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Week  1 :  

Concept  of Data structures 
 
This week Learning outcomes: 
              
• Define data  structure. 
• Define data attributes: name, value range, data types. 
• Define units  for identifying  data character, fields, sub  fields , records, files. 
 

 

Data Structure 
The  logical  or mathematical model  of  a  particular  organization  of  data  is  called its  data 
structures.  A data item  is  a  single  unit  of  values.  It is  a  raw  fact    which  becomes  
information  after  processing . Data items for example , date are   called  group items if  they can  
be   divided   into  subsystems. The  date  for  instance  is  represented  by  the  day,  the  month  
andumber  is called  an  elementary item, because  it  can  not   be  sub-divided   into  sud-items.  
It is   indeed  treated   as  a  single  item.  An  entity   is   used  to  describe  anything   that  has  
certain  attributes  or  propreties,  which  may  be  assigned   values.  For  example , the  
following  are  possible  attributes  and  their   corresponding   values  for  an  entity  known  as  
STUDENT. 
 
ATTRIBUTES NAME AGE SEX MATRIC NO 

VALUES Paul 21 Male 800654 

Entities   with  similar  attributes  for  example,  all   the  200 level  Computer science & 
Statistics students   form  an  entity set.  

Main functions of data Structures: 

• Seek to identify and develop entities, operations and appropriate classes of 

problems to use them. 

• Determine representations for abstract entities to implement abstract operations on 

concrete representations. 
Algorithm. A finite sequence of instructions, each of which has a clear meaning and can be 
executed with a finite amount of effort in finite time.  
whatever the input values, an algorithm will definitely terminate after executing a finite number 
of instructions. 
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Charasteristics of algorithm: 

• Has a finite set of steps with definite instructions. 

• Instructions have definite order. 

• Algorithm must eventually stop. 

• Actions are deterministic. 

Data: 

Some abstraction simplification of reality. 

• Abstract Data Structure is a conceptual organization without regard to how data is 

organized on the machine. 

 

Abstract Data Type: 

• Abstract Data structure. 

• Plus operations to perform on it. 

 

 

 

 

 

What determines the nature of the abstraction? 

• Kind of problem to solve. 

• Operations to be performed. 

• Machine restrictions. 

Language Independent ADT Specification 

1. Syntactic Specification. (Form) 

2. Semantic Specification. (Meaning) 

3. Restrictions. 

  

Data Declarations: 

Causes storage space to be reserved for each variable. 

1. Associate identifier name with storage to allow access. 

Encapsulation into a whole 
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2. Contents of storage are interpreted according to language data types. 

3. More efficient use of storage. 

4. Better storage of management. 

5. Static Type Checking. 

Fundamental Data Structure 

Bit – 0,1 

Boolean – compare 

                 Assignment 

1 byte word – 2
8
 of info to manipulate. 

4 byte word – 2
32

 of info to manipulate. 

Boolean – 2 Values 

NewBoolean(ident)  

MakeTrue(ident) ident=true 

MakeFalse(ident) ident=false 

IsTrue(ident)  ident=true 

IsFalse(ident)  ident=false 

Assign(I1,I2)  I1=I2 

And(I1,I2)  I1 && I2 

Or(I1,I2)  I1 || I2 

Not(I1)  ! I1 

char 

NewChar(Id) 

Assign(I1,I2) 

AreEqual(I1,I2) 
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Encode(Id) 

Decode(Id) 

Precedes(I1,I2) I1<I2 

Delete(Id) 

int 

word 

½ word     Saves storage space! 

short 

int 

long 

MazSize() 

Create(Id) 

Delete(Id) 

Assign(I1,I2) 

Equality(I1,I2) 

IsLessThan(I1,I2) 

Negative(Id) 

Sum(I1,I2) 

Difference(I1,I2) 

Quotient(I1,I2)  Float! 

Mod(I1,I2) 

Reals: float 
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Value  range 
All  possible  values   that   could  be   assigned   to  a  given  atttibute  of  an  entity  set  is  
called   the  range  of  values  of  the  attribute. 
 
Data types 
 
In mathematics it is customary to classify variables according to certain important 
characteristics. Clear distinctions are made between real, complex, and logical variables or 
between variables representing individual values, or sets of values, or sets of sets, or between 
functions, functionals, sets of functions, and so on. This notion of classification is equally if not 
more important in data processing. We will adhere to the principle that every constant, variable, 
expression, or function is of a certain type. This type essentially characterizes the set of values to 
which a constant belongs, or which can be assumed by a variable or  expression, or which can be 
generated by a function . 
Therefore, a data type is a set of values together with the operations defined on the values: {(values) 
(operations)}. The operations are performed on the values defined. E.g integer (-4,-1,1,3,4)  are values   
while(+,-,*,/)  are operations.  Data types also allow us to associate meaning to sequence of bits in the 
computer memory. Eg string AA@, integer 5 etc . 

 Data types  operations  storage representation  

   1.  Integer   *,+,-,/ 2's complement, sign magnitude 

   2.  Real            """"""   

   3.  Boolean  AND,OR,NOT  True=0,False=1 

   4. Character      8 bits ASCII/EBCDIC 

           length followed by   sequence of  characters 

   5. String  Concatenation.   Length, substring,     eg for AABC@ we can                                                                                                                                 

                                                                                     have: /3/A/B/C/ 

Pattern matching      sequence of characters terminated by special symbols. 

   6.         Pointers Value of "----->"     As for integers 

DATA TYPES can be classified as : 

Primitive (Also called built in) eg Integers, real, pointers, 

booleanY They are native or local to the language. The language knows their structure. They are part of 
the original design .  
 Standard Primitive Types 
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Standard primitive types are those types that are available on most computers as built-in features. 
They include the whole numbers, the logical truth values, and a set of printable characters. On 
many computers fractional numbers are also incorporated, together with the standard arithmetic 
operations. We denote these types by the identifiers 
INTEGER, REAL, BOOLEAN, CHAR, SET 
 Integer types 
The type INTEGER comprises a subset of the whole numbers whose size may vary among 
individualcomputer systems.  
 
The type REAL 
The type REAL denotes a subset of the real numbers. Whereas arithmetic with operands of the 
types INTEGER is assumed to yield exact results, arithmetic on values of type REAL is 
permitted to be inaccurate within the limits of round-off errors caused by computation on a finite 
number of digits. This is the principal reason for the explicit distinction between the types 
INTEGER and REAL, as it is made in most programming languages. 
The standard operators are the four basic arithmetic operations of addition (+), subtraction (-), 
multiplication (*), and division (/). It is an essence of data typing that different types are 
incompatible  under assignment. An exception to this rule is made for assignment of integer 
values to real variables, because here the semanitcs are unambiguous. After all, integers form a 
subset of real numbers.  
 
The type CHAR 
The standard type CHAR comprises a set of printable characters. Unfortunately, there is no 
generally accepted standard character set used on all computer systems. Therefore, the use of the 
predicate "standard" may in this case be almost misleading; it is to be understood in the sense of 
"standard on the computer system on which a certain program is to be executed." 
The character set defined by the International Standards Organization (ISO), and particularly its 
American version ASCII (American Standard Code for Information Interchange) is the most 
widely accepted set. The ASCII set is therefore tabulated in Appendix A. It consists of 95 
printable (graphic) characters and 33 control characters, the latter mainly being used in data 
transmission and for the control of printing equipment. 
In order to be able to design algorithms involving characters (i.e., values of type CHAR) that are 
system independent, we should like to be able to assume certain minimal properties of character 
sets, namely: 
1. The type CHAR contains the 26 capital Latin letters, the 26 lower-case letters, the 10 decimal  
     digits, and a number of other graphic characters, such as punctuation marks. 
2. The subsets of letters and digits are ordered and contiguous 
3. The type CHAR contains a non-printing, blank character and a line-end character that may be  
     used as separators. 
 
The type SET 
The type SET denotes sets whose elements are integers in the range 0 to a small number, 
typically 31 or 63. 
Given, for example, variables 
VAR r, s, t: SET 
possible assignments are:  r := {5}; s := {x, y .. z}; t := {} 
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PURPOSE OF TYPE INFORMATION: 

Type information has 4 purposes:  

a)  It allows us to associate meaning to sequence of bits in the  computer memory eg string 

AA@ , integer 5YThis is because all  data and instructions are store in the same manner as 

 sequence of bits. 

b)    It is useful during program development to improve readability and debugging. 

c)    It helps simplify implementation, eg it is easier and more efficient for implementations to       

allocate storage for integers only, rather that arbitrary value 

d)     It allows checking  for compatibility between operation and 

operands before execution e.g in the scope of the PASCAL declaration  VAR X:integer, the 

expression ANOT X@ would be an error because the type of operand "X" is not compatible with 

the type expected by the boolean operator .NOT. 

 A language is said to be  STATIC type checking when it 

requires type declaration that allow language translator to check data during translation.  

A DYNAMIC type checking is one that checks for data type during program execution. 

Some languages LISP,SNOBOLY use no declaration . This simplifies programming in these 

languages and allows great flexibility in creating and manipulating data structure  but the cost is 

paid in Dynamic checking , less efficient data representation, and more complex storage 

management, all on which slow program execution. 

FORTRAN, COBOL PASCAL require extensive declaration for all data structure and also 

introduce many related restrictions on the manner in which data may be created, destroyed and 

modified. These requirements make programming considerably more complex but program 

execution speed is greatly enhanced. A central problem in PL design is to find the proper balance 

between added execution efficiency obtainable through explicit data declaration and the added 

flexibility possible without them. 

OPERATIONS: there are of 2 types: 

Operations on the programmer defined data e.g add, subtract,*,/ 
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Operations on system-defined data eg GOTO.. 

Subprogram Calls, naming of data structure, parameter transmissionY Operations on programmer 

defined data may be further subdivided into:  

 - Primitive ie operation built into the language 

 -Programmer-defined operations eg subprograms 

Type checking: 
The main objective of type checking is to determine before program execution whether a 

domain incompatibility can occur. If so, error messages occur for coercion or execution 

time testing may be generated. 

Type checking can be performed statically (before execution or during compilation) or 

dynamically ( at execution time ) 

 For example, static type checking occur in most languages such as FORTRAN, 

COBOL, PASCALY 

Dynamic type checking occurs in APLY 

Static type checking has  following advantages over dynamic type checking. 

Advantages of Type checking: 

a.) Efficiency: since the program is typically executed many times but 

needs only be type-checked once. 

b.)  Furthermore type information may used  by implementation to improve 

      efficiency in many other ways. 

c.) Minor programming errors could be detected before actual execution; this will     

     simplify program testing and debugging eg when another operation is to be performed  

     on non numerical data. 

d.)  Type specification also improves programme readability by making explicit the data                     

       representation used by the programmer.  

Disadvantages:                

-      Syntax of a type language are usually more complex Inflexibility: restriction are    

        imposed on the programmer’s freedom of expression. 

 In conclusion, static type checking should be used in languages to prevent domain 

incompatibility whenever the disadvantages outweigh its benefit. 

 
 Primitive Data Types 
A new, primitive type is definable by enumerating the distinct values belonging to it. Such a type 
is called an enumeration type. Its definition has the form 
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TYPE T = (c1, c2, ... , cn) 
T is the new type identifier, and the ci are the new constant identifiers. 
Examples 
TYPE shape = (rectangle, square, ellipse, circle) 
TYPE color = (red, yellow, green) 
TYPE sex = (male, female) 
TYPE weekday = (Monday, Tuesday, Wednesday, Thursday, Friday, 
Saturday, Sunday) 
TYPE currency = (franc, mark, pound, dollar, shilling, lira, guilder, 
krone, ruble, cruzeiro, yen) 
TYPE destination = (hell, purgatory, heaven) 
TYPE vehicle = (train, bus, automobile, boat, airplane) 
TYPE rank = (private, corporal, sergeant, lieutenant, captain, major, colonel, general) 
TYPE object = (constant, type, variable, procedure, module) 
TYPE structure = (array, record, set, sequence) 
TYPE condition = (manual, unloaded, parity, skew) 
The definition of such types introduces not only a new type identifier, but at the same time the 
set ofidentifiers denoting the values of the new type. These identifiers may then be used as 
constants throughout 
the program, and they enhance its understandability considerably. If, as an example, we 
introduce variables 
s, d, r, and b. 
VAR s: sex 
VAR d: weekday 
VAR r: rank 
then the following assignment statements are possible: 
s := male 
d := Sunday 
r := major 
b := TRUE 
Evidently, they are considerably more informative than their counterparts 
s := 1 d := 7 r := 6 b := 2 which are based on the assumption that c, d, r, and b are defined as 
integers and that the constants are mapped onto the natural numbers in the order of their 
enumeration. 
 
 The Record Structure 
The most general method to obtain structured types is to join elements of arbitrary types, that are 
possibly themselves structured types, into a compound. Examples from mathematics are complex 
numbers, composed of two real numbers, and coordinates of points, composed of two or more 
numbers according to the dimensionality of the space spanned by the coordinate system. An 
example from data processing is describing people by a few relevant characteristics, such as their 
first and last names, their date of birth, sex, and marital status. 
In mathematics such a compound type is the Cartesian product of its constituent types. This 
stems from the fact that the set of values defined by this compound type consists of all possible 
combinations of values, taken one from each set defined by each constituent type. Thus, the 
number of such combinations, also called n-tuples, is the product of the number of elements in 
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each constituent set, that is, the cardinality of the compound type is the product of the 
cardinalities of the constituent types. 
In data processing, composite types, such as descriptions of persons or objects, usually occur in 
files or data banks and record the relevant characteristics of a person or object. The word record 
has therefore become widely accepted to describe a compound of data of this nature, and we 
adopt this nomenclature in   preference to the term Cartesian product. In general, a record type T 
with components of the types T1, T2,... , Tn is defined as follows: 
TYPE T = RECORD s1: T1; s2: T2; ... sn: Tn END 
card(T) = card(T1) * card(T2) * ... * card(Tn) 
Examples 
TYPE Complex = RECORD re, im: REAL END 
TYPE Date = RECORD day, month, year: INTEGER END 
TYPE Person = RECORD name, firstname: Name; 
birthdate: Date; 
sex: (male, female); 
marstatus: (single, married, widowed, divorced) 
END 
We may visualize particular, record-structured values of, for example, the variables 
z: Complex 
d: Date 
p: Person 
 

The  following are  the  units  for identifying  data character, fields, sub  

fields , records, files. 

A file is a collection of logically related records; e.g students file, stock file. 

A record is a collection of logically related data fields; e. g Data relating to students in students 

file. In a database table records are usually in rows. Therefore,  the  table   below   has  three (3)  

records. While a field is consecutive storage position of values. It is a unit of data within a record 

e. g student’s number, Name, Age. In a database concept fields are usually in columns of  a  

given  table. 

Data items for example , date are   called  group items if  they can  be   divided   into  
subsystems. The  date  for  instance  is  represented  by  the  day,  the  month  andumber  is called  
an  elementary item, because  it  can  not   be  sub-divided   into  sud-items  otherwise known as 
sub fields called .  It is   indeed  treated   as  a  single  item.  
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Character  is  the  smallest  unit  of  information. It includes  letters, digits  and   special     
symbols such  as  + (Plus sign), _(minus sign), \, /, $,a,b,…z, A,B,…Z etc.  Every  character  
requires one  byte of  memory  unit  for  storage in  computer  system.    
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WEEK  2  :   
 
Graph. 
 
This  week  learning ontcomes: 
• Define   a  graph. 
• State properties of  graph :  routes, edge, sequence, directed and  nondirected. 
. Computer representation of  graphs. 
• Describe  operations  such  as precede, less than  points to , move to , search, change, entry. 
 
 

Introduction 

Graphs are a commonly used data structure because they can be used to model many real-world 

problems. A graph consists of a set of nodes with an arbitrary number of connections, or edges, 

between the nodes. These edges can be either directed or undirected and weighted or 

unweighted. 

In this study we  will examine the basics of graphs and created a Graph class. This class was 

similar to the BinaryTree class , the difference being that instead of only have a reference for at 

most two edges, the Graph class's GraphNodes could have an arbitrary number of references. 

This similarity is not surprising because trees are a special case of graphs 

Definitions  
Definition1. A graph is a finite nonempty set of objects called vertices (the singular is 
vertex) together with a (possibly empty) set of unordered pairs of distinct vertices of called 
edges. 
  Graphs are a very expressive formalism for system modeling, especially when attributes are 
allowed. Our research is mainly focused on the use of graphs for system verification.  

Up to now, there are two main different approaches of modeling (typed) attributed graphs and 

specifying their transformation. Here we report preliminary results of our investigation on a third 

approach. In our approach we couple                a graph to a data signature that consists of unary 

operations only. Therefore, we transform arbitrary signatures into a structure comparable to what 

is called a graph structure signature in the literature, and arbitrary algebras into the 

corresponding algebra graph. 
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Some authors call a graph by the longer term ``undirected graph'' and simply use the following 

definition of a directed graph as a graph. However when using Definition 1 of a graph, it is 

standard practice to abbreviate the phrase ``directed graph'' (as done below in Definition 2) with 

the word digraph.  

Definition 2. A digraph is a finite nonempty set of vertices together with a (possibly 

empty) set of ordered pairs of vertices of called arcs.  

An arc that begins and ends at a same vertex u is called a loop. We usually (but not always) 

disallow loops in our digraphs. By being defined as a set, E does not contain duplicate (or 

multiple) edges/arcs between the same two vertices. For a given graph (or digraph) G we also 

denote the set of vertices by and the set of edges (or arcs) by to lessen any ambiguity. 

Definition 3. The order of a graph (digraph) is , sometimes denoted by , and the 

size of this graph is .  

Sometimes we view a graph as a digraph where every unordered edge is replaced by two 

directed arcs and . In this case, the size of a graph is half the size of the corresponding 

digraph.  

In the next example we display a graph and a digraph both of order 5. The size of the graph 

is 6 where = {(0, 1), (0, 2), (1, 2), (2, 3), (2, 4), (3, 4)} while the size of the digraph is 7 

where = {(0, 2), (1, 0), (1, 2), (1, 3), (3, 1), (3, 4), (4, 2)}. 

Example 4. A pictorial example of a graph and a digraph is given below.  
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Definition 5. A walk in a graph (digraph) is a sequence of vertices such that, for all 

, , is an edge (arc) in . The length of the walk is the number (i.e., number of 

edges/arcs). A path is a walk in which no vertex is repeated. A cycle is a walk (of length at least 

three for graphs) in which and no other vertex is repeated; sometimes, if it is understood, 

we omit from the sequence.  

Example 6. For the graph of Example 4 the following sequences of vertices are classified as 

being walks, paths, or cycles.  

