addVertex (v2);

LinkedList | = (LinkedList)adjacencyMap.get(vl);
l.add(v2);

return true;

22

WEEK 9-10

This week specific learning outcome is thia@ students should be able to
implement sort algorithm with some featureslioked lists to solve problems .

Sort Algorithm with some features of linked lists

/ Fhxxk IR I AT IR

-> This program is to sort the given integers

in ascending order using address calculation sor

-> bins are maintained using linked lists

-> With the hash function used in the program it is

only possible to sort integers that are < 100

-> This program works in microsoft vc++ 6.0 envinoent.

**************/

#include<iostream.h>

class linkedlist

{

private:

intn;

linkedlist *next;

public:

linkedlist* insert(int,linkedlist*);
void display(linkedlist*);

friend class sorting;

J

linkedlist* linkedlist::insert(int x,linkedlist*a)

{
linkedlist *NEW:;

NEW=new linkedlist;

23

NEW->n=x;
NEW->next=NULL,

if@==NULL)
a=NEW;

else /I search for the correct positmimsert

{

linkedlist *I;

|=a;

if(x<I->n)

{
NEW->next=l;
a=NEW;

}

else

{
while(I->n<x && I->next!=NULL)

|=I->next;
I->next=NEW,
}
}

return a;

}

void linkedlist::display(linkedlist*a)
{
while(a!l=NULL)
{
cout<<a->n<<\t’;
a=a->next;
}
cout<<”NULL\n";

}

class sorting

{

private:

24

intn;

linkedlist *array;
linkedlist *bin[6];
public:

void input();

void add_calc_sort();
void output();
I8

void sorting::input()

{

cout<<

**************\n .
’

cout<<"This program sorts the given integers iceasling order\n”

<<” using address calculation sort algorithf \n

cout<<

cout<<"Enter how many numbers you are going teent;

cin>>n;

array=NULL,

**************\n .
’

cout<<"Now enter your numbers only in the rang®%) ::\n”;

for(int i=1;i<=n;i++)
{
int x;

cin>>x;

linkedlist *I;

linkedlist *NEW;
NEW=new linkedlist;
NEW->n=x;
NEW->next=NULL;

if(array==NULL)
array=NEW,
else
I->next=NEW,
I=NEW,;

25

void sorting::add_calc_sort()

{

/[Hash the numbers in to the five bins

linkedlist obj;
inti;
for(i=1;i<=5;i++)

bin[i=NULL;

while(array!=NULL)

{

if(array->n >=0 && array->n <=19)
bin[1]=obj.insert(array->n,bin[1]);

else if(array->n >=20 && array->n <=39)
bin[2]=obj.insert(array->n,bin[2]);

else if(array->n >=40 && array->n <=59)
bin[3]=obj.insert(array->n,bin[3]);

else if(array->n >=60 && array->n <=79)
bin[4]=obj.insert(array->n,bin[4]);

else if(array->n >=80 && array->n <=99)

bin[5]=obj.insert(array->n,bin[5]);

array=array->next;

}

cout<<”"\nThe contents of the bins are ::\n";
for(i=1;i<=5;i++)

{

cout<<” (“<<i<<™)

obj.display(bin[i]);

}

/Icollect from all the bins

26

array=NULL,
for(i=1;i<=5;i++)
{
linkedlist *I;
while(bin[i]'=NULL)
{
linkedlist *NEW;
NEW=new linkedlist;

NEW->n=bin[i]->n;
NEW->next=NULL;

if(array==NULL)
array=NEW,
else
|->next=NEW,
I=NEW,;

bin[i]=bin[i]->next;
}
}
}

void sorting::output()

{

cout<<"After sorting the elements are ::\n";
linkedlist obj;

obj.display(array);

}

int main()

{

sorting obj;
obj.input();
obj.add_calc_sort();
obj.output();

return O;

27

SAMPLE OUTPUT ::

This program sorts the given integers in ascendidgr

using address calculation sort algorithm

Enter how many numbers you are going to enter ::7
Now enter your numbers only in the range (0-99) ::
70

65

60

55

50

45

40

The contents of the bins are ::

(1):NULL

(2):NULL

(3):40 45 50 55 NULL
(4):60 65 70 NULL

(5)::NULL

After sorting the elements are ::

40 45 50 55 60 65 7ONULL

Press any key to continue

28

kkkkkkkkkkkkkik

*kkkkk

*kkkkk

WEEK 11

This week specific learning outcome is tkfa students should be able to

implement selection sorting technique to arraihge following set of data:

11,1.2,13,14,15,16,and 1.7

Selection Sort

I' kkkkkkk

-> This C++ program is to perform selection sort.

-> This program works in microsoft vc++ 6.0 envinoent.