 

Example 7. For the digraph of Example 4 the following sequences of vertices are classified as 

being walks, paths, or cycles.  

 

Definition 8. A graph is connected if there is a path between all pairs of vertices and of . 

A digraph is strongly connected if there is a path from vertex to vertex for all pairs and in 

.  

In Example 4 the graph is connected but the digraph is not strongly connected because there 

are no arcs leaving vertex 2. The underlying graph (by replacing each arc with an edge) of is 

connected, however. 

Definition 9. In a graph, the degree of a vertex , denoted by deg(v), is the number of edges 

incident to . For digraphs, the out-degree of a vertex is the number of arcs 

incident from (leaving ) and the in-degree of vertex is the number of arcs 

incident to (entering ). 
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For a graph the in-degree and out-degree's are the same as the degree. For our graph , we have 

deg(0)=2, deg(1)=2, deg(2)=4, deg(3)=2 and deg(4)=2. We may concisely write this as a degree 

sequence (2, 2, 4, 2, 2) if there is a natural ordering (e.g., 0,1,2,3,4) of the vertices. The in-degree 

sequence and out-degree sequence of the digraph are (1, 1, 3, 1, 1) and (1, 3, 0, 2, 1), 

respectively. The degree of a vertex of a digraph is sometimes defined as the sum of its in-degree 

and out-degree. Using this definition, a degree sequence of would be (2, 4, 3, 3, 2). 

Definition 10. The diameter of a connected graph (strongly connected digraph is the 

least integer D such that for all vertices and in we have , where denotes the 

distance from to in , that is, the length of a shortest path between and . 

Example 11. The diameter of graph of Example 4 is 2. We calculated d(0,1)=1, d(0,2)=1, 

d(0,3)=2, d(0,4)=2, d(1,2)=1, d(1,3)=2, d(1,4)=2, d(2,3)=1, d(2,4)=1 and d(3,4)=1. Note for 

graphs, we have d(x, y) = d(y, x) for all vertices x and y.  

Since the digraph is not strongly connected the diameter is undefined. However, we can 

compute shortest distances between various pairs of vertices: d(0,2)=1, d(1,0)=1, d(1,2)=1, 

d(3,1)=1, d(3,0)=2, d(3,2)=2, d(3,4)=1 and d(4,2)=1. 

Computer representations of graphs  

There are two common computer representations for graphs (or digraphs), called adjacency 

matrices and adjacency lists. For a graph of order , an adjacency matrix representation is a 

boolean matrix (often encoded with 0's and 1's) of dimension n such that entry is true if and 

only if edge/arc is in E( ). For a graph of order , an adjacency lists representation is lists 

such that the -th list contains a sequence (often sorted) of out-neighbours of vertex of .  

We can see the structure of these representations more clearly with examples. 

Example 12. We give adjacency matrices for the graph and digraph of Example 4 below. 
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Notice that the 1's in the rows represent how many out-neighbours and the 1's in the columns 

represent how many in-neighbours a vertex has. 

Example 13. We give adjacency lists for the graph and digraph of Example 4 below.  

 

Only the out-neighbours are listed in the adjacency lists representation. The numbers with colons 

( ) denote the index of the lists (and are not really necessary). An empty list can occur (e.g., list 

2 of the digraph ). 

For a graph/digraph with vertices and edges, the adjacency matrix representation requires O( 

) storage while the adjacency lists representation requires O( ) storage. So for sparse graphs 

the latter is probably preferable. However, to check whether edge/arc is in the graph the 

adjacency matrix representation has constant-time lookup, while the adjacency lists 

representation may require O( ) time in the worst case.  

We mention that there are also other specialized graph representations besides the two mentioned 

in this section. These data structures take advantage of the graph structure for improved storage 

or access time, often for families of graphs sharing a common property. 
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WEEK  3 :  
 
 Symbol, and relations   
The   week Learning  outcomes : 
• Define  symbols, and relations. 
• Explain  equivalence  relation. 
• Explain  composite relation. 
 

 

Relations 

A binary relation is determined by specifying all ordered pairs of objects in that relation; it does 

not matter by what property the set of these ordered pairs is described. We are led to the 

following definition. 

Definition. A set R is a binary relation if all elements of R are ordered pairs, i.e., if for any z ∈ R there 

exist x and y such that z = (x, y).  

It is customary to write xRy instead of (x, y) ∈ R. We say that x is in relation R with y if xRy 

holds. 

The set of all x which are in relation R with some y is called the domain of R and denoted by 

“dom R.” So dom R = {x | there exists y such that xRy}. dom R is the set of all first coordinates of 

ordered pairs in R. 

The set of all y such that, for some x, x is in relation R with y is called the range of R, denoted by 

“ran R.” So ran R = {y | there exists x such that xRy}. 

Symbol  

A symbol is something such as an object, picture, written word, sound, or particular mark that 

represents something else by association, resemblance, or convention. For example, a red 

octagon may stand for "STOP". On maps, crossed sabres may indicate a battlefield. Numerals are 

symbols for numbers. 
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All language consists of symbols. The word "cat" is not a cat, but represents the idea of a cat. 

Language and symbols 

All languages are made up of symbols. Spoken words are the symbols of mental experience, and 

written words are the symbols of spoken words. 

The word "cat", for example, whether spoken or written, is not a literal cat but a sequence of 

symbols that by convention associate the word with a concept. Hence, the written or spoken 

word "cat" represents (or stands for) a particular concept formed in the mind. A drawing of a cat, 

or a stuffed cat, could also serve as a symbol for the idea of a cat. 

The study or interpretation of symbols is known as symbology, and the study of signs is known 

as semiotics.  

Symbols and Corresponding HTML Entities  

If the leftmost column below shows &equiv; , a square or nothing instead of the actual symbol, your 
browser does not support HTML entities; please use the picture version of this document instead. 

Relational Operators 3 

Symbol LaTeX Command 2 HTML Entity 1 Comment 

≡ \equiv  &equiv;  

≈ \approx  &asymp;  

∝ \propto  &prop;  

 

\simeq  
  

∼ \sim  &sim;  

≠ \neq  &ne;  

 

\geq  
  

 

\gg  
  

 

\ll  
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Logic Symbols 3 

Symbol LaTeX Command 2 HTML Entity 1 Comment 

¬ \neg  
&not;  

∧ \wedge  
&and;  

∨ \vee  
&or;  

⊕ \oplus  
&oplus;  

 

\Rightarrow  
 

 

\Leftrightarrow  
 

∃ \exists  
&exist;  

∀ \forall  
&forall;  

Set Symbols 3 

Symbol LaTeX Command 2 HTML Entity 1 Comment 

∩ \cap  
&cap;  

∪ \cup  
&cup;  

⊃ \supset  
&sup;  

⊂ \subset  
&sub;  

∅ \emptyset  
&empty;  

 

\mathbb{Z}  

 

requires the amsfonts  and amssymb 
packages. 

∈ \in  
&isin;  

∉ \notin  
&notin;  

 

\Join  

 

requires the latexsym  package (present in 
most LaTeX distributions). 
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Miscellaneous Math Symbols 3 

Symbol LaTeX Command 2 HTML Entity 1 Comment 

′ \prime  
&prime;  

⌋ \rfloor  
&rfloor;  

∞ \infty  
&infin;  

Equivalence relation 

Equivalence relation is a binary relation between two elements of a set which groups them 

together as being "equivalent" in some way. Let a, b, and c be arbitrary elements of some set X. 

Then "a ~ b" or "a ≡ b" denotes that a is equivalent to b. 

An equivalence relation "~" is reflexive, symmetric, and transitive. In other words, the following 

must hold for "~" to be an equivalence relation on X: 

An equivalence relation partitions a set into several disjoint subsets, called equivalence classes. 

All the elements in a given equivalence class are equivalent among themselves, and no element 

is equivalent with any element from a different class. 

• Reflexivity: a ~ a  

• Symmetry: if a ~ b then b ~ a  

• Transitivity: if a ~ b and b ~ c then a ~ c.  

• The equivalence class of a under "~", denoted [a], is the subset of X for which every element b, 

a~b. X together with "~" is called a setoid. 

 Examples of equivalence relations 

A ubiquitous equivalence relation is the equality ("=") relation between elements of any set. 

Other examples include: 

• "Has the same birthday as" on the set of all people, given naive set theory.  

• "Is similar to" or "congruent to" on the set of all triangles.  
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• "Is congruent to modulo n" on the integers.  

• "Has the same image under a function" on the elements of the domain of the function.  

• Logical equivalence of logical sentences.  

• "Is isomorphic to" on models of a set of sentences.  

• In some axiomatic set theories other than the canonical ZFC (e.g., New Foundations and related 

theories):  

o Similarity on the universe of well-orderings gives rise to equivalence classes that are the 

ordinal numbers.  

o Equinumerosity on the universe of:  

� Finite sets gives rise to equivalence classes which are the natural numbers.  

� Infinite sets gives rise to equivalence classes which are the transfinite cardinal 

numbers.  

• Let a, b, c, d be natural numbers, and let (a, b) and (c, d) be ordered pairs of such numbers. Then 

the equivalence classes under the relation (a, b) ~ (c, d) are the:  

o Integers if a + d = b + c;  

o Positive rational numbers if ad = bc.  

• Let (rn) and (sn) be any two Cauchy sequences of rational numbers. The real numbers are the 

equivalence classes of the relation (rn) ~ (sn), if the sequence (rn − sn) has limit 0.  

• Green's relations are five equivalence relations on the elements of a semigroup.  

• "Is parallel to" on the set of subspaces of an affine space.  

 Examples of relations that are not equivalences 

• The relation "≥" between real numbers is reflexive and transitive, but not symmetric. For 

example, 7 ≥ 5 does not imply that 5 ≥ 7. It is, however, a partial order.  

• The relation "has a common factor greater than 1 with" between natural numbers greater than 

1, is reflexive and symmetric, but not transitive. (The natural numbers 2 and 6 have a common 

factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have 

a common factor greater than 1).  

• The empty relation R on a non-empty set X (i.e. aRb is never true) is vacuously symmetric and 

transitive, but not reflexive. (If X is also empty then R is reflexive.)  

• The relation "is approximately equal to" between real numbers, even if more precisely defined, 

is not an equivalence relation, because although reflexive and symmetric, it is not transitive, 

since multiple small changes can accumulate to become a big change. However, if the 

approximation is defined asymptotically, for example by saying that two functions f and g are 

approximately equal near some point if the limit of f-g is 0 at that point, then this defines an 

equivalence relation.  

• The relation "is a sibling of" on the set of all human beings is not an equivalence relation. 

Although siblinghood is symmetric (if A is a sibling of B, then B is a sibling of A) it is neither 

reflexive (no one is a sibling of himself), nor transitive (since if A is a sibling of B, then B is a 

sibling of A, but A is not a sibling of A). Instead of being transitive, siblinghood is "almost 

transitive", meaning that if A ~ B, and B ~ C, and A ≠ C, then A ~ C. However, the relation "A is a 

sibling of B or A is B" is an equivalence relation. (This applies only to full siblings. A and B could 

have the same mother, and B and C the same father, without A and C having a common parent.)  

• The concept of parallelism in ordered geometry is not symmetric and is, therefore, not an 

equivalence relation.  
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• An equivalence relation on a set is never an equivalence relation on a proper superset of that 

set. For example R = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)} is an equivalence 

relation on {1,2,3} but not on {1,2,3,4} or on the natural number. The problem is that reflexivity 

fails because (4,4) is not a member.  

 Connection to other relations 

• A congruence relation is an equivalence relation whose domain X is also the underlying set for 

an algebraic structure, and which respects the additional structure. In general, congruence 

relations play the role of kernels of homomorphisms, and the quotient of a structure by a 

congruence relation can be formed. In many important cases congruence relations have an 

alternative representation as substructures of the structure on which they are defined. E.g. the 

congruence relations on groups correspond to the normal subgroups.  

• A partial order replaces symmetry with antisymmetry and is thus reflexive, antisymmetric, and 

transitive. Equality is the only relation that is both an equivalence relation and a partial order.  

• A strict partial order is irreflexive, transitive, and asymmetric.  

• A partial equivalence relation is transitive and symmetric. Transitive and symmetric imply 

reflexive iff for all a∈X exists b∈X such that a~b.  

• A dependency relation is reflexive and symmetric.  

• A preorder is reflexive and transitive.  

 Equivalence class, quotient set, partition 

Let X be a nonempty set with typical elements a and b. Some definitions: 

• The set of all a and b for which a ~ b holds make up an equivalence class of X by ~. Let [a] =: {x ∈ 

X : x ~ a} denote the equivalence class to which a belongs. Then all elements of X equivalent to 

each other are also elements of the same equivalence class: ∀a, b ∈ X (a ~ b ↔ [a ] = [b ]).  

• The set of all possible equivalence classes of X by ~, denoted X/~ =: {[x] : x ∈ X}, is the quotient 

set of X by ~. If X is a topological space, there is a natural way of transforming X/~ into a 

topological space; see quotient space for the details.  

• The projection of ~ is the function π : X → X/~, defined by π(x) = [x ], mapping elements of X into 

their respective equivalence classes by ~.  

Theorem on projections (Birkhoff and Mac Lane 1999: 35, Th. 19): Let the function f: X → B be 

such that a ~ b → f(a) = f(b). Then there is a unique function g : X/~ → B, such that f = gπ. If f is a 

surjection and a ~ b ↔ f(a) = f(b), then g is a bijection.  

• The equivalence kernel of a function f is the equivalence relation, denoted Ef, such that xEfy ↔ 

f(x) = f(y). The equivalence kernel of an injection is the identity relation.  

• A partition of X is a set P of subsets of X, such that every element of X is an element of a single 

element of P. Each element of P is a cell of the partition. Moreover, the elements of P are 

pairwise disjoint and their union is X.  
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Theorem ("Fundamental Theorem of Equivalence Relations": Wallace 1998: 31, Th. 8; Dummit 

and Foote 2004: 3, Prop. 2): 

• An equivalence relation ~ partitions X.  

• Conversely, corresponding to any partition of X, there exists an equivalence relation ~ on X.  

In both cases, the cells of the partition of X are the equivalence classes of X by ~. Since each 

element of X belongs to a unique cell of any partition of X, and since each cell of the partition is 

identical to an equivalence class of X by ~, each element of X belongs to a unique equivalence 

class of X by ~. Thus there is a natural bijection from the set of all possible equivalence relations 

on X and the set of all partitions of X. 

Counting possible partitions. Let X be a finite set with n elements. Since every equivalence 

relation over X corresponds to a partition of X, and vice versa, the number of possible 

equivalence relations on X equals the number of distinct partitions of X, which is the nth Bell 

number Bn: 

 Generating equivalence relations 

• Given any set X, there is an equivalence relation over the set of all possible functions X→X. Two 

such functions are deemed equivalent when their respective sets of fixpoints have the same 

cardinality, corresponding to cycles of length one in a permutation. Functions equivalent in this 

manner form an equivalence class on X
2
, and these equivalence classes partition X

2
.  

• An equivalence relation ~ on X is the equivalence kernel of its surjective projection π : X → X/~. 

(Birkhoff and Mac Lane 1999: 33 Th. 18). Conversely, any surjection between sets determines a 

partition on its domain, the set of preimages of singleton 
[disambiguation needed]

s in the codomain. 

Thus an equivalence relation over X, a partition of X, and a projection whose domain is X, are 

three equivalent ways of specifying the same thing.  

• The intersection of any collection of equivalence relations over X (viewed as a subset of X × X) is 

also an equivalence relation. This yields a convenient way of generating an equivalence relation: 

given any binary relation R on X, the equivalence relation generated by R is the smallest 

equivalence relation containing R. Concretely, R generates the equivalence relation a ~ b iff 

there exist elements x1, x2, ..., xn in X such that a = x1, b = xn, and (xi,xi+ 1)∈R or (xi+1,xi)∈R, i = 1, ..., 

n-1.  

Note that the equivalence relation generated in this manner can be trivial. For instance, the 

equivalence relation ~ generated by:  
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• The binary relation ≤ has exactly one equivalence class, X itself, because x ~ y for all x 

and y;  

• An antisymmetric relation has equivalence classes that are the singletons
[disambiguation 

needed]
 of X.  

• Let r be any sort of relation on X. Then r ∪ r
−1

 is a symmetric relation. The transitive closure s of r 

∪ r
−1

 assures that s is transitive and reflexive. Moreover, s is the "smallest" equivalence relation 

containing r, and r/s partially orders X/s.  

• Equivalence relations can construct new spaces by "gluing things together." Let X be the unit 

Cartesian square [0,1] × [0,1], and let ~ be the equivalence relation on X defined by ∀a, b ∈ [0,1] 

((a, 0) ~ (a, 1) ∧ (0, b) ~ (1, b)). Then the quotient space X/~ can be naturally identified with a 

torus: take a square piece of paper, bend and glue together the upper and lower edge to form a 

cylinder, then bend the resulting cylinder so as to glue together its two open ends, resulting in a 

torus.  

Composite Relations  
 
If the elements of a set A are related to those of a set B, and those of B are in turn related to the 
elements of a set C, then one can expect a relation between A and C. For example, if Tom is my 
father(parent-child relation) and Sarah is a sister of Tom (sister relation), then Sarah is my aunt 
(aunt-nephew/niece relation). Composite relations give that kind of relations.  

Definition(composite relation): Let R1 be a binary relation from a set A to a set B, R2 a binary 
relation from B to a set C. Then the composite relation from A to C denoted by R1R2(also 

denoted by R1 R2 is defined as  

R1R2 = {<a, c> | a A c C b [b B <a, b> R1 <b, c> R2 ] } .  

In English, this means that an element a in A is related to an element c in C if there is an element 
b in B such that a is related to b by R1 and b is related to c by R2 . Thus R1R2 is a relation from A 
to C via B in a sense. If R1 is a parent-child relation and R2 is a sister relation, then R1R2 is an 
aunt-nephew/niece relation.  

Example 1: Let A = {a1 , a2} , B = {b1 , b2 , b3} , and C = {c1 , c2} . Also let R1 = {<a1 , b1> , <a1 , 
b2> , <a2 , b3> } , and R2 = {<b1 , c1> , <b2 , c1> , <b2 , c2> , <b3 , c1> } . Then R1R2 = {<a1 , c1> , 
<a1 , c2> , <a2 , c1> } .  

This is illustrated in the following figure. The dashed lines in the figure of R1R2 indicate the 
ordered pairs in R1R2, and dotted lines show ordered pairs that produce the dashed lines. (The 
lines in the left figure are all supposed to be solid lines.)  
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Example 2: If R is the parent-child relation on a set of people A, then RR, also denoted by R2, is 
the grandparent-grandchild relation on A.  
 
More examples:  
The digraphs of R2 for several simple relations R are shown below:  
 

 
 
 
Properties of Composite 
Relations 

Composite relations 
defined above have the 
following properties. Let 
R1 be a relation from A to 
B, and R2 and R3 be 
relations from B to C. 
Then  

1. R1(R2R3) = 
(R1R2)R3  
2. R1(R2 R3) = 
R1R2 R1R3  
3. R1(R2 R3) 

R1R2 R1R3  
 
Proofs for these 
properties are not  
necessary 

Powers of Relation 

Let R be a binary relation 
on A. Then Rn for all 
positive integers n is 
defined recursively as 
follows:  
 
Definition(power of 
relation):  

Basis Clause: R0 = E, where E is the equality relation on A.  
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Inductive Clause: For an arbitrary natural number n , Rn+1 = RnR.  
Note that there is no need for extremal clause here.  
 
Thus for example R1 = R, R2 = RR, and R3 = R2R = (RR)R = R(RR) = RRR.  
 
The powers of binary relation R on a set A defined above have the following properties.  
 
1. Rm+n = RmRn,  
2. (Rm)n = Rmn.  
 

Using composite identity relationships 

An identity relationship establishes an association between business objects or other data on a 

one-to-one basis. A composite identity relationship relates two business objects through a 

composite key attribute.  

Creating composite identity relationship definitions 

Identity relationship definitions differ from lookup relationship definitions in that the participant 

types are business objects, not of the type Data (the first selection in the participant types list). 

As with a simple identity relationship:  

• The composite identity relationship consists of the generic business object and at least 
one application-specific business object.  

• The participant type is a business object for all participants.  

However, for a composite identity relationship, the participant attribute for every participant is a 

composite key. This composite key usually consists of a unique key from a parent business 

object and a nonunique key from a child business object.  

Steps for creating composite identity relationship definitions 

To create a relationship definition for a composite identity relationship, perform the following 

steps:  

1. Create a participant definition whose participant type is the parent business object.  
2. Set the first participant attribute to the key of the parent business object.  

Tip: Expand the parent business object and select the key attribute.  
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3. Set the second participant attribute to the key of the child attribute.  

Tip: Expand the parent business object, then expand the child attribute within the parent. 

Select the key attribute from this child object.  

4. Repeat steps 1-3 for each of the participants. As with all composite identity relationships, 
this relationship contains one participant for the generic business object and at least one 
participant for a application-specific business object. Each participant consists of two 
attributes: the key of the parent business object and the key of the child business object 
(from the attribute within the parent business object).  

Restriction: To manage composite relationships, the server creates internal tables. A table is 

created for each role in the relationship. A unique index is then created on these tables across all 

key attributes of the relationship. (In other words, the columns which correspond to the key 

attributes of the relationship are the participants of the index.) The column sizes of the internal 

tables have a direct relation to the attributes of the relationship and are determined by the value 

of the MaxLength attribute for the relationship.  

Databases typically have restrictions on the size of the indexes that can be created. For instance, 

DB2 has an index limitation of 1024 bytes with the default page size. Thus, depending on the 

MaxLength attribute of a relationship and the number of attributes in a relationship, you could 

run into an index size restriction while creating composite relationships.  

Important:  

• You must ensure that appropriate MaxLength values are set in the repository file for all 
key attributes of a relationship, such that the total index would never exceed the index 
size limitations of the underlying DBMS.  

If the MaxLength attribute for type String is not specified, the default is nvarchar(255) in 

the SQLServer. Thus, if a relationship has N Keys, all of type String and the default 

MaxLength attribute of 255 bytes, the index size would be ((N*255)*2) + 16 bytes. You 

can see that you would exceed the SQLServer 7 limit of 900 bytes quite easily when N 

takes values of >=2 for the default MaxLength value of 255 bytes for type String.  

• Remember, too, that even when some DBMS'es support large indexes, it comes at the 
cost of performance; hence, it is always a good idea to keep index sizes to the minimum.  
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Determining the relationship action 

Table 100 shows the activity function blocks that the Mapping API provides to maintain a 

composite identity relationship from the child attribute of the parent source business object. The 

actions that these methods take depends on the source object's verb and the calling context.  

Table 100. Maintaining a composite identity relationship from the child attribute 

Function block  Description  

General/APIs/Identity Relationship/  
Maintain Child Verb  

Set source child verb correctly  

General/APIs/Identity Relationship/  
Maintain Composite Relationship  

Perform appropriate action on the 
relationship tables  

Actions of General/APIs/Identity Relationship/Maintain Composite Relationship 

The Maintain Composite Relationship function block will generate Java code that calls the 

mapping API maintainCompositeRelationship(), which will manage relationship tables for a 

composite identity relationship. This method ensures that the relationship instances contain the 

associated application-specific key values for each relationship instance ID. This method 

automatically handles all of the basic adding and deleting of participants and relationship 

instances for a composite identity relationship.  

The actions that maintainCompositeRelationship() takes are based on the value of the business 

object's verb and the calling context. The method iterates through the child objects of a specified 

participant, calling the maintainSimpleIdentityRelationship() on each one to correctly set the 

child key value. As with maintainSimpleIdentityRelationship(), the action that 

maintainCompositeRelationship() takes is based on the following information:  

• The calling context: EVENT_DELIVERY, ACCESS_REQUEST, 
SERVICE_CALL_REQUEST, SERVICE_CALL_RESPONSE, 
SERVICE_CALL_FAILURE, and ACCESS_RESPONSE  

• The verb of the source business object: Create, Update, Delete, or Retrieve  



33 

 

The maintainCompositeRelationship() method deals only with composite keys that extend to 

only two nested levels. In other words, the method cannot handle the case where the child 

object's composite key depends on values in its grandparent objects.  

Example: If A is the top-level business object, B is the child of A, and C is the child of B, the 

two methods will not support the participant definitions for the child object C that are as follows:  

• The participant type is A and the attributes are:  
• key attribute of A: ID 
• key attribute of B: B[0].ID 
• key attribute of C: B[0].C[0].ID 

• The participant type is A and the attributes are:  
• key attribute of A: ID 
• key attribute of C: B[0].C[0].ID 

To access a grandchild object, these methods only support the participant definitions that are as 

follows:  

• The participant type is B and the attributes are:  
• key attribute of B: ID 
• key attribute of C: C[0].ID 

• The participant type is B and the attributes are:  
• key attribute of B: ID 
• first key attribute of C: C[0].ID1 
• second key attribute of C: C[0].ID2 

Actions of General/APIs/Identity Relationship/Maintain Child Verb 

The Maintain Child Verb function block will generate Java code that calls the mapping API 

maintainChildVerb(), which will maintain the verb of the child objects in the destination 

business object. It can handle child objects whose key attributes are part of a composite identity 

relationship. When you call maintainChildVerb() as part of a composite relationship, make sure 

that its last parameter has a value of true. This method ensures that the verb settings are 

appropriate given the verb in the parent source object and the calling context. 

Customizing map rules for a composite identity relationship 

Once you have created the relationship definition and participant definitions for the composite 

identity relationship, you can customize the map to maintain the composite identity relationship. 
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A composite identity relationship manages a composite key. Therefore, managing this kind of 

relationship involves managing both parts of the composite key. To code a composite identity 

relationship, you need to customize the mapping transformation rules for both the parent and 

child business objects, as Table 3.1 shows.  

Table 3.1 Activity function blocks for a composite identity relationship 

Map 
involved  

Business 
object 
involved  Attribute  Activity function blocks  

Main  Parent 
business 
object  

Top-level 
business 
object  

Use a Cross-Reference transformation 
rule  

  Child 
attribute 
(child 
business 
object)  

General/APIs/Identity 
Relationship/Maintain Composite  
Relationship  
General/APIs/Identity 
Relationship/Maintain Child Verb 
General/APIs/Identity 
Relationship/Update My Children  
(optional)  

Submap  Child 
business  
object  

Key 
attribute 
(nonunique 
key)  

Define a Move or Set Value 
transformation for the verb.  

If child business objects have a nonunique key attribute, you can relate these child business 

objects in a composite identity relationship.  

The following sections describe the steps for customizing this composite identity relationship:  

• Steps for customizing the main map  
• Customizing the submap  
• Managing child instances  
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Steps for customizing the main map 

In the map for the parent business object (the main map), add the mapping code to the parent 

attributes:  

1. Map the verb of the top-level business object by defining a Move or Set Value 
transformation rule.  

2. Define a Cross-Reference transformation between the top-level business objects.  
3. Define a Custom transformation for the child attribute and use the General/APIs/Identity 

Relationship/Maintain Composite Relationship function block in Activity Editor.  

Steps for coding the child attribute 

The child attribute of the parent object contains the child business object. This child object is 

usually a multiple cardinality business object. It contains a key attribute whose value identifies 

the child. However, this key value is not required to be unique. Therefore, it does not uniquely 

identify one child object among those for the same parent nor is it sufficient to identify the child 

object among child objects for all instances of the parent object.  

To identify such a child object uniquely, the relationship uses a composite key. In the composite 

key, the parent key uniquely identifies the parent object. The combination of parent key and 

child key uniquely identifies the child object. In the map for the parent business object (the main 

map), add the mapping code to the attribute that contains the child business object. In Activity 

Editor for this attribute, perform the following steps to code a composite identity relationship:  

1. Define a Submap transformation for the child business object attribute of the main map. 
Usually mapping transformations for a child object are done within a submap, especially 
if the child object has multiple cardinality.  

2. In the main map, define a Custom transformation rule for the child verb and use the 
General/APIs/Identity Relationship/Maintain Child Verb function block to maintain the 
child business object's verb.  

The last input parameter of the General/APIs/Identity Relationship/Maintain Child Verb 

function block is a boolean flag to indicate whether the child objects are participating in a 

composite relationship. Make sure you pass a value of true as the last argument to 

maintainChildVerb() because this child object participates in a composite, not a simple 

identity relationship. Make sure you call maintainChildVerb() before the code that calls 

the submap. 
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3. To maintain this composite key for the parent source object, customize the mapping rule 
to use the General/APIs/Identity Relationship/Maintain Composite Relationship function 
block.  

4. To maintain the relationship tables in the case where a parent object has an Update verb 
caused by child objects being deleted, customize the mapping rule to use the 
General/APIs/Identity Relationship/Update My Children function block.  

Tip: Make sure the transformation rule that contains the Update My Children function 

block has an execution order after the transformation rule that contains the Maintain 

Composite Relationship function block.  

Example of customizing the map for a Composite Identity Relationship 

The following example describes how the map can be customized for a Composite Identity 

Relationship.  

1. In the main map, define a Custom transformation rule between the child business object's 
verbs. Use the General/APIs/Identity Relationship/Maintain Child Verb function block in 
the customized activity to maintain the verb for the child business objects.  

The goal of this custom activity is to use the maintainChildVerb() API to set the child 

business object verb based on the map execution context and the verb of the parent 

business object. Figure3.2 shows this custom activity.  

 

Figure 3.2. Using the Maintain Child Verb function block 
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2. If necessary, define a Submap transformation rule between the child business object to 
perform any mapping necessary in the child level.  

3. Define a Custom transformation rule between the top-level business objects. Use the 
General/APIs/Identity Relationship/Maintain Composite Relationship function block in 
the customized activity to maintain the composite identity relationship for this map.  

The goal of this custom activity is to use the maintainComposite Relationship() API to 

maintain a composite identity relationship within the map. Figure 3.3 shows this custom 

activity.  

 

Figure 3.3. Using the Maintain Composite Relationship function block 

4. Define a Custom transformation rule mapping from the source top-level business object 
to the destination child business object attribute. Use the General/APIs/Identity 
Relationship/Update My Children function block in the customized activity to maintain 
the child instances in the relationship.  

The goal of this custom activity is to use the updateMyChildren() API to add or delete 

child instances in the specified parent/child relationship of the identity relationship. 
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Figure 3.4 shows this custom activity.  

 

Figure 3.4. Using the Update My Children function block 

Example of coding the child attribute 

Here is a sample of how the code in the child attribute of the parent map might look. This code 

fragment would exist in the Order Line Item attribute of an SAP Order business object. It uses 

maintainChildVerb() to set the child object verbs, then calls a submap 

(Sub_SaOrderLieItem_to_CwOrderLineItem) in a for loop to handle mapping of the Order line 

items child object:  

{ 
BusObjArray srcCollection_For_ObjSAP_Order_SAP_OrderLineItem = 
   ObjSAP_Order.getBusObjArray("SAP_OrderLineItem"); 
  
// 
// LOOP ONLY ON NON-EMPTY ARRAYS 
// ----------------------------- 
// 
// Perform the loop only if the source array is non-empty.  
// 
if ((srcCollection_For_ObjSAP_Order_SAP_OrderLineItem != null) && 
      (srcCollection_For_ObjSAP_Order_SAP_OrderLineItem.size() > 0)) 
   { 
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   int currentBusObjIndex_For_ObjSAP_Order_SAP_OrderLineItem; 
   int lastInputIndex_For_ObjSAP_Order_SAP_OrderLineItem = 
   srcCollection_For_ObjSAP_Order_SAP_OrderLineItem.getLastIndex(); 
  
   // ---- 
   IdentityRelationship.maintainChildVerb( 
      "OrdrLine",  
      "SAPOrln", 
      "CWOrln",  
      ObjSAP_Order,  
      "SAP_OrderLineItem",  
      ObjOrder, 
      "OrderLineItem",  
      cwExecCtx,  
      true,  
      true); 
  
   // ---- 
   for (currentBusObjIndex_For_ObjSAP_Order_SAP_ 
         OrderLineItem = 0; 
         currentBusObjIndex_For_ObjSAP_Order_SAP_OrderLineItem <= 
            lastInputIndex_For_ObjSAP_Order_SAP_OrderLineItem; 
         currentBusObjIndex_For_ObjSAP_Order_SAP_OrderLineItem++) 
      { 
      BusObj currentBusObj_For_ObjSAP_Order_SAP_OrderLineItem = 
(BusObj) (srcCollection_For_ObjSAP_Order_SAP_OrderLineItem.elementAt( 
            currentBusObjIndex_For_ObjSAP_Order_SAP_OrderLineItem)); 
  
      // 
      // INVOKE MAP ON VALID OBJECTS 
      // --------------------------- 
      // 
      // Invoke the map only on those children objects that meet 
      // certain criteria. 
      // 
      if (currentBusObj_For_ObjSAP_Order_SAP_OrderLineItem != null) 
         { 
         BusObj[] _cw_inObjs = new BusObj[2]; 
         _cw_inObjs[0] = 
               currentBusObj_For_ObjSAP_Order_SAP_OrderLineItem; 
         _cw_inObjs[1] = ObjSAP_Order; 
         logInfo ("*** Inside SAPCW header, verb is: " +  
            (_cw_inObjs[0].getVerb())); 
  
         try  
            { 



40 

 

            BusObj[] _cw_outObjs = DtpMapService.runMap( 
               "Sub_SaOrderLineItem_to_CwOrderLineItem",  
               "CwMap",  
               _cw_inObjs,  
               cwExecCtx); 
            _cw_outObjs[0].setVerb(_cw_inObjs[0].getVerb()); 
            ObjOrder.setWithCreate("OrderLineItem", _cw_outObjs[0]); 
            } 
  
         catch (MapNotFoundException me)  
            { 
            logError(5502,  
               " Sub_SaOrderLineItem_to_CwOrderLineItem "); 
            throw new MapFailureException ("Submap not found"); 
            } 
         } 
      } 
  
   // Start of the child relationship code 
   BusObjArray temp = (BusObjArray)ObjOrder.get("OrderLineItem"); 
   try  
      { 
      IdentityRelationship.maintainCompositeRelationship( 
         "OrdrLine", 
         "SAPOrln", 
         ObjSAP_Order,  
         temp,  
         cwExecCtx); 
      } 
  
   catch RelationshipRuntimeException re  
      {  
      logError(re.toString());  
      } 
  
   // This call to updateMyChildren() assumes the existence of the 
   // OrdrOrln parent/child relationship between the SAP_Order 
   // (parent) and SAP_OrderItem (child) 
   IdentityRelationship.updateMyChildren( 
      "OrdrOrln",  
      "SAOrders",  
      ObjSAP_Order,  
      "SAOrdrLn",  
      "LineItem", 
      "OrdrLine", 
      "SAPOrln", 
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      cwExecCtx); 
  
   // End of the child relationship code 
   } 
} 

Customizing the submap 

In the map for the child business object (the submap), add the mapping code to the the key 

attribute of the child object. The only code you need to add is a call to the setVerb() method to 

set the child object's verb to the parent object's verb. 

Note:  

When the child object primary key requires the maintainCompositeRelationship() 
method, make the call in the parent map, right after the end of the for loop for calling the 
submap. In the submap, the code for the destination object's primary key should contain 
the following line:  

// maintainCompositeRelationship()  
is called in the parent map. 
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WEEK  4  : 
 
SETS  
   
This week  Learning outcomes: 
• Define  sets . 
• Define set  operations. 
 • Define the  elements  of  set , subsets, super sets,   universal sets and  null set. 
• Explain Storage  set representation. 
 

 

The type SET 

The objects of study of Set Theory are sets. As sets are fundamental objects that can be used to 

define all other concepts in mathematics, they are not defined in terms of more fundamental 

concepts. Rather, sets are introduced either informally, and are understood as something self-

evident, or, as is now standard in modern mathematics, axiomatically, and their properties are 

postulated by the appropriate formal axioms. 

The language of set theory is based on a single fundamental relation, called membership. We say 

that A is a member of B (in symbols A ∈ B), or that the set B contains A as its element. The 

understanding is that a set is determined by its elements; in other words, two sets are deemed 

equal if they have exactly the same elements. In practice, one considers sets of numbers, sets of 

points, sets of functions, sets of some other sets and so on. In theory, it is not necessary to 

distinguish between objects that are members and objects that contain members -- the only 

objects one needs for the theory are sets. See the supplement 

 
The type SET denotes sets whose elements are integers in the range 0 to a small number, 
typically 31 or 63. 
Given, for example, variables 
VAR r, s, t: SET 
possible assignments are 
r := {5}; s := {x, y .. z}; t := {} 
Here, the value assigned to r is the singleton set consisting of the single element 5; to t is 
assigned the 
empty set, and to s the elements x, y, y+1, … , z-1, z. 
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Set Operations  
 
A relation is a set. It is a set of ordered pairs if it is a binary relation, and it is a set of ordered n-
tuples if it is an n-ary relation. Thus all the set operations apply to relations such as , , and 
complementing.  

For example, the union of the "less than" and "equality" relations on the set of integers is the 
"less than or equal to" relation on the set of integers. The intersection of the "less than" and "less 
than or equal to" relations on the set of integers is the "less than" relation on the same set. The 
complement of the "less than" relation on the set of integers is the "greater than or equal to" 
relation on the same set.  