-> The numbers are sorted in increasing order.

kkkkk Kkkkkk kkkkkkkkkkk * * *******/

#include<iostream.h>

class sorting

{

private:

intn;

double * array;
public:

void input();

void selectionsort();

void output();
I3

void sorting::input()

{

COUt< xxxxxxx * *********\n”

<<"This program sorts numbers in increasing drder

29

<<"\n\t\tusing selection sort technique\n”

* * * * *khkkkk! ”.
<< \n”;

cout<<’Enter how many numbers you are going teefur sorting ::";
cin>>n;

array=new double[n+1];

cout<<”Now enter your elements ::\n";

for(int i=1;i<=n;i++)

cin>>array[i];

}

void sorting::selectionsort()
{
for(int i=1;i<=n;i++)
{
double min=arrayf[i];
int min_p=i;
for(int j=i+1;j<=n;j++)
if(array[jl<min)
min=array[j],min_p=j;
if(i'=min_p)
{
double t=array[i];
array[i]=min;
array[min_p]=t;
}
}
}

void sorting::output()
{
cout<<”Now the sorted numbers are ::\n”;
for(int i=1;i<=n;i++)
cout<<array[i]<<'\t’;
cout<<endl;

}

30

int main()

{

sorting obj;
obj.input();
obj.selectionsort();
obj.output();

return O;

}

I' * * * * * * kkkkkkkkkkhkkhkhkkkhkk

SAMPLE OUTPUT ::

This program sorts numbers in increasing order

using selection sort technique

Enter how many numbers you are going to enterddirg ::7
Now enter your elements ::

1.7

1.6

1.5

1.4

1.3

1.2

1.1

Now the sorted numbers are ::

11 12 13 14 15 16 1.7

Press any key to continue

*******************/

31

WEEK 12-13

This week specific learning outcome is tlla students should be able to
implement insertion sorting algorithm for thelléwing set of data:

Insertion Sort

/ * * K*kkkkkk

-> This C++ program is to perform insertion sort.

-> This program works in microsoft vc++ 6.0 envinaent.

-> The numbers are sorted in increasing order.

* *kkk * *kkk *******/

#include<iostream.h>

class sorting

{

private:

int n;

double *array;
public:

void input();

void insertionsort();

void output();
2

void sorting::input()

{

cout<< FREERFIHRR\)7

<<"This program sorts numbers in increasing drder

<<"\n\t\tusing insertion sort technique\n”

<< **'k***\n ”.

32

cout<<"Enter how many numbers you are going teefur sorting ::”;
cin>>n;

array=new double[n+1];

cout<<"Now enter your elements ::\n”;

for(int i=1;i<=n;i++)

cin>>array[i];

}

void sorting::insertionsort()

{

for(int i=1;i<=n;i++)

{
double x=array[i];
for(int j=i-1;j>0&&x<array[j];j-)
array[j+1]=array[j];
array[j+1]=x;

}

}

void sorting::output()

{

cout<<”Now the sorted numbers are ::\n";

for(int i=1;i<=n;i++)
cout<<array[i]<<'\t’;

cout<<endl;

}

int main()

{

sorting obj;
obj.input();
obj.insertionsort();
obj.output();
return O;

}

/ kkkkkkkkkkkkkkkkk

33

SAMPLE OUTPUT ::

* * * * * * *

This program sorts numbers in increasing order

using insertion sort technique

Enter how many numbers you are going to enterddirg ::7
Now enter your elements ::

1.7

1.6

1.5

1.4

1.3

1.2

1.1

Now the sorted numbers are ::

11 12 13 14 15 16 17

Press any key to continue

*****************/

34

Week 14-15

This week specific learning outcome is thia@ students should be able to
implement Rank sort algorithm to arrange somergidata in increasing order.

Rank Sort

/ *kkk * K*kkkkkk

-> This C++ program is to perform rank sort.

-> This program works in microsoft vc++ 6.0 envinaent.

-> The numbers are sorted in increasing order.

*kkk *kkk * *kkk *******/

#include<iostream.h>

class sorting

{

private:

int n,rank[50];
double *array;
public:

void input();
void ranksort();

void output();
2

void sorting::input()

{

cout<< FREERFIHRR\)7

<<"This program sorts numbers in increasing drder

<<"\n\t\tusing rank sort technique\n”

<< ******\n ”.

35

cout<<"Enter how many numbers you are going teefur sorting ::”;
cin>>n;
array=new double[n+1];
cout<<"Now enter your elements ::\n”;
for(int i=1;i<=n;i++)
cin>>array[i];

}

void sorting::ranksort()
{
inti,j;
double b[50];
for(i=1;i<=n;i++)
rank(i]=0;
for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
if(array[j]>array[i])ranKf+;
else rank[i]++;
for(i=1;i<=n;i++)
b[rank[i]]=array]i];
for(i=1;i<=n;i++)

array[i]=b[i];

void sorting::output()
{
cout<<”"Now the sorted numbers are ::\n”;
for(int i=1;i<=n;i++)
cout<<array[i]<<'\t’;

cout<<endl;

}

int main()

{

sorting obj;
obj.input();

obj.ranksort();

36

obj.output();
return O;

}

/ kkkkkkkkkkkkkkkkkk

SAMPLE OUTPUT ::

* * * * * * *

This program sorts numbers in increasing order

using rank sort technique

* * * * * * *

Enter how many numbers you are going to enterddirg ::7
Now enter your elements ::

1.7

1.6

1.5

1.4

1.3

1.2

1.1

Now the sorted numbers are ::

11 12 13 14 15 16 1.7

Press any key to continue

* * * * * * ******************/

37

	Cover
	Table of Contents
	WEEK 1
	WEEK 2
	WEE K 4
	WEEK 5
	WEEK 6
	WEEK 7
	WEEK 8
	WEEK 9-10
	WEEK 11
	WEEK 12-13
	Week 14-15
	Return to Table