Therefore, the following are the  elementary operators are defined on variables of type SET: 
* set intersection 
+ set union 
- set difference 
/ symmetric set difference 
IN set membership 
Constructing the intersection or the union of two sets is often called set multiplication or set 
addition, respectively; the priorities of the set operators are defined accordingly, with the 
intersection operator having priority over the union and difference operators, which in turn have 
priority over the membership operator, which is classified as a relational operator. Following are 
examples of set expressions and their  fully parenthesized equivalents: 
r * s + t = (r*s) + t 
r - s * t = r - (s*t) 
r - s + t = (r-s) + t 
THIS IS A TEXT 
18 
r + s / t = r + (s/t) 
x IN s + t = x IN (s+t) 

Sets, Elements, and Subsets 

One dictionary has, among the many definitions for set, the following: a number of things naturally 

connected by location, formation, or order in time. 

Although set holds the record for words with the most dictionary definitions, there are terms 

mathematicians choose to leave undefined, or actually, defined by usage. Set, element, member, 

and subset are four such terms which will be discussed in today's lesson. Today's activity will 

also explore the concept.  
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Each item inside a set is termed an element. 

The brace symbols { and } are used to enclose the elements in a set.  

Each element is a member of the set (or belongs to the set). 

The symbol for membership is . It can be read "is an element of" and looks quite similar to the 

Greek letter epsilon ().  

A subset is a portion of a set. 

The symbol for subset is . Some books will allow and use it reversed—we will not.  

A superset is a set that includes other sets. 

For example: If A  B, then A is a subset of B and B is a superset of A.  

A subset might have no members, in which case it is termed the null set or empty set.  

The empty set is denoted either by {} or by , a Norwegian letter. The null set is a subset of 

every set.  

Note: a common mistake is to use {} to denote the null set. This is actually a set with one 

element and that element is the null set. Since some people slash their zeroes, it is safest when 

handwriting to always use the notation {} to denote the empty or null set.  

A singleton is a set with only one element. 

A subset might contain every member of the original set. 

In this case it is termed an improper subset. 
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A proper subset does not contain every member of the original set. 

Sets may be finite, {1, 2, 3,..., 10}, or infinite, {1, 2, 3,...}. The cardinality of a set A, n(A), is 

how many elements are in the set. The symbol ... called ellipses means to continue in the 

indicated pattern. There are 2n subsets of any set, where n is the set's cardinality—check it out for 

n=3!  

The power set of a set is the complete set of subsets of the set. 

In this class we will consider only safe sets, that is, any set we consider should be well-defined. 

There should be no ambiguity as to whether or not an element belongs to a set. That is why we 

will avoid things like the village barber who shaves everyone in the village that does not shave 

himself. This results in a contradiction as to whether or not he shaves himself. Also consider 

Russell's Paradox: Form the set of sets that are not members of themselves. It is both true and 

false that this set must contain itself. These are examples of ill-defined sets.  

Sometimes, instead of listing elements in a set, we use set builder notation: {x| x is a letter in the 

word "mathematics"}. The symbol | can be read as "such that." Sometimes the symbol is 

reserved to mean proper subset and the symbol is used to allow the inclusion of the improper 

subset. Compare this with the use of < and to exclude or include an endpoint. We will make no 

such distinction. A set may contain the same elements as another set. Such sets are equal or 

identical sets— element order is unimportant. A = B where A = {m,o,r,e} and B = {r,o,m,e}, in 

general A=B if A  B and B  A. Sets may be termed equivalent if they have the same 

cardinality. If they are equivalent, a one-to-one correspondence can be established between 

their elements.  

The universal set is chosen arbitrarily, but must be large enough to include all elements of all sets under 

discussion. 

Complementary set, A', is a set that contains all the elements of the universal set that are not included 

in A. The symbol ' can be read "prime."  



46 

 

For example: if U={0, 1, 2, 3, 4, 5, 6,...} and A={0, 2, 4, 6, ...}, then A'={1, 3, 5, ...}.  

Such paradoxes as those mentioned above, particularily involving infinities (discussed in the 

next lesson), were well known by the ancient Greeks. During the 19th century, mathematicians 

were able to tame such paradoxes and about the turn of the 20th century Whitehead and Russell 

started an ambitious project to carefully codify mathematics. Set theory was developed about this 

time and serves to unify the many branches of mathematics. Although in 1931 Kurt Gödel 

showed this approach to be fatally flawed, it is still a good way to explore areas of mathematics 

such as: arithmetic, number theory, [abstract] algebra, geometry, probability, etc.  

Geometry has a long history of such systematic study. The ancient Greek Euclid similarily 

codified the mathematics of his time into 13 books called The Elements. Although these books 

were not limited to Geometry, that is what they are best known for. In fact, up until about my 

grandfather's day, The Elements was the textbook of choice for the study of Geometry! The 

Elements carefully separated the assumptions and definitions from what was to be proved. The 

concept of proof dates back another couple hundred years to the ancient Greek Pythagoras and 

his school, the Pythagorean School.  

Intersection and Union 

Once we have created the concept of a set, we can manipulate sets in useful ways termed set 

operations. Consider the following sets: animals, birds, and white things. Some animals are 

white: polar bears, mountain goats, big horn sheep, for example. Some birds are white: dove, 

stork, sea gulls. Some white things are not birds or animal (but birds are animals!): snow, milk, 

wedding gowns (usually).  

The intersection of sets are those elements which belong to all intersected sets. 

Although we usually intersect only two sets, the definition above is general. The symbol for 

intersection is .  

The union of sets are those elements which belong to any set in the union. 
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Again, although we usually form the union of only two sets, the definition above is general. The 

symbol for union is .  

For the example given above, we can see that: 

{white things} {birds} = white birds 

{white animals} {birds} = white animals and all birds 

{white birds} {white animals} {animals}  

Another name for intersection is conjuction. This comes from the fact that an element must be a 

member of set A and set B to be a member of A B. Another name for union is disjunction. 

This comes from the fact that an element must be a member of set A or set B to be a member of 

A B. Conjunction and disjunction are grammar terms and date back to when Latin was widely 

used.  

I should note the very mathematical use of the word or in the sentence above. Common usage now of 

the word or means one or the other, but not both (excludes both). Mathematicians and computer 

scientists on the other hand mean one or the other, possibly both (including both). This ambiguity can 

cause all kinds of problems! Mathematicians term the former exclusive or (EOR or XOR) and the latter 

inclusive or. We will see ands & ors again in numbers lesson 6 on truth tables.  
 
Representation of Sets 
A set s is conveniently represented in a computer store by its characteristic function C(s). This is 
an array of logical values whose ith component has the meaning “i is present in s”. As an 
example, the set of small 
integers s = {2, 3, 5, 7, 11, 13} is represented by the sequence of bits, by a bitstring: 
C(s) = (… 0010100010101100) 
The representation of sets by their characteristic function has the advantage that the operations of 
computing the union, intersection, and difference of two sets may be implemented as elementary 
logical operations. The following equivalences, which hold for all elements i of the base type of 
the sets x and y, relate logical operations with operations on sets: 
i IN (x+y) = (i IN x) OR (i IN y) 
i IN (x*y) = (i IN x) & (i IN y) 
i IN (x-y) = (i IN x) & ~(i IN y) 
These logical operations are available on all digital computers, and moreover they operate 
concurrently on 
all corresponding elements (bits) of a word. It therefore appears that in order to be able to 
implement the 
basic set operations in an efficient manner, sets must be represented in a small, fixed number of 
words upon 
which not only the basic logical operations, but also those of shifting are available. Testing for 
membership 
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is then implemented by a single shift and a subsequent (sign) bit test operation. As a 
consequence, a test of 
the form x IN {c1, c2, ... , cn} can be implemented considerably more efficiently than the 
equivalent 
Boolean expression 
(x = c1) OR (x = c2) OR ... OR (x = cn) 
A corollary is that the set structure should be used only for small integers as elements, the largest 
one being 
the wordlength of the underlying computer (minus 1). 
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WEEK  5:  
 
String structure. 
 
This week Learning outcomes : 
• Define Define  string . 
•.Explain   basic operations of  strings. 
 
 

String  Processing  
A finite  sequence S of zero  or  more   characters  is  called  a  string. The  number  of  character  
in a  string  is  called  its length.  The  string   with  zero   character  is  called  the  empty   string  
or  the  null string.  The  following  are  strings  of  length 9,18, 14 and 0 respectively: 

I.) “ND1 CLASS” 
II.)  “COMPUTER  DEPARTMENT” 
III.)  “CAMPUS  SHUTTLE” ,and 
IV.)  “  “ 

Note  that  the  blank  is  regarded   as  a  character  only  when it   appears   swith  other  
characters . 

Concatenation  of Strings 
Let S1 and S2   be  strings,  the  string consisting of  the  characters of S1  followed  by   the  
characters  of  S1 is  called  concatenation of S1  and  S1. 
 This  is donated  by   S1//S2. E.g. “STARLETS”//”//”DEFEAT”//”EA..GLET” 
A string Y  is  called a  substring  of  a  string S  if   there  exist strings X and  Z such  that 
S=X//Y//Z. 
If  X  is   an  empty   string,  then  Y   is  called  an  intial  substing of  S,  and  if Z is an  empty  
string   then  Y  is called a  terminal  substring  of  S. 
E.g.’BE OR  NOT’ is  a  substring  of  ‘TO  BE  OR  NOT  TO  BE’. 
‘THE’  is  an initial  substring of  ‘THE END’. 
 

Length 
The  general   form  is  LENGTH(string) and  this  will  return  the   number  of  character(s) in a     
giving  string. 

i.) LENGTH(‘student’)=7 
ii.) LENGTH(‘ ‘)=0 

 
 

Insertion 
Suppose  we want  to  insert a strings  in a  given text  T so  that S starts  in  position K. We  
denote  this  operation  as   INSERT(text, position, string) 
E.g. INSERT(‘ABCDEFG’, 3,’XYZ’)=’ABXYZCDEFG’ 
The  INSERT  function  can  be  implemented  by  using  the  string  operation  as   follows: 
INSERT(T,K,S)=SUBSTRING(T,1,K-1)//S//SUBSTRING(T,K,LENGTH(T)-K+1). 
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That  is,   the   initial  substring  of  T  before  the  position  K ,  which  has  length K-1, is   
concatenated  with  the  string, and  the  result is  concatenated  with  the  remaining   part of  T,  
which begins in  position  K  and  has   length, LENGTH(T)-(K-1)=LENGTH(T)-K+1. 
 

Deletion 
The  general  form is  DELETE(text,position,length).  
E.g. DELETE(‘ABCDEFG’,4,2)=’ABCFG’ 
We  assume  that   nothing  is  deleted   if  position K=0. 
Thus DELETE(‘ABCDEFG’,0,2)=’ABCDEFG’ 
The DELETE function can  be  implemented  using    the  string  operations   given  as  follows: 
 
DELETE(T,K,L)=SUBSTRING(T,1,K-1)//SUBSTRING(T,K+L,LENTGH(T)-K-L+1) 
 
That is  the initial  substring  of  T  before  position K  is  concatenated  with  the  terminal 
substring  of  T  beginning  in  position K+L, and  the  length  of  the  terminal  substring is : 
LENGTH(T)-(K+L-1)=LENGTH(T)-K-L+1 
 
When K=0, we assume  that  DELETE(T,K,L)=T 
Suppose  that  text T and pattern P are  given  and  it  is   required  to  delete  from  T  the  first 
occurrence  of  the  pattern P.   We  can  use  the  following DELETE function 
 
DELETE(T,INDEX(T,P),LENGTH(P)) 
E.g. = ‘ABCDEFG’, P=’CD’, then   
DELETE(T,INDEX(T,P),LENGTH(P))=DELETE(‘ABCDEFG’,INDEX(‘ABCDEFG’,’CD’) 
,2)=’ABEFG’ 
Suppose  that  we   want  to  delete  every  occurrence  of  the  pattern P  in  the text T, then we  
can  do  this   by   repeatedly  applying  DELETE(T,INDEX(T,P),LENGTH(P)) 
Until  INDEX(T,P)=0   that is, until P  does  not  appear  in  T. 
The  following  algorithm  is  used  to accomplish  this: 
   
Algorithm: 
A    text  T  and  a  pattern  P are  in  computer  memory. This algorithm  deletes  every 
occurrence  of  P in T. 

i.) Find index  of  P in T. Set K=INDEX(T,P) 
ii.) Repeat  while K not equal to 0 

a. [Delete P from T.] 
Set T:= DELETE(T,INDEX(T,P),LENGTH(P)) 
      
 

b. [Update index] 
      Set K:= INDEX(T,P) 

                   [End  of  loop] 
iii.)  Write: T. 
iv.)  Exit. 

 
REPLACEMENT 
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Suppose  in a  given  T we    want   to  replace  the  first  occurrence  of  a  patter  P1  by a  
pattern P2, we   will  denote  this operation  by REPLACE(test,pattern1,pattern2) 
E.g. REPLACE(‘XABYABZ,’AB’,’C’)=’XCYABZ’ 
        REPLACE(‘XABYABZ,’BA’,’C’)=’XABYABZ’ 
In  the  second  case,  the  pattern  BA does   not   occur, and  hence  there is   no  change. 
Suppose  a  text  T and   patterns P and Q are  in  the  memory  of  a  computer. Suppose  we  
want  to  replace every occurrence  of  the  pattern P  in  T by  the  Pattern Q. This  might  be  
accomplished  by  repeatedly applying REPLACE(T,P.Q), UNTIL(T,P)=0 
 
 
This  could  be  done  using  the  following  algorithm: 
 

1. [Find index of  P] Set K :=INDEX(T,P) 
2. Repeat while K>0: 

a.) [Replace P by  Q] Set T:=REPLACE(T,P,Q) 
b.) [Updarte] Set K:= INDEX(T,P) 

            [Eend  loop] 
3.   Write: T 
4. Exit. 

Exercise 
a.) T=XABYABZ 

P=AB 
Q=C 
REPLACE(T,P,Q) 
 

b.) If T=XAB 
                 P=A 
                 Q=AB 
              REPLACE(T,P,Q) 
Use  the algorithm above  to  solve the  problems. 
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WEEK  6:  
 
Queues and Stacks. 
 
This week  learning  outcomes: 
• Queue  data  structure . 
• Stack data  structure.. 
 
Queues 

Queues are dynamic collections which have some concept of order. This can be either based on 

order of entry into the queue - giving us First-In-First-Out (FIFO) or Last-In-First-Out (LIFO) 

queues. Both of these can be built with linked lists: the simplest "add-to-head" implementation of 

a linked list gives LIFO behaviour. A minor modification - adding a tail pointer and adjusting the 

addition method implementation - will produce a FIFO queue.  

Representation  of  queues: 
Two  pointer   variable   namely   FRONT and  REAR   are  used  in  quiues, FRONT   contains  
the location  of  the  front  element  of  the  queue, and  REAR  contains  the  location  of  the  
rear  element  of  the  queue.  The   condition  FRONT=NULL   will  indicate  that   the  queue  is  
empty.   
Whenever  an  item   is  deleted   from  the  queue, the  value  of  FRONT is  increased  by  1  , 
that  is ,  FRONT=FRONT + 1. 
Whenever, an  item  is  added to  the  queue, the  value  of  REAR  is  increased   by  1  that  is, 
REAR=REAR +1. 
 
 
 
A B C D …… …. N-1 N 

 
FRONT=1       , and  REAR = 4  
Suppose  that  we    want  to  insert  an  element  ITEM   into   a  queue  at   the  time  the  queue  
does   occupy  the  last  part  of  the   array  that  is ,   when REAR=N  and   the  queue  is   not  
yet filled.  To  do  this,  we  can  assume  that  the  queue  is  circular,  that  is,   that QUEUE(1) 
comes  after  QUEUE(N) in  the  array.  With  this   assumption, insert  ITEM  into  the   queue 
by assigning  ITEM  to   QUEUE(1). Instead  of  increasing  REAR to  N+1,  we  reset  REAR=1 
and  then  assign  QUEUE[REAR]=ITEM. 
Similarly,  if   FRONT=N and  element  of  queue  is  deleted, we   reset FRONT=1  instead  of  
increasing  FRONT to  N+1. 
If  the  queue  is  empty,  we  assign  FRONT=REAR=NULL. 
 
EXAMPLE 
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The  following  example   shows   how  a  queue  may   be  maintained  by   a  circular  array 
QUEUE with  N=5  memory  locations 

a.) Initially empty:FRONT=0 
 
 
     

1                                    2                               3                             4                              5 
 
REAR=0 
 

b.) A  and  B  and C inserted: FRONT= 1  
 
 
  
 
 A B C   

1                                    2                               3                              4                          5 
 
REAR=3 
 

c.) A  deleted         FRONT =2  
 
 
 
 B C   

1                                    2                          3                                4                              5 
 
REAR=3 
 
 
 

Stacks  
Another way of storing data is in a stack. A stack   is  a  linear   structure  in  which   items  may  
be  added   or  removed   only  at  one  end  for  example,  a  stack  of dishes, stack  of  pennies  . 
Only    two  (2)  operations  can   be  carried   out  on  a  stack. A stack is generally implemented 
with only two principle operations (apart from a constructor and destructor methods):  

Push  adds an item to a stack 

Pop extracts the most recently pushed item from the stack 

Other methods such as  

Top returns the item at the top without removing it  

isempty  determines whether the stack has anything in it 



54 

 

are sometimes added.  
 

 

A common model of a stack is a plate or coin stacker. Plates 
are "pushed" onto to the top and "popped" off the top.  

Stacks form Last-In-First-Out (LIFO) queues and have many 
applications from the parsing of algebraic expressions to ...  

A formal specification of a stack class would look like:  

typedef struct t_stack *stack; 
 
stack ConsStack( int max_items, int item_size ); 
/* Construct a new stack 
   Pre-condition: (max_items > 0) && (item_size > 0 ) 
   Post-condition: returns a pointer to an empty st ack 
*/ 
 
void Push( stack s, void *item ); 
/* Push an item onto a stack 
   Pre-condition: (s is a stack created by a call t o ConsStack) && 
                  (existing item count < max_items)  && 
                  (item != NULL) 
   Post-condition: item has been added to the top o f s 
*/ 
 
void *Pop( stack s ); 
/* Pop an item of a stack 
   Pre-condition: (s is a stack created by a call t o  
                  ConsStack) && 
                  (existing item count >= 1) 
   Post-condition: top item has been removed from s  
*/ 

Points to note:  

a. A stack is simply another collection of data items and thus it would be possible to use 
exactly the same specification as the one used for our general collection. However, 
collections with the LIFO semantics of stacks are so important in computer science that it 
is appropriate to set up a limited specification appropriate to stacks only.  

b. Although a linked list implementation of a stack is possible (adding and deleting from the 
head of a linked list produces exactly the LIFO semantics of a stack), the most common 
applications for stacks have a space restraint so that using an array implementation is a 
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natural and efficient one (In most operating systems, allocation and de-allocation of 
memory is a relatively expensive operation, there is a penalty for the flexibility of linked 
tlist implementations.).  

Stack Frames  

The data structure containing all the data (arguments, local variables, return address, etc) needed 
each time a procedure or function is called.  

Almost invariably, programs compiled from modern high level languages (even C!) make use of 
a stack frame for the working memory of each procedure or function invocation. When any 
procedure or function is called, a number of words - the stack frame - is pushed onto a program 
stack. When the procedure or function returns, this frame of data is popped off the stack.  

As a function calls another function, first its arguments, then the return address and finally space 
for local variables is pushed onto the stack. Since each function runs in its own "environment" or 
context, it becomes possible for a function to call itself - a technique known as recursion. This 
capability is extremely useful and extensively used - because many problems are elegantly 
specified or solved in a recursive way.  

 

 

Program stack after executing a pair of mutually 
recursive functions:  
function f(int x, int y) { 
    int a; 
    if ( term_cond ) return ...; 
    a = .....; 
    return g(a); 
    } 
 
function g(int z) { 
    int p,q; 
    p = ...; q = ...; 
    return f(p,q); 
    } 

Note how all of function f  and g's environment (their 
parameters and local variables) are found in the stack 
frame. When f  is called a second time from g, a new 
frame for the second invocation of f  is created. 

Key terms 
push, pop  

Generic terms for adding something to, or removing something from a stack  
context  



56 

 

The environment in which a function executes: includes argument values, local variables 
and global variables. All the context except the global variables is stored in a stack frame.  

A number of programming languages are stack-oriented, meaning they define most basic 

operations (adding two numbers, printing a character) as taking their arguments from the stack, 

and placing any return values back on the stack. For example, PostScript has a return stack and 

an operand stack, and also has a graphics state stack and a dictionary stack. 

Forth uses two stacks, one for argument passing and one for subroutine return addresses. The use 

of a return stack is extremely commonplace, but the somewhat unusual use of an argument stack 

for a human-readable programming language is the reason Forth is referred to as a stack-based 

language. 

Many virtual machines are also stack-oriented, including the p-code machine and the Java virtual 

machine.. 

Almost all computer runtime memory environments use a special stack (the "call stack") to hold 

information about procedure/function calling and nesting in order to switch to the context of the 

called function and restore to the caller function when the calling finishes. They follow a runtime 

protocol between caller and callee to save arguments and return value on the stack. Stacks are an 

important way of supporting nested or recursive function calls. This type of stack is used 

implicitly by the compiler to support CALL and RETURN statements (or their equivalents) and 

is not manipulated directly by the programmer. 

Some programming languages use the stack to store data that is local to a procedure. Space for 

local data items is allocated from the stack when the procedure is entered, and is deallocated 

when the procedure exits. The C programming language is typically implemented in this way. 

Using the same In computer science, a stack is an abstract data type and data structure based on 

the principle of Last In First Out (LIFO). Stacks are used extensively at every level of a modern 

computer system. For example, a modern PC uses stacks at the architecture level, which are used 

in the basic design of an operating system for interrupt handling and operating system function 

calls. Among other uses, stacks are used to run a Java Virtual Machine, and the Java language 

itself has a class called "Stack", which can be used by the programmer. The stack is ubiquitous. 
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As an abstract data type, the stack is a container of nodes and has two basic operations: push and 

pop. Push adds a given node to the top of the stack leaving previous nodes below. Pop removes 

and returns the current top node of the stack. A frequently used metaphor is the idea of a stack of 

plates in a spring loaded cafeteria stack. In such a stack, only the top plate is visible and 

accessible to the user, all other plates remain hidden. As new plates are added, each new plate 

becomes the top of the stack, hiding each plate below, pushing the stack of plates down. As the 

top plate is removed from the stack, they can be used, the plates pop back up, and the second 

plate becomes the top of the stack. Two important principles are illustrated by this metaphor: the 

Last In First Out principle is one; the second is that the contents of the stack are hidden. Only the 

top plate is visible, so to see what is on the third plate, the first and second plates will have to be 

removed. This can also be written as FILO-First In Last Out, i.e. the record inserted first will be 

popped out at last. 

 Operations 

In modern computer languages, the stack is usually implemented with more operations than just 

"push" and "pop". The length of a stack can often be returned as a parameter. Another helper 

operation top (also known as peek or peak) can return the current top element of the stack 

without removing it from the stack. 

This section gives pseudocode for adding or removing nodes from a stack, as well as the length 

and top functions. Throughout we will use null to refer to an end-of-list marker or sentinel value, 

which may be implemented in a number of ways using pointers. 

 record Node { 
    data // The data being stored in the node  
    next // A reference  to the next node; null for last node  
 } 
 record Stack  { 
     Node stackPointer   // points to the 'top' node; null for an empty stac k  
 } 
 function push( Stack  stack, Element  element) { // push element onto stack  
     new(newNode)            // Allocate memory to hold new node  
     newNode.data   := element 
     newNode.next   := stack.stackPointer 
     stack.stackPointer := newNode 
 } 
 function pop( Stack  stack) { // increase the stack pointer and return 'top' 
node data  
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     // You could check if stack.stackPointer is null he re.  
     // If so, you may wish to error, citing the stack u nderflow.  
     node := stack.stackPointer 
     stack.stackPointer := node.next 
     element := node.data       
     return element 
 } 
 function top( Stack  stack) { // return 'top' node  
     return stack.stackPointer.data 
 } 
 function length( Stack  stack) { // return the amount of nodes in the stack  
     length := 0 
     node := stack.stackPointer 
     while node not null { 
         length := length + 1 
         node := node.next 
     } 
     return length 
 } 

As you can see, these functions pass the stack and the data elements as parameters and return 

values, not the data nodes that, in this implementation, include pointers. A stack may also be 

implemented as a linear section of memory (i.e. an array), in which case the function headers 

would not change, just the internals of the functions. 

 Implementation 

A typical storage requirement for a stack of n elements is O(n). The typical time requirement of 

O(1) operations is also easy to satisfy with a dynamic array or (singly) linked list 

implementation. 

C++'s Standard Template Library provides a "stack " templated class which is restricted to only 

push/pop operations. Java's library contains a Stack  class that is a specialization of Vector . This 

could be considered a design flaw because the inherited get() method from Vector  ignores the 

LIFO constraint of the Stack . 

Here is a simple example of a stack with the operations described above (but no error checking) 

in Python. 

class Stack ( object ) : 
    def __init__ ( self ) : 
        self .stack_pointer = None 
  
    def push ( self , element ) : 
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        self .stack_pointer = Node ( element, self .stack_pointer )  
  
    def pop ( self ) : 
        e = self .stack_pointer.element 
        self .stack_pointer = self .stack_pointer.next 
        return e 
  
    def peek ( self ) : 
        return self .stack_pointer.element 
  
    def __len__ ( self ) : 
        i = 0 
        sp = self .stack_pointer 
        while sp: 
            i += 1 
            sp = sp.next 
        return i 
  
class Node ( object ) : 
    def __init__ ( self , element= None, next= None) : 
        self .element = element 
        self .next = next 
  
if __name__ == '__main__' : 
    # small use example  
    s = Stack ()  
    [ s.push ( i )  for i in xrange ( 10)]  
    print [ s.pop ()  for i in xrange ( len ( s))]  

The above is admittedly redundant as Python supports the 'pop' and 'append' functions to lists. 

Applications 

Stacks are ubiquitous in the computing world. 

Expression evaluation and syntax parsing 

Calculators employing reverse Polish notation use a stack structure to hold values. Expressions 

can be represented in prefix, postfix or infix notations. Conversion from one form of the 

expression to another form needs a stack. Many compilers use a stack for parsing the syntax of 

expressions, program blocks etc. before translating into low level code. Most of the 

programming languages are context-free languages allowing them to be parsed with stack based 

machines. 

For example, The calculation: ((1 + 2) * 4) + 3 can be written down like this in postfix notation 

with the advantage of no precedence rules and parentheses needed: 
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1 2 + 4 * 3 + 

The expression is evaluated from the left to right using a stack: 

• push when encountering an operand and  

• pop two operands and evaluate the value when encountering an operation.  

• push the result  

Like the following way (the Stack is displayed after Operation has taken place): 

Input Operation Stack 

1 Push operand 1 

2 Push operand 1, 2 

+ Add 3 

4 Push operand 3, 4 

* Multiply 12 

3 Push operand 12, 3 

+ Add 15 

The final result, 15, lies on the top of the stack at the end of the calculation. 

example : implementation in pascal. using marked sequential file as data archives. 

{  

programmer : clx321 
file  : stack.pas 
unit  : Pstack.tpu 
}  
program TestStack; 
{this program use ADT of Stack, i will assume that the unit of ADT of Stack 
has already existed}  
  
uses 
   PStack;   {ADT of STACK}  
  



61 

 

{dictionary}  
const 
   mark = '.' ; 
var 
   data : stack; 
   f : text; 
   cc : char; 
   ccInt, cc1, cc2 : integer; 
  
  {functions}  
  IsOperand ( cc : char)  : boolean;    {JUST  Prototype}  
    {return TRUE if cc is operand}  
  ChrToInt ( cc : char)  : integer;     {JUST Prototype}  
    {change char to integer}  
  Operator ( cc1, cc2 : integer)  : integer;     {JUST Prototype}  
    {operate two operands}  
  
{algorithms}  
begin 
  assign ( f, cc ) ; 
  reset ( f ) ; 
  read ( f, cc ) ;  {first elmt}  
  if ( cc = mark )  then 
     begin 
        writeln ( 'empty archives !' ) ; 
     end 
  else    
     begin 
        repeat 
          if ( IsOperand ( cc ))  then 
             begin 
               ccInt := ChrToInt ( cc ) ; 
               push ( ccInt, data ) ;                
             end 
          else 
             begin 
               pop ( cc1, data ) ; 
               pop ( cc2, data ) ; 
               push ( data, Operator ( cc2, cc1 )) ; 
             end; 
           read ( f, cc ) ;   {next elmt}  
        until ( cc = mark ) ; 
     end; 
  close ( f ) ; 
end. 

 Runtime stack for both data and procedure calls has important security implications (see below) 

of which a programmer must be aware in order to avoid introducing serious security bugs into a 

program. 
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Security 

Some computing environments use stacks in ways that may make them vulnerable to security 

breaches and attacks. Programmers working in such environments must take special care to 

avoid the pitfalls of these implementations. 

For example, some programming languages use a common stack to store both data local to a 

called procedure and the linking information that allows the procedure to return to its caller. This 

means that the program moves data into and out of the same stack that contains critical return 

addresses for the procedure calls. If data is moved to the wrong location on the stack, or an 

oversized data item is moved to a stack location that is not large enough to contain it, return 

information for procedure calls may be corrupted, causing the program to fail. 

Malicious parties may attempt to take advantage of this type of implementation by providing 

oversized data input to a program that does not check the length of input. Such a program may 

copy the data in its entirety to a location on the stack, and in so doing it may change the return 

addresses for procedures that have called it. An attacker can experiment to find a specific type of 

data that can be provided to such a program such that the return address of the current procedure 

is reset to point to an area within the stack itself (and within the data provided by the attacker), 

which in turn contains instructions that carry out unauthorized operations. 

This type of attack is a variation on the buffer overflow attack and is an extremely frequent 

source of security breaches in software, mainly because some of the most popular programming 

languages (such as C) use a shared stack for both data and procedure calls, and do not verify the 

length of data items. Frequently programmers do not write code to verify the size of data items, 

either, and when an oversized or undersized data item is copied to the stack, a security breach 

may occur. 
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WEEK  7 :  
 
Properties  linear   Array. 
 
 These weeks Learning  outcomes : 
•Define  linear   Array. 
•Discuss various  operations  that   can  be   performed  on  ordered   list. 

 
 
Linear Arrays 
 
Data  structures  are  classified  as   either linear  or  nonlinear.  It   is   said  to  be   linear  if  its  
elements  form  a  sequence  , that is,   a  linear  list, otherwise   nonlinear  for  example, trees  
and  graphs , records .They are  mainly  used  to  represent   data   containing  a  hierarchical  
relationship  between   elements..   Strings, array lists,   and queues  are  linear  types  of  data  
structure.The  operations  normally  performed  on  linear  lists  include: 

a.) Traversal: processing  each  element  in the  list. 
b.) Search: finding   the  location  of  the  element  with  a  given   value  or  the  record  with  

a   given  key. 
c.) Insertion: adding  a  new  element  to the   list. 
d.) Deletion: removing  an  element  from  the  list. 
e.) Sorting:  arranging  the  elements  in  some   type  of  order. 
f.) Merging: combining  two  lists  into  a  single  list. 

 
A linear  array  is  a  list  of  a   finite  number, n, of  homogeneous  data  elements,  where  the  
number n  of  elements  is   called  the  length  or  size  of  the  array. The  elements  array  A  ,  
may   be  denoted  as  follws: 
A1, A2,……..An  or A(1), A(2),………A(n)  or  A[1],A[2],………A[n] 
Where 1 is  the  the  lower  bound, LB  of  the array  and  n,  the  upperbound, UB  of  the  array. 
 
Example: 
Let DATA  be  a  5-element  linear  array  of integers  such  that  DATA[1]=24, 
DATA[2]=56. DATA[3]=405. DATA[4]=35, DATA[5]=87 
 
The array  DATA   is  fryquently  pictured  as  either  of  the   following: 
DATA 
DATA[1]  24 

DATA[2]   56 

DATA[3]  405 

DATA[4]  35 



64 

 

DATA[5]  87 

 
24 56 405 35 87 

1 2 3 4 5 

            DATA 
 
MULTIDIMENTIONAL  ARRAYS 
 
The  linear  arrays earlier  discussed  are  also  one-dimensional  arrays, since  each  element in  
the  array  is   referenced  by   a  single   subscript. Most  programming  languages  allow 2-
dimentional and  3-dimentional  arrays, some  allow  the  number  of  dimensions  for  an  array  
to  be  as  high as 7. 
 
Two-dimensionnal arrays  are  called  Matrices  in  mathematics  and  tables  in  business 
applications. 
 
A  2-dimensional m*n  array is  a  collection  of  m.n data  elements  such  that  each   
Element  is  specified  by   a  pair  of integers (such  as J,K), called  subscripts, with  the  
property  that : 
                                1   ≤   J  ≤   m  ,and 1  ≤   K  ≤   n 
e.g. the  element  of  A  with  first  subscript J  and  second  subscript K  will  be  denoted  by 
A(j.k)   or  A[j, k] 
 
Example 
Suppose  each  student  in a  class of 10  students  in a  given  3  tests.  Assuming  the   students  
are  numbered according, the  test   scores   can  be  assigned    to  a  10 *3  matrix  array  
SCORE. Thus, SCORE[K,L] contains  the Kth student’s score  on Lth test. 
 
This   can  be  represented  as     follows: 
 
Student Test 1 Test 2 Test 3 

1 56 46 90 

2 78 90 98 

3 . . . 

4 . . . 

5 . . . 

6 . . . 



65 

 

7 . . . 

8 . . . 

9 . . . 

10 78 82 85 

 
 
The Array Structure 
The array is probably the most widely used data structure; in some languages it is even the only 
one 
available. An array consists of components which are all of the same type, called its base type; it 
is 
therefore called a homogeneous structure. The array is a random-access structure, because all 
components 
can be selected at random and are equally quickly accessible. In order to denote an individual 
component, 
the name of the entire structure is augmented by the index selecting the component. This index is 
to be an 
integer between 0 and n-1, where n is the number of elements, the size, of the array. 
TYPE T = ARRAY n OF T0 
 
Examples 
 
TYPE Row = ARRAY 4 OF REAL 
TYPE Card = ARRAY 80 OF CHAR 
TYPE Name = ARRAY 32 OF CHAR 
A particular value of a variable 
VAR x: Row 
with all components satisfying the equation xi = 2-i, may be visualized as shown in Fig. 1.2. 
Fig. 1.2 Array of type Row with xi = 2-i 
An individual component of an array can be selected by an index. Given an array variable x, we 
denote an array selector by the array name followed by the respective component's index i, and 
we write xi or x[i]. 
Because of the first, conventional notation, a component of an array component is therefore also 
called a subscripted variable. 
The common way of operating with arrays, particularly with large arrays, is to selectively update 
single components rather than to construct entirely new structured values. This is expressed by 
considering an 
array variable as an array of component variables and by permitting assignments to selected 
components, such as for example x[i] := 0.125. Although selective updating causes only a single 
component value to change, from a conceptual point of view we must regard the entire 
composite value as having changed too. 
The fact that array indices, i.e., names of array components, are integers, has a most important 
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consequence: indices may be computed. A general index expression may be substituted in place 
of an index constant; this expression is to be evaluated, and the result identifies the selected 
component. This 
generality not only provides a most significant and powerful programming facility, but at the 
same time it also gives rise to one of the most frequently encountered programming mistakes: 
The resulting value may be outside the interval specified as the range of indices of the array. We 
will assume that decent computing systems provide a warning in the case of such a mistaken 
access to a non-existent array component. 
The cardinality of a structured type, i. e. the number of values belonging to this type, is the 
product of the cardinality of its components. Since all components of an array type T are of the 
same base type T0, we obtain 
card(T) = card(T0)n 
x0 1.0 
x1 0.5 
x2 0.25 
x3 0.125 
19 
Constituents of array types may themselves be structured. An array variable whose components 
are again 
arrays is called a matrix. For example, 
M: ARRAY 10 OF Row 
is an array consisting of ten components (rows), each constisting of four components of type 
REAL, and is 
called a 10 × 4 matrix with real components. Selectors may be concatenated accordingly, such 
that Mij and M[i][j] denote the j th component of row Mi, which is the i th component of M. This 
is usually abbreviated as M[i, j] and in the same spirit the declaration 
M: ARRAY 10 OF ARRAY 4 OF REAL 
can be written more concisely as M: ARRAY 10, 4 OF REAL. 
If a certain operation has to be performed on all components of an array or on adjacent 
components of a section of the array, then this fact may conveniently be emphasized by using the 
FOR satement, as shown in the following examples for computing the sum and for finding the 
maximal element of an array declared as 
 
VAR a: ARRAY N OF INTEGER 
sum := 0; 
FOR i := 0 TO N-1 DO sum := a[i] + sum END 
k := 0; max := a[0]; 
FOR i := 1 TO N-1 DO 
IF max < a[i] THEN k := i; max := a[k] END 
END. 
In a further example, assume that a fraction f is represented in its decimal form with k-1 digits, 
i.e., by an 
array d such that 

f = S i : 0 ≤i < k: di * 10-i or 
f = d0 + 10*d1 + 100*d2 + … + dk-1*10k-1 
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Now assume that we wish to divide f by 2. This is done by repeating the familiar division 
operation for all 
k-1 digits di, starting with i=1. It consists of dividing each digit by 2 taking into account a 
possible carry 
from the previous position, and of retaining a possible remainder r for the next position: 
r := 10*r +d[i]; d[i] := r DIV 2; r := r MOD 2 
This algorithm is used to compute a table of negative powers of 2. The repetition of halving to 
compute 2-1, 
2-2, ... , 2-N is again appropriately expressed by a FOR statement, thus leading to a nesting of 
two FOR 
statements. 
PROCEDURE Power(VAR W: Texts.Writer; N: INTEGER); 
(*compute decimal representation of negative powers of 2*) 
VAR i, k, r: INTEGER; 
d: ARRAY N OF INTEGER; 
BEGIN 
FOR k := 0 TO N-1 DO 
Texts.Write(W, "."); r := 0; 
FOR i := 0 TO k-1 DO 
r := 10*r + d[i]; d[i] := r DIV 2; r := r MOD 2; 
Texts.Write(W, CHR(d[i] + ORD("0"))) 
END ; 
d[k] := 5; Texts.Write(W, "5"); Texts.WriteLn(W) 
END 
END Power. 
The resulting output text for N = 10 is 
20 
.5 
.25 
.125 
.0625 
.03125 
.015625 
.0078125 
.00390625 
.001953125 
.0009765625 
 
A representation of an array structure is a mapping of the (abstract) array with components of 
type T onto the store which is an array with components of type BYTE. The array should be 
mapped in such a way that the computation of addresses of array components is as simple (and 
therefore as efficient) as possible. The  address i of the j-th array component is computed by the 
linear mapping function i = i0 + j*s 
where i0 is the address of the first component, and s is the number of words that a component 
occupies. 
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Assuming that the word is the smallest individually transferable unit of store, it is evidently 
highly desirable that s be a whole number, the simplest case being s = 1. If s is not a whole 
number (and this is the normal case), then s is usually rounded up to the next larger integer S. 
Each array component then occupies 
S words, whereby S-s words are left unused (see Figs. 1.5 and 1.6). Rounding up of the number 
of words 
needed to the next whole number is called padding. The storage utilization factor u is the 
quotient of the 
minimal amounts of storage needed to represent a structure and of the amount actually used: 
u = s / (s rounded up to nearest integer) 
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WEEK 8 :  
 
 Linked  list. 
 
•  Define linked  list . 
•  Define linked  list and  compare it  with  linear list. 
• Discuss the  advantages and disadvantages of   linked  list. 
 
 
 

Lists  

 

Linked list is an algorithm for storing a list of items. It is made of any number of pieces of 
memory (nodes) and each node contains whatever data you are storing along with a pointer (a 
link) to another node. By locating the node referenced by that pointer and then doing the same 
with the pointer in that new node and so on, you can traverse the entire list.  

Because a linked list stores a list of items, it has some similarities to an array. But the two are 
implemented quite differently. An array is a single piece of memory while a linked list contains 
as many pieces of memory as there are items in the list. Obviously, if your links get messed up, 
you not only lose part of the list, but you ill lose any reference to those items no longer included 
in the list (unless you store another pointer to those items somewhere).  

 

Some advantages that a linked list has over an array are that you can quickly insert and delete 
items in a linked list. Inserting and deleting items in an array requires you to either make room 
for new items or fill the "hole" left by deleting an item. With a linked list, you imply rearrange 
those pointers that are affected by the change. linked lists also allow you to have different-sized 
nodes in the list. Some disadvantages to linked lists include that hey are quite difficult to sort. 
Also, you cannot immediately locate, say, the hundredth element in a linked list the way you can 
in an array. Instead, you must traverse the list until you've found the hundredth element. 

Again, the array implementation of our collection has one serious drawback: you must know the 

maximum number of items in your collection when you create it. This presents problems in 

programs in which this maximum number cannot be predicted accurately when the program 

starts up. Fortunately, we can use a structure called a linked list to overcome this limitation.  
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Linked lists 

The linked list is a very flexible dynamic data structure that  is  structure which grows or 

shrinks as the data they hold changes. Lists, stacks and trees are all dynamic structures.: items 

may be added to it or deleted from it at will. A programmer need not worry about how many 

items a program will have to accommodate: this allows us to write robust programs which 

require much less maintenance. A very common source of problems in program maintenance is 

the need to increase the capacity of a program to handle larger collections: even the most 

generous allowance for growth tends to prove inadequate over time!  

In a linked list, each item is allocated space as it is added to the list. A link is kept with each item 

to the next item in the list.  

 

 

Each node of the list has two elements  

1. the item being stored in the list and  

2. a pointer to the next item in the list  

The last node in the list contains a NULL 

pointer to indicate that it is the end or tail of 

the list.  

As items are added to a list, memory for a node is dynamically allocated. Thus the number of 

items that may be added to a list is limited only by the amount of memory available.  

Handle for the list 

The variable (or handle) which represents the list is simply a pointer to the node at the head of the list.  

Adding to a list 

The simplest strategy for adding an item to a list is to:  

a. allocate space for a new node,  

b. copy the item into it,  

c. make the new node's next  pointer point to the current head of the list and  

d. make the head of the list point to the newly allocated node.  
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This strategy is fast and efficient, but each item is added to the head of the list.  

An alternative is to create a structure for the list which contains both head and tail pointers:  

 struct fifo_list { 
  struct node *head; 
  struct node *tail; 
  }; 

The code for AddToCollection  is now trivially modified to make a list in which the item most 

recently added to the list is the list's tail.  

The specification remains identical to that used for the array implementation: the max_item  

parameter to ConsCollection  is simply ignored . 

Thus we only need to change the implementation. As a consequence, applications which use this 

object will need no changes. The ramifications for the cost of software maintenance are 

significant.  

The data structure is changed, but since the details (the attributes of the object or the elements of 

the structure) are hidden from the user, there is no impact on the user's program.  

Points to note:  

a. This implementation of our collection can be substituted for the first one with no changes to a 

client's program. With the exception of the added flexibility that any number of items may be 

added to our collection, this implementation provides exactly the same high level behaviour as 

the previous one.  

b. The linked list implementation has exchanged flexibility for efficiency - on most systems, the 

system call to allocate memory is relatively expensive. Pre-allocation in the array-based 

implementation is generally more efficient. More examples of such trade-offs will be found 

later.  

The study of data structures and algorithms will enable you to make the implementation decision 

which most closely matches your users' specifications. 
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Advantages of  Linked List over its  array  counterpart 

Some advantages that a linked list has over an array are as follows: 

i.)  that you can quickly insert and delete items in a linked list. 

ii.)  Inserting and deleting items in an array requires you to either make room for new items 

or fill the "hole" left by deleting an item.  

iii.) With a linked list, you imply rearrange those pointers that are affected by the change. 

iv.)  linked lists also allow you to have different-sized nodes in the list.  

  Some disadvantages of   linked lists include that :  

i.) They are quite difficult to sort. 

ii.)  Also, you cannot immediately locate, say, the hundredth element in a linked list the 

way you can in an array. Instead, you must traverse the list until you've found the 

hundredth element. 
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WEEK  9 :  

Properties of linked  list. 

This week learning   outcomes: 

• Explain  types of  linked  list. 

 •Applications of  linked  lists. 
 
•  Implementation of  different operations of linked  lists. 
 
 

Types of linked lists 

 Linearly linked list 

 Singly-linked list 

The simplest kind of linked list is a singly-linked list (or slist for short), which has one link per 

node. This link points to the next node in the list, or to a null value or empty list if it is the final 

node. 

A singly-linked list containing two values: the value of the current node and a link to the next node 

A singly linked list's node is divided into two parts. The first part holds or points to information 

about the node, and second part holds the address of next node. A singly linked list travels one 

way. 

 Doubly-linked list 

A more sophisticated kind of linked list is a doubly-linked list or two-way linked list. Each 

node has two links: one points to the previous node, or points to a null value or empty list if it is 

the first node; and one points to the next, or points to a null value or empty list if it is the final 

node. A doubly-linked list containing three integer values: the value, the link forward to the next node, and the link 

backward to the previous node 
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In some very low level languages, XOR-linking offers a way to implement doubly-linked lists 

using a single word for both links, although the use of this technique is usually discouraged. 

Circularly-linked list 

In a circularly-linked list, the first and final nodes are linked together. This can be done for both 

singly and doubly linked lists. To traverse a circular linked list, you begin at any node and follow 

the list in either direction until you return to the original node. Viewed another way, circularly-

linked lists can be seen as having no beginning or end. This type of list is most useful for 

managing buffers for data ingest, and in cases where you have one object in a list and wish to 

iterate through all other objects in the list in no particular order. 

The pointer pointing to the whole list may be called the access pointer.A circularly-linked list 

containing three integer values 

Sentinel nodes 

Linked lists sometimes have a special dummy or sentinel node at the beginning and/or at the end 

of the list, which is not used to store data. Its purpose is to simplify or speed up some operations, 

by ensuring that every data node always has a previous and/or next node, and that every list 

(even one that contains no data elements) always has a "first" and "last" node. Lisp has such a 

design - the special value nil is used to mark the end of a 'proper' singly-linked list, or chain of 

cons cells as they are called. A list does not have to end in nil, but a list that did not would be 

termed 'improper'. 

 Applications of linked lists 

Linked lists are used as a building block for many other data structures, such as stacks, queues 

and their variations. 

The "data" field of a node can be another linked list. By this device, one can construct many 

linked data structures with lists; this practice originated in the Lisp programming language, 

where linked lists are a primary (though by no means the only) data structure, and is now a 

common feature of the functional programming style. 
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Sometimes, linked lists are used to implement associative arrays, and are in this context called 

association lists. There is very little good to be said about this use of linked lists; they are easily 

outperformed by other data structures such as self-balancing binary search trees even on small 

data sets (see the discussion in associative array). However, sometimes a linked list is 

dynamically created out of a subset of nodes in such a tree, and used to more efficiently traverse 

that set. 

Linked lists vs. arrays 

 

Array Linked list 

Indexing O(1) O(n) 

Inserting / Deleting at end O(1) O(1) or O(n)
[2] 

Inserting / Deleting in middle (with iterator) O(n) O(1) 

Persistent No Singly yes 

Locality Great Bad 

Linked lists have several advantages over arrays. Elements can be inserted into linked lists 

indefinitely, while an array will eventually either fill up or need to be resized, an expensive 

operation that may not even be possible if memory is fragmented. Similarly, an array from which 

many elements are removed may become wastefully empty or need to be made smaller. 

Further memory savings can be achieved, in certain cases, by sharing the same "tail" of elements 

among two or more lists — that is, the lists end in the same sequence of elements. In this way, 

one can add new elements to the front of the list while keeping a reference to both the new and 

the old versions — a simple example of a persistent data structure. 
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On the other hand, arrays allow random access, while linked lists allow only sequential access to 

elements. Singly-linked lists, in fact, can only be traversed in one direction. This makes linked 

lists unsuitable for applications where it's useful to look up an element by its index quickly, such 

as heapsort. Sequential access on arrays is also faster than on linked lists on many machines due 

to locality of reference and data caches. Linked lists receive almost no benefit from the cache. 

Another disadvantage of linked lists is the extra storage needed for references, which often 

makes them impractical for lists of small data items such as characters or boolean values. It can 

also be slow, and with a naïve allocator, wasteful, to allocate memory separately for each new 

element, a problem generally solved using memory pools. 

A number of linked list variants exist that aim to ameliorate some of the above problems. 

Unrolled linked lists store several elements in each list node, increasing cache performance while 

decreasing memory overhead for references. CDR coding does both these as well, by replacing 

references with the actual data referenced, which extends off the end of the referencing record. 

A good example that highlights the pros and cons of using arrays vs. linked lists is by 

implementing a program that resolves the Josephus problem. The Josephus problem is an 

election method that works by having a group of people stand in a circle. Starting at a 

predetermined person, you count around the circle n times. Once you reach the nth person, take 

them out of the circle and have the members close the circle. Then count around the circle the 

same n times and repeat the process, until only one person is left. That person wins the election. 

This shows the strengths and weaknesses of a linked list vs. an array, because if you view the 

people as connected nodes in a circular linked list then it shows how easily the linked list is able 

to delete nodes (as it only has to rearrange the links to the different nodes). However, the linked 

list will be poor at finding the next person to remove and will need to recurse through the list 

until it finds that person. An array, on the other hand, will be poor at deleting nodes (or elements) 

as it cannot remove one node without individually shifting all the elements up the list by one. 

However, it is exceptionally easy to find the nth person in the circle by directly referencing them 

by their position in the array. 
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The list ranking problem concerns the efficient conversion of a linked list representation into an 

array. Although trivial for a conventional computer, solving this problem by a parallel algorithm 

is complicated and has been the subject of much research. 

Doubly-linked vs. singly-linked 

Double-linked lists require more space per node (unless one uses xor-linking), and their 

elementary operations are more expensive; but they are often easier to manipulate because they 

allow sequential access to the list in both directions. In particular, one can insert or delete a node 

in a constant number of operations given only that node's address. Comparing with singly-linked 

lists, it requires the previous node's address in order to correctly insert or delete. Some 

algorithms require access in both directions. On the other hand, they do not allow tail-sharing, 

and cannot be used as persistent data structures. 

Circularly-linked vs. linearly-linked 

Circular linked lists are most useful for describing naturally circular structures, and have the 

advantage of regular structure and being able to traverse the list starting at any point. They also 

allow quick access to the first and last records through a single pointer (the address of the last 

element). Their main disadvantage is the complexity of iteration, which has subtle special cases. 

Sentinel nodes (header nodes) 

Doubly linked lists can be structured without using a front and NULL pointer to the ends of the 

list. Instead, a node of object type T set with specified default values is used to indicate the 

"beginning" of the list. This node is known as a Sentinel node and is commonly referred to as a 

"header" node. Common searching and sorting algorithms are made less complicated through the 

use of a header node, as every element now points to another element, and never to NULL. The 

header node, like any other, contains a "next" pointer that points to what is considered by the 

linked list to be the first element. It also contains a "previous" pointer which points to the last 

element in the linked list. In this way, a doubly linked list structured around a Sentinel Node is 

circular. 
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The Sentinel node is defined as another node in a doubly linked list would be, but the allocation 

of a front pointer is unnecessary as the next and previous pointers of the Sentinel node will point 

to itself. This is defined in the default constructor of the list. 

next == this; prev == this; 

If the previous and next pointers point to the Sentinel node, the list is considered empty. 

Otherwise, if one or more elements is added, both pointers will point to another node, and the list 

will contain those elements. [3] 

Sentinel node may simplify certain list operations, by ensuring that the next and/or previous 

nodes exist for every element. However sentinel nodes use up extra space (especially in 

applications that use many short lists), and they may complicate other operations. To avoid the 

extra space requirement the sentinel nodes can often be reused as references to the first and/or 

last node of the list. 

The Sentinel node eliminates the need to keep track of a pointer to the beginning of the list, and 

also eliminates any errors that could result in the deletion of the first pointer, or any accidental 

relocation. 

Linked list operations 

When manipulating linked lists in-place, care must be taken to not use values that you have 

invalidated in previous assignments. This makes algorithms for inserting or deleting linked list 

nodes somewhat subtle. This section gives pseudocode for adding or removing nodes from 

singly, doubly, and circularly linked lists in-place. Throughout we will use null to refer to an 

end-of-list marker or sentinel, which may be implemented in a number of ways. 

Linearly-linked lists 

 Singly-linked lists 

Our node data structure will have two fields. We also keep a variable firstNode which always 

points to the first node in the list, or is null for an empty list. 
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 record Node { 
    data // The data being stored in the node  
    next // A reference  to the next node, null for last node  
 } 
 record List  { 
     Node firstNode   // points to first node of list; null for empty lis t  
 } 

Traversal of a singly-linked list is simple, beginning at the first node and following each next 

link until we come to the end: 

 node := list.firstNode 
 while node not null { 
     (do something with node.data)  
     node := node.next 
 } 

The following code inserts a node after an existing node in a singly linked list. The diagram 

shows how it works. Inserting a node before an existing one cannot be done; instead, you have to 

locate it while keeping track of the previous node. 

 function insertAfter( Node node, Node newNode) { // insert newNode after node  
     newNode.next := node.next 
     node.next    := newNode 
 } 

Inserting at the beginning of the list requires a separate function. This requires updating 

firstNode. 

 function insertBeginning( List  list, Node newNode) { // insert node before 
current first node  
     newNode.next   := list.firstNode 
     list.firstNode := newNode 
 } 

Similarly, we have functions for removing the node after a given node, and for removing a node 

from the beginning of the list. The diagram demonstrates the former. To find and remove a 

particular node, one must again keep track of the previous element. 

 function removeAfter( node  node) { // remove node past this one  
     obsoleteNode := node.next 
     node.next := node.next.next 
     destroy obsoleteNode 
 } 
 function removeBeginning( List  list) { // remove first node  
     obsoleteNode := list.firstNode 
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     list.firstNode := list.firstNode.next          // point past deleted 
node  
     destroy obsoleteNode 
 } 

Notice that removeBeginning() sets list.firstNode to null when removing the last node in the list. 

Since we can't iterate backwards, efficient "insertBefore" or "removeBefore" operations are not 

possible. 

Appending one linked list to another can be inefficient unless a reference to the tail is kept as 

part of the List structure, because we must traverse the entire first list in order to find the tail, and 

then append the second list to this. Thus, if two linearly-linked lists are each of length n, list 

appending has asymptotic time complexity of O(n). In the Lisp family of languages, list 

appending is provided by the append  procedure. 

Many of the special cases of linked list operations can be eliminated by including a dummy 

element at the front of the list. This ensures that there are no special cases for the beginning of 

the list and renders both insertBeginning() and removeBeginning() unnecessary. In this case, the 

first useful data in the list will be found at list.firstNode.next. 

 Doubly-linked lists 

With doubly-linked lists there are even more pointers to update, but also less information is 

needed, since we can use backwards pointers to observe preceding elements in the list. This 

enables new operations, and eliminates special-case functions. We will add a prev field to our 

nodes, pointing to the previous element, and a lastNode field to our list structure which always 

points to the last node in the list. Both list.firstNode and list.lastNode are null for an empty list. 

 record Node { 
    data // The data being stored in the node  
    next // A reference  to the next node; null for last node  
    prev // A reference to the previous node; null for first  node  
 } 
 record List  { 
     Node firstNode   // points to first node of list; null for empty lis t  
     Node lastNode    // points to last node of list; null for empty list  
 } 



81 

 

Iterating through a doubly linked list can be done in either direction. In fact, direction can change 

many times, if desired. 

Forwards 

 node := list.firstNode 
 while node ≠ null 
     <do something with node.data> 
     node := node.next 

Backwards 

 node := list.lastNode 
 while node ≠ null 
     <do something with node.data> 
     node := node.prev 

These symmetric functions add a node either after or before a given node, with the diagram 

demonstrating after: 

 function insertAfter( List  list, Node node, Node newNode) 
     newNode.prev := node 
     newNode.next := node.next 
     if node.next = null 
         list.lastNode := newNode 
     else 
         node.next.prev := newNode 
     node.next := newNode 
 function insertBefore( List  list, Node node, Node newNode) 
     newNode.prev := node.prev 
     newNode.next := node 
     if node.prev is null 
         list.firstNode := newNode 
     else 
         node.prev.next := newNode 
     node.prev    := newNode 

We also need a function to insert a node at the beginning of a possibly-empty list: 

 function insertBeginning( List  list, Node newNode) 
     if list.firstNode = null 
         list.firstNode := newNode 
         list.lastNode  := newNode 
         newNode.prev := null 
         newNode.next := null 
     else 
         insertBefore(list, list.firstNode, newNode ) 

A symmetric function inserts at the end: 
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 function insertEnd( List  list, Node newNode) 
     if list.lastNode = null 
         insertBeginning(list, newNode) 
     else 
         insertAfter(list, list.lastNode, newNode) 

Removing a node is easier, only requiring care with the firstNode and lastNode: 

 function remove( List  list, Node node) 
   if node.prev = null 
       list.firstNode := node.next 
       if node.next != null 
           node.next.prev := null 
   else 
       node.prev.next := node.next 
   if node.next = null 
       list.lastNode := node.prev 
       if node.prev != null 
           node.prev.next := null 
   else 
       node.next.prev := node.prev 
   destroy node 

One subtle consequence of this procedure is that deleting the last element of a list sets both 

firstNode and lastNode to null, and so it handles removing the last node from a one-element list 

correctly. Notice that we also don't need separate "removeBefore" or "removeAfter" methods, 

because in a doubly-linked list we can just use "remove(node.prev)" or "remove(node.next)" 

where these are valid. 

 Circularly-linked list 

Circularly-linked lists can be either singly or doubly linked. In a circularly linked list, all nodes 

are linked in a continuous circle, without using null. For lists with a front and a back (such as a 

queue), one stores a reference to the last node in the list. The next node after the last node is the 

first node. Elements can be added to the back of the list and removed from the front in constant 

time. 

Both types of circularly-linked lists benefit from the ability to traverse the full list beginning at 

any given node. This often allows us to avoid storing firstNode and lastNode, although if the list 

may be empty we need a special representation for the empty list, such as a lastNode variable 

which points to some node in the list or is null if it's empty; we use such a lastNode here. This 
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representation significantly simplifies adding and removing nodes with a non-empty list, but 

empty lists are then a special case. 

 Doubly-circularly-linked lists 

Assuming that someNode is some node in a non-empty list, this code iterates through that list 

starting with someNode (any node will do): 

Forwards 

 node := someNode 
 do 
     do something with node.value 
     node := node.next 
 while node ≠ someNode 

Backwards 

 node := someNode 
 do 
     do something with node.value 
     node := node.prev 
 while node ≠ someNode 

Notice the postponing of the test to the end of the loop. This is important for the case where the 

list contains only the single node someNode. 

This simple function inserts a node into a doubly-linked circularly-linked list after a given 

element: 

 function insertAfter( Node node, Node newNode) 
     newNode.next := node.next 
     newNode.prev := node 
     node.next.prev := newNode 
     node.next      := newNode 

To do an "insertBefore", we can simply "insertAfter(node.prev, newNode)". Inserting an element 

in a possibly empty list requires a special function: 

 function insertEnd( List  list, Node node) 
     if list.lastNode = null 
         node.prev := node 
         node.next := node 
     else 
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         insertAfter(list.lastNode, node) 
     list.lastNode := node 

To insert at the beginning we simply "insertAfter(list.lastNode, node)". Finally, removing a node 

must deal with the case where the list empties: 

 function remove( List  list, Node node) 
     if node.next = node 
         list.lastNode := null 
     else 
         node.next.prev := node.prev 
         node.prev.next := node.next 
         if node = list.lastNode 
             list.lastNode := node.prev; 
     destroy node 

As in doubly-linked lists, "removeAfter" and "removeBefore" can be implemented with 

"remove(list, node.prev)" and "remove(list, node.next)". 

Doubly Linked Lists 
 

Doubly linked lists have 

a pointer to the 

preceding item as well 

as one to the next.  

They permit scanning or searching of the list in both directions. (To go backwards in a simple list, it is 

necessary to go back to the start and scan forwards.) Many applications require searching backwards 

and forwards through sections of a list: for example, searching for a common name like "Kim" in a 

Korean telephone directory would probably need much scanning backwards and forwards through a 

small region of the whole list, so the backward links become very useful. In this case, the node structure 

is altered to have two links:  

struct t_node { 
     void *item; 
     struct t_node *previous; 
     struct t_node *next; 
     } node; 
 
 
 
 
 
 
 



85 

 

WEEK  10:   
 
Non- Linear structures. 
 
This  week  learning outcomes  : 
• Define  a tree . 
• State properties of  tree. 
• Describe different  types  of  tree.( General tree ,  binary tree) 
 • Explain  binary tree reprentation. 
 

Tree Structures 
 Basic Concepts and Definitions 
Srings,  arrays,  and queues  are  linear  types  of  data   structure. However, tree  is a  nonlinear  
data structure is  mainly  used   to  represent  data  containing  a  hierarchical  relationship  
between   elements . Examples of  this feature include records,   family tree and  table of 
contents. 
 

Trees 
 

 

void BST :: clearhelp (NodePtr *P) 

{ 

 if (P == NULL) return; 

 clearhelp (P � Left) 

 clearhelp (P � Right); 

 delete P; 

} 

 

 

 

 

    balance ≅ {left – right} 

A 

B 

D 

E 

H 

C 

 I 

F 

G 
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        Almost perfect ≅≅≅≅ balanced 

  

In databases, you use this type of Array based implementation. 

Height-balanced trees = AVL trees 

To insert and maintain balance: 

1. Travel down the appropriate branch and keep track of balance. Left deepest node balance 

+1 or –1. This is called the pivot node. 

2. From pivot-down, recompute all balance factors along insertion path. 

3. Determine whether newly computed balance changes |1| � |2| 

4. There was a change-manipulated pointers centered at pivot node to restore balance. 

(AVL Rotation) 

4 cases – – discussing unbalancing 

• Insert into left subtree of a left child of pivot node. 

• Insert into right tree of right child of pivot node. 

• Insert into right subtree of left child. 

• Insert into left subtree of right child. 

AVL Trees: 

 Pivot      Pivot       Pivot 

 

 

  BF = 1    BF=2     BF=0 

 

 

           BF=0 

        BF= -1            BF = 0        

 

 

 BF = 0 

         Y 

 

R - L 
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X = Node [Pivot].Left; 

Y = Node [X].Right; 

Node {Pivot}.Left = Node [Y].Right; 

Node [X].Right = Node [Y].Left; 

Node [Y].Left = X; 

Node [Y].Right = Pivot; 

Pivot = Y; 

Subcase # 1 

 

if Node [Pivot].BF = 0 then 

{ 

 Node [Node [Pivot].Left].BF = 0 

 Node [Node [Pivot].Right].BF = 0 

} 

Subcase # 2 

else if Node [Pivot].BF = 1 then 

{ 

 Node [Pivot].BF = 0 

Node [Node [Pivot].Left].BF = 1 

 Node [Node [Pivot].Right].BF = -1 

} 

 

 

Subcase # 3 

else Node [Pivot].BF = 0  

{ 
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 Node [Pivot].BF = 0 

             Node [Node [Pivot].Left].BF = +1 

 Node [Node [Pivot].Right].BF = 0 

Priority Ques: 

1. Linked List 

Insert by priority order. 

2. Array 

Sort it and rearrange the elements. 

3. Queue – Search 

4. Heap Sort – Partial Ordered tree. 

5. Array of Queues – Small & Priorities. 

 

The priority of Node V is not greater than its children. 

Trees that have lots of dependents (general trees) 

 

   3 

5 9   Divide & Conquer 

6  8 9  10  O (log(n)) 

10 18 
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Left pointer points to a list of children. 

Right pointer points to a list of siblings. 

Other way to implement this is Array of Pointers. 

In-Order Traversal: 

Traverse    forest    of first tree inorder. 

• Visit root of first tree. 

 

• Visit forest of remaining trees in order. 

Algorithm: 

void intra (Ptr K) 

{ 

 if ( R == NULL ) then 

 return 

 else 

 { 

  intra ( R � child ); 

  R � Info >> cout; 

  intra ( R � sib ); 

 } 

} 
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WEEK  11:  
 
Non- Linear structures. 
 
This  week  learning outcomes  : 
• Describe   binary tree. 
 • Analysis of  a complete  tree .  
 
 

Binary Trees 

The simplest form of tree is a binary tree. A binary tree consists of  

a. a node (called the root node) and  

b. left and right sub-trees. 

Both the sub-trees are themselves binary trees.  

You now have a recursively defined data structure. (It is also possible to define a list recursively: 

can you see how?)  

 

A binary tree 

The nodes at the lowest levels of the tree (the ones with no sub-trees) are called leaves.  
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In an ordered binary tree,  

1. the keys of all the nodes in the left sub-tree are less than that of the root,  

2. the keys of all the nodes in the right sub-tree are greater than that of the root,  

3. the left and right sub-trees are themselves ordered binary trees.  

Data Structure 

The data structure for the tree implementation simply adds left and right pointers in place of the next 

pointer of the linked list implementation. [Load the tree struct.]  

The AddToCollection  method is, naturally, recursive. [ Load the AddToCollection  method.]  

Similarly, the FindInCollection  method is recursive. [ Load the FindInCollection  method.]  

Analysis 

Complete Trees 

Before we look at more general cases, let's make the optimistic assumption that we've managed to fill 

our tree neatly, ie that each leaf is the same 'distance' from the root.  

 

A complete tree 

This forms a complete tree, whose 

height is defined as the number of links 

from the root to the deepest leaf. 

First, we need to work out how many nodes, n, we have in such a tree of height, h.  

Now, 

n = 1 + 2
1
 + 2

2
 + .... + 2

h
 

From which we have,  

n = 2
h+1

 - 1 

and  
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h = floor( log2n )  

Examination of the Find  method shows that in the worst case, h+1 or ceiling( log2n ) 

comparisons are needed to find an item. This is the same as for binary search.  

However, Add also requires ceiling( log2n ) comparisons to determine where to add an item. 

Actually adding the item takes a constant number of operations, so we say that a binary tree 

requires O(logn) operations for both adding and finding an item - a considerable improvement 

over binary search for a dynamic structure which often requires addition of new items.  

Deletion is also an O(logn) operation.  

General binary trees 

However, in general addition of items to an ordered tree will not produce a complete tree. The worst 

case occurs if we add an ordered list of items to a tree.  

What will happen? Think before you click here!  

This problem is readily overcome: we use a structure known as a heap. However, before looking 

at heaps, we should formalise our ideas about the complexity of algorithms by defining carefully 

what O(f(n)) means.  

Key terms 
Root Node  

Node at the "top" of a tree - the one from which all operations on the tree commence. The root 

node may not exist (a NULL tree with no nodes in it) or have 0, 1 or 2 children in a binary tree.  

Leaf Node  

Node at the "bottom" of a tree - farthest from the root. Leaf nodes have no children.  

Complete Tree  

Tree in which each leaf is at the same distance from the root. A more precise and formal 

definition of a complete tree is set out later.  

Height  

Number of nodes which must be traversed from the root to reach a leaf of a tree.   
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WEEK  12:  
 
Non- Linear structures. 
 
This  week  learning outcomes  : 
• Binary  tree structure revisited . 
• State properties of  tree. 
 • Basic Operations on Binary Trees. 
 

Binary Tree 
A  binary  tree T  , is  defined  as  a  finite  set of  elements  called   nodes, such  that  

a.) T  is  empty (called  the  null  tree or  empty tree) or  
b.) T contains  a  distinguished  node  R, called  the  root  of  T, and  the  remaining   nodes 

of  T  form an  order   pair   of   disjoint  binary  trees T1 and T2. 
If  T  contains  a  root  R,  then  the  two  trees T1 and T2  are  called  respectively,  the  left  and   
right  sub-tree of R , if  T1  is  nonempty,   then its root  is  called  the  left  successor  of  R , 
similarly if  T2  is   nonempty,  then  its root  is  called the  right  successor  of  R. 
 
                                          A 
 
 
 
 
  
                       
 
 
 
 
 
 
 
 
                           
 
 
 
A  left-downward   slanted   line  from  a  node  N indicates  a  left  successor  of  N,  and  a  
right-downward  slanted   line   from  N   indicates a  right   successor   of  N . Observe   that : 
       i.) B is  a  left successor   and C  is a right  successor  of  the  node  A. 
       ii.)       The  left  sub-tree  of  the   root  A  consists  of  the  nodes  B,D,E and F . 

iii.)  The  right  sub-tree  of  A  consists  of  the  nodes C,G,H,J,K ,,and L. 

G

A 

C 

D

A 

      J 

H

A

K

A 

B 
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Any  node  N  in a  binary  tree  T  has  either  0,1, or  2   successors. The  nodes A,B,C and H 
have 2  successors,  the  nodes  E and J  have  only  one   successor, and   the   nodes D,F,G,L, 
and  K  have  no  successors. The  nodes  with  zero  successors   are  called  terminal  nodes. 
 
Terminology 
 Suppose N is  a   node  in T  with  left  successor  S1  and right   successor  S2  then  N  is  
called   the  parent  (or  father)  of  S1  and S2 .  Analogously,  S1  is  called   the  left  child        
( or son ) of N and S2 is  called  the  right  child (or son).  Furthermore, S1 and S2  are  said   to  
be  siblings (or  brothers).  Every  node  N  in a  binary  tree  T, except  the   root   has  a  unique  
parent, called   the  predecessor of  N.  
The  terms, descendant  and  ancestor  have   their   usual   meaning.  That  is  ,   a  node  L  is  
called   a descendant  of  node  N (and N is called an   ancestor  of  L) if  there  is  a  succession  
of  children  from  N to L. In particular,  L is  called  a  left or  right   descendant  of  N  
according  to   whether  L  belongs  to  the  left   or  right   sub-tree   of  N . The   line   drawn   
from   a  node  N of  T   to   a  successor  is  called  an  edge, and   a  sequence  of  consecutive   
edges  is  called   a  path.  A   terminal  node  is   called  a  leaf, and  path  ending   in  a leaf  is  
called   a  branch.  Each   node  in   a  binary  tree  T   is  assigned   a  level  number  as  follows: 
 
The  root R of the  tree T is  assigned   the  level  number  0 , and  every  other  node is  assigned  
a  level   number   which   is 1  more  than  the  level   number  of  its   parent .  Those   nodes  
with  the  same  level   are   said  to  belong   to  the  same  generation . 
 
The  depth (or height) of  a  tree  T  is  the  maximum  number of  nodes  in a  branch  of  T. This 
turns  ont  to  be  1  more   than  the  largest  level   number of T.   Binary  tree T and T1 are  said  
to   be  similar  if  they  have   the  same   structure  or  in  other  words, if  they  have    the  same   
shape . The  trees   are   said  to  be  copies if  they  are  similar  and  if  they   have   the  same   
contents  at  corresponding  nodes. 
 
 TRAVERSING  BINARY  TREES 
 
Basic Operations on Binary Trees 
There are many tasks that may have to be perfomed on a tree structure; a common one is that of 
executing a given operation P on each element of the tree. P is then understood to be a parameter 
of the more general task of visting all nodes or, as it is usually called, of tree traversal. If we 
consider the task as a single sequential process, then the individual nodes are visited in some 
specific order and may be considered as being laid out in a linear arrangement. In fact, the 
description of many algorithms is considerably facilitated if we can talk about processing the 
next element in the tree based in an underlying order. There are three principal orderings that 
emerge naturally from the structure of trees. Like the treestructure itself, they are conveniently 
expressed in recursive terms. Referring to the binary tree . 
Let  R denote the root and A and B denote the left and right subtrees, the three orderings are 
1. Preorder: R, A, B (visit root before the subtrees) 
2. Inorder: A, R, B 
3. Postorder: A, B, R (visit root after the subtrees) 
In other   words, there  are  three (3)  standard  ways  of  travasing  a  binary  tree  T  with  root  
R.  These  three  algorithms  are  called  preorder, inorder, and postorder. 
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Preorder: 

a.) Process  the  root R. 
b.) Traverse  the left  sub-tree  of R   in  preorder. 
c.) Traverse  the  right   sub-tree of  R in  Preorder.  

 
Inorder: 
 

a.) Traverse the   left  sub-tree of  R inorder. 
b.) Process  the   root  R   . 
c.) Traverse  the  right   sub-tree of  R inorder . 

 
Postorder: 

a.) Traverse  the left  sub-tree  of R   in  preorder. 
b.) Traverse  the  right   sub-tree of  R in  Postorder. 
c.) Process  the  root R. 

 
Traverse  the following  binary tree using: 
i.) Preorder algorithm 
ii.) Inorder algorithm 
iii.)  Postorder  algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution: 

 
i.) Preorder algorithm: 12489510367 

 
ii.) Inorder algorithm:     ? 

 
iii.)  Postorder  algorithm: ? 

 

1 

2 3 

4 5 6 7 

10 

8 9 
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WEEK  13: 
 
Sorting  
 
This week Learning outcomes : 
• Define sorting. 
• Explain  various   categories of  sorting. 

 Sorting  

Sorting is one of the most important operations performed by computers. In the days of magnetic 
tape storage before modern data-bases, it was almost certainly the most common operation 
performed by computers as most "database" updating was done by sorting transactions and 
merging them with a master file. It's still important for presentation of data extracted from 
databases: most people prefer to get reports sorted into some relevant order before wading 
through pages of data!  

 Sorting is generally understood to be the process of rearranging a given set of objects in a 
specific order. The purpose of sorting is to facilitate the later search for members of the sorted 
set. As such it is an almost universally performed, fundamental activity. Objects are sorted in 
telephone books, in income tax files, in tables of contents, in libraries, in dictionaries, in 
warehouses, and almost everywhere that stored objects have to be searched and retrieved. Even 
small children are taught to put their things "in order", and they are confronted with some sort of 
sorting long before they learn anything about arithmetic. 
Hence, sorting is a relevant and essential activity, particularly in data processing. What else 
would be easier to sort than data! Nevertheless, our primary interest in sorting is devoted to the 
even more fundamental techniques used in the construction of algorithms. There are not many 
techniques that do not occur somehere in connection with sorting algorithms. In particular, 
sorting is an ideal subject to demonstrate a great diversity of algorithms, all having the same 
purpose, many of them being optimal in some sense, and most of them having advantages over 
others. It is therefore an ideal subject to demonstrate the necessity of 
performance analysis of algorithms. The example of sorting is moreover well suited for showing 
how a very significant gain in performance may be obtained by the development of sophisticated 
algorithms when obvious methods are readily available. 
 
Different categories of   sorting 
The dependence of the choice of an algorithm on the structure of the data to be processed -- an 
ubiquitous phenomenon -- is so profound in the case of sorting that sorting methods are generally 
classified into two categories, namely: 

i.)  sorting of arrays, and 
ii.)  sorting of (sequential) files. 

 
 The two classes are often called internal and external sorting because arrays are 
stored in the fast, high-speed, random-access "internal" store of computers and files 
are appropriate on the slower, but more spacious "external" stores based on  
mechanically moving devices (disks and tapes).  
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WEEK  14:  
 
Different  types of sorting  techniques. 
 
This week Learning outcomes : 
• Explain Sorting by insertion. 
• Explain  Sorting by insertion. 
• Explain Sorting by exchange. 
 

Different  types of sorting  techniques. 
Sorting methods that sort items in situ can be classified into three principal categories according 
to their underlying method: 
Sorting by insertion 
Sorting by selection 
Sorting by exchange 
These three pinciples will now be examined and compared. The procedures operate on a global 
variable a whose components are to be sorted in situ, i.e. without requiring additional, temporary 
storage. The components are the keys themselves. We discard other data represented by the 
record type Item, thereby simplifying matters. In all algorithms to be developed in this chapter, 
we will assume the presence of an array a and a constant n, the number of elements of a: 
 
 
TYPE Item = INTEGER; 
VAR a: ARRAY n OF Item 
 
 Sorting by Straight Insertion 
This method is widely used by card players. The items (cards) are conceptually divided into a 
destination sequence a1 ... ai-1 and a source sequence ai ... an. In each step, starting with i = 2 
and incrementing i by unity, the i th element of the source sequence is picked and transferred into 
the destination sequence by inserting it at the appropriate place. 
47 
Initial Keys: 44 55 12 42 94 18 06 67 
i=1 44 55 12 42 94 18 06 67 
i=2 12 44 55 42 94 18 06 67 
i=3 12 42 44 55 94 18 06 67 
i=4 12 42 44 55 94 18 06 67 
i=5 12 18 42 44 55 94 06 67 
i=6 06 12 18 42 44 55 94 67 
i=7 06 12 18 42 44 55 67 94 
 A Sample Process of Straight Insertion Sorting. 
The process of sorting by insertion is shown in an example of eight numbers chosen at random . 
The algorithm of straight insertion is as  follows: 
 
FOR i := 1 TO n-1 DO 
x := a[i]; 
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insert x at the appropriate place in a0 ... ai 
END 
 
In the process of actually finding the appropriate place, it is convenient to alternate between 
comparisons and moves, i.e., to let x sift down by comparing x with the next item aj, and either 
inserting x or moving aj to the right and proceeding to the left. We note that there are two distinct 
conditions that may cause the termination of the sifting down process: 
1. An item aj is found with a key less than the key of x. 
2. The left end of the destination sequence is reached. 
PROCEDURE StraightInsertion; 
VAR i, j: INTEGER; x: Item; 
BEGIN 
FOR i := 1 TO n-1 DO 
x := a[i]; j := i; 
WHILE (j > 0) & (x < a[j-1] DO a[j] := a[j-1]; DEC(j) END ; 
a[j] := x 
END 
END StraightInsertion 
Analysis of straight insertion. The number Ci of key comparisons in the i-th sift is at most i-1, at 
least 1, and-- assuming that all permutations of the n keys are equally probable -- i/2 in the 
average. The number Mi of moves (assignments of items) is Ci + 2 (including the sentinel). 
Therefore, the total numbers of comparisons 
and moves are 
Cmin = n-1 Mmin = 3*(n-1) 
Cave = (n2 + n - 2)/4 Mave = (n2 + 9n - 10)/4 
Cmax = (n2 + n - 4)/4 Mmax = (n2 + 3n - 4)/2 
The minimal numbers occur if the items are initially in order; the worst case occurs if the items 
are initially in reverse order. In this sense, sorting by insertion exhibits a truly natural behavior. It 
is plain that the given algorithm also describes a stable sorting process: it leaves the order of 
items with equal keys unchanged. 
The algorithm of straight insertion is easily improved by noting that the destination sequence  
a0 ... ai-1, in which the new item has to be inserted, is already ordered. Therefore, a faster 
method of determining the insertion point can be used. The obvious choice is a binary search that 
samples the destination sequence in the middle and continues bisecting until the insertion point is 
found. The modified sorting algorithm is called binary insertion. 
PROCEDURE BinaryInsertion(VAR a: ARRAY OF Item; n: INTEGER); 
VAR i, j, m, L, R: INTEGER; x: Item; 
BEGIN 
FOR i := 1 TO n-1 DO 
48 
x := a[i]; L := 1; R := i; 
WHILE L < R DO 
m := (L+R) DIV 2; 
IF a[m] <= x THEN L := m+1 ELSE R := m END 
END ; 
FOR j := i TO R+1 BY -1 DO a[j] := a[j-1] END ; 
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a[R] := x 
END 
END BinaryInsertion 
 Sorting by Straight Selection 
This method is based on the following principle: 
1. Select the item with the least key. 
2. Exchange it with the first item a0. 
3. Then repeat these operations with the remaining n-1 items, then with n-2 items, until only one 
item -- the largest -- is left. 
This method is shown on the same eight keys as given above. 
Initial keys 44 55 12 42 94 18 06 67 
06 55 12 42 94 18 44 67 
06 12 55 42 94 18 44 67 
06 12 18 42 94 55 44 67 
06 12 18 42 94 55 44 67 
49 
06 12 18 42 44 55 94 67 
06 12 18 42 44 55 94 67 
06 12 18 42 44 55 67 94 
 
 
 A Sample Process of Straight Selection Sorting. 
The algorithm is formulated as follows: 
FOR i := 0 TO n-1 DO 
assign the index of the least item of ai ... an-1 to k; 
exchange ai with ak 
END 
This method, called straight selection, is in some sense the opposite of straight insertion: Straight 
insertion 
considers in each step only the one next item of the source sequence and all items of the 
destination array to 
find the insertion point; straight selection considers all items of the source array to find the one 
with the least 
key and to be deposited as the one next item of the destination sequence.. 
PROCEDURE StraightSelection; 
VAR i, j, k: INTEGER; x: Item; 
BEGIN 
FOR i := 0 TO n-2 DO 
k := i; x := a[i]; 
FOR j := i+1 TO n-1 DO 
IF a[j] < x THEN k := j; x := a[k] END 
END ; 
a[k] := a[i]; a[i] := x 
END 
END StraightSelection 
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 Sorting by Straight Exchange 
The classification of a sorting method is seldom entirely clear-cut. Both previously discussed 
methods can  also be viewed as exchange sorts. In this section, however, we present a method in 
which the exchange of two items is the dominant characteristic of the process. The subsequent 
algorithm of straight exchanging is based on the principle of comparing and exchanging pairs of 
adjacent items until all items are sorted. 
As in the previous methods of straight selection, we make repeated passes over the array, each 
time sifting the least item of the remaining set to the left end of the array. If, for a change, we 
view the array to be in a  vertical instead of a horizontal position, and -- with the help of some 
imagination -- the items as bubbles in a  water tank with weights according to their keys, then 
each pass over the array results in the ascension of a 
bubble to its appropriate level of weight (see Table  below). This method is widely known as the 
Bubblesort. 
I = 1 2 3 4 5 6 7 8 
44 06 06 06 06 06 06 06 
55 44 12 12 12 12 12 12 
12 55 44 18 18 18 18 18 
42 12 55 44 42 42 42 42 
94 42 18 55 44 44 44 44 
18 94 42 42 55 55 55 55 
06 18 94 67 67 67 67 67 
67 67 67 94 94 94 94 94 
 A Sample of Bubblesorting. 
 
PROCEDURE BubbleSort; 
VAR i, j: INTEGER; x: Item; 
BEGIN 
FOR i := 1 TO n-1 DO  
FOR j := n-1 TO i BY -1 DO 
IF a[j-1] > a[j] THEN 
x := a[j-1]; a[j-1] := a[j]; a[j] := x 
END 
END 
END 
END BubbleSort 
 
 Insertion Sort by Diminishing Increment 
A refinement of the straight insertion sort was proposed by D. L. Shell in l959. The method is 
explained and demonstrated on our standard example of eight items. First, all items that are four 
positions  apart are grouped and sorted separately. This process is called a 4-sort. In this example 
of eight items, each group contains exactly two items. After this first pass, the items are 
regrouped into groups with items two positions apart and then sorted anew. This process is called 
a 2-sort. Finally, in a third pass, all items are sorted in an ordinary sort or 1-sort. 



101 

 

One may at first wonder if the necessity of several sorting passes, each of which involves all 
items, does not introduce more work than it saves. However, each sorting step over a chain either 
involves relatively few  items or the items are already quite well ordered and comparatively few 
rearrangements are required. 
It is obvious that the method results in an ordered array, and it is fairly obvious that each pass 
profits from previous passes (since each i-sort combines two groups sorted in the preceding 2i-
sort). It is also obvious that any sequence of increments is acceptable, as long as the last one is 
unity, because in the worst case the last pass does all the work. It is, however, much less obvious 
that the method of diminishing increments yields 
even better results with increments other than powers of 2. 
44 55 12 42 94 18 06 67 
4-sort yields 44 18 06 42 94 55 12 67 
2-sort yield 06 18 12 42 44 55 94 67 
1-sort yields 06 12 18 42 44 55 67 94 
Table 2.5 An Insertion Sort with Diminishing Increments. 
The procedure is therefore developed without relying on a specific sequence of increments. The 
T increments are denoted by h0, h1, ... , hT-1 with the conditions 
ht-1 = 1, hi+1 < hi 
 
 
The algorithm is described by the procedure Shellsort [2.11] for t = 4: 
PROCEDURE ShellSort; 
CONST T = 4; 
VAR i, j, k, m, s: INTEGER; 
x: Item; 
h: ARRAY T OF INTEGER; 
BEGIN h[0] := 9; h[1] := 5; h[2] := 3; h[3] := 1; 
FOR m := 0 TO T-1 DO 
k := h[m]; 
FOR i := k+1 TO n-1 DO 
x := a[i]; j := i-k; 
WHILE (j >= k) & (x < a[j]) DO a[j+k] := a[j]; j := j-k END ; 
a[j+k] := x 
END 
END 
END ShellSort 
Analysis of Shellsort. The analysis of this algorithm poses some very difficult mathematical 
problems, many of which have not yet been solved. In particular, it is not known which choice of 
increments yields the best results. One surprising fact, however, is that they should not be 
multiples of each other. This will avoid the  phenomenon evident from the example given above 
in which each sorting pass combines two chains that 
before had no interaction whatsoever. It is indeed desirable that interaction between various 
chains takes  place as often as possible, and the following theorem holds: If a k-sorted sequence 
is i-sorted, then it  remains k-sorted. Knuth [2.8] indicates evidence that a reasonable choice of 
increments is the sequence  (written in reverse order) 
1, 4, 13, 40, 121, ... 
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where hk-1 = 3hk+1, ht = 1, and t = k×log3(n) - 1. He also recommends the sequence 
1, 3, 7, 15, 31, ... 
where hk-1 = 2hk+1, ht = 1, and t = k×log2(n) - 1. For the latter choice, mathematical analysis 
yields an effort proportional to n2 required for sorting n items with the Shellsort algorithm. 
Although this is a significant  improvement over n2, we will not expound further on this method, 
since even better algorithms are known. 
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WEEK  15:  
 
Different sorting and  searching . 
 
This week Learning outcomes : 
• Explain  various  sorting techniques. 
• Explain linear and  binary search algorithm. 

Different types of  sorting revisited: 

 Bubble, Selection, Insertion Sorts 

There are a large number of variations of one basic strategy for sorting. It's the same strategy that 
you use for sorting your bridge hand. You pick up a card, start at the beginning of your hand and 
find the place to insert the new card, insert it and move all the others up one place.  
 
 
/* Insertion sort for integers */ 
 
void insertion( int a[], int n ) { 
/* Pre-condition: a contains n items to be sorted * / 
    int i, j, v; 
    /* Initially, the first item is considered 'sor ted' */ 
    /* i divides a into a sorted region, x<i, and a n 
       unsorted one, x >= i */ 
    for(i=1;i<n;i++) { 
        /* Select the item at the beginning of the 
           as yet unsorted section */ 
        v = a[i]; 
        /* Work backwards through the array, findin g where v  
           should go */ 
        j = i; 
        /* If this element is greater than v, 
              move it up one */ 
        while ( a[j-1] > v ) { 
          a[j] = a[j-1]; j = j-1; 
          if ( j <= 0 ) break; 
          } 
        /* Stopped when a[j-1] <= v, so put v at po sition j */ 
        a[j] = v; 
        } 
    } 

Bubble Sort 

Another variant of this procedure, called bubble sort, is commonly taught:  
/* Bubble sort for integers */ 
#define SWAP(a,b)   { int t; t=a; a=b; b=t; } 
 
void bubble( int a[], int n ) 
/* Pre-condition: a contains n items to be sorted * / 
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    { 
    int i, j; 
    /* Make n passes through the array */ 
    for(i=0;i<n;i++) 
        { 
        /* From the first element to the end 
           of the unsorted section */ 
        for(j=1;j<(n-i);j++) 
           { 
           /* If adjacent items are out of order, s wap them */ 
           if( a[j-1]>a[j] ) SWAP(a[j-1],a[j]); 
           } 
        } 
 

Analysis 

Each of these algorithms requires n-1 passes: each pass places one item in its correct place. (The 
nth is then in the correct place also.) The ith pass makes either ior n - i comparisons and moves. 
So:  

 
or O(n2) - but we already know we can use heaps to get an O(n logn) algorithm. Thus these 
algorithms are only suitable for small problems where their simple code makes them faster than 
the more complex code of the O(n logn) algorithm. As a rule of thumb, expect to find an O(n 
logn) algorithm faster for n>10 - but the exact value depends very much on individual machines!.  

They can be used to squeeze a little bit more performance out of fast sort algorithms  

Quick Sort  

Quicksort is a very efficient sorting algorithm invented by C.A.R. Hoare. It has two phases:  

• the partition phase and  
• the sort phase.  

As we will see, most of the work is done in the partition phase - it works out where to divide the 
work. The sort phase simply sorts the two smaller problems that are generated in the partition 
phase.  

This makes Quicksort a good example of the divide and conquer strategy for solving problems. 
(You've already seen an example of this approach in the binary search procedure.) In quicksort, 
we divide the array of items to be sorted into two partitions and then call the quicksort procedure 
recursively to sort the two partitions, ie we divide the problem into two smaller ones and conquer 
by solving the smaller ones. Thus the conquer part of the quicksort routine looks like this:  
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quicksort( void *a, int low, int 
high ) 
  { 
  int pivot; 
  /* Termination condition! */ 
  if ( high > low ) 
    { 
    pivot = partition( a, low, 
high ); 
    quicksort( a, low, pivot-1 
); 
    quicksort( a, pivot+1, high 
); 
    } 
  } 

 
Initial Step - First Partition 

 
Sort Left Partition in the same way 

For the strategy to be effective, the partition phase must ensure that all the items in one part (the 
lower part) and less than all those in the other (upper) part.  

To do this, we choose a pivot element and arrange that all the items in the lower part are less than 
the pivot and all those in the upper part greater than it. In the most general case, we don't know 
anything about the items to be sorted, so that any choice of the pivot element will do - the first 
element is a convenient one.  

As an illustration of this idea, you can view this animation, which shows a partition algorithm in 
which items to be sorted are copied from the original array to a new one: items smaller than the 
pivot are placed to the left of the new array and items greater than the pivot are placed on the 
right. In the final step, the pivot is dropped into the remaining slot in the middle.  

  

Searching  

Computer systems are often used to store large amounts of data from which individual records 

must be retrieved according to some search criterion. Thus the efficient storage of data to 

facilitate fast searching is an important issue. In this section, we shall investigate the 

performance of some searching algorithms and the data structures which they use.  

 Linear  Search 

The  simplest      type of  search  is  linear   search ,  where  every  item  in  the  item   in  the  table   is    

searched  in  sequence .  If  the  the  table   is  sorted  on  the  field  being  searched  ( the   key   field) 

then  the  search   can be   be  abandoned   as  soon  as  the  search   value  exeeds  the   field. 
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The  pseudocode  for  a  procedure  to  search  the   table   for  a  given  course  code  is  as    follows: 

Procedure SEACH_Table 

Begin 

 Subscript=0 

 Code_found = false 

 Repeat 

  Subscript =subscript  + 1 

  If   course[substript].cource_code=Item_sought 

    Then code_found = true 

  Endif 

Until  code_found=true or  subscript=no_of_elements 

  Or  courses[subscript].course_code  >  item_sought 

End procedure 

The  procedure  sets  a  boolean  variable  code_founf  to  true  if  the  course  code  is  found. 

Binary Search 

However, if we place our items in an array and sort them in either ascending or descending order on the 

key first, then we can obtain much better performance with an algorithm called binary search. 

Binary search is a technique for searching an ordered list in which we first check the middle item and - 

based on that comparison - "discard" half the data. The same procedure is then applied to the remaining 

half until a match is found or there are no more items left. 

That is In binary search, we first compare the key with the item in the middle position of the 

array. If there's a match, we can return immediately. If the key is less than the middle key, then 

the item sought must lie in the lower half of the array; if it's greater then the item sought must lie 

in the upper half of the array. So we repeat the procedure on the lower (or upper) half of the 

array.  
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Our FindInCollection  function can now be implemented:  

static void *bin_search( collection c, int low, int  high, void *key ) { 
 int mid; 
 /* Termination check */ 
 if (low > high) return NULL; 
 mid = (high+low)/2; 
 switch (memcmp(ItemKey(c->items[mid]),key,c->size) ) { 
  /* Match, return item found */ 
  case 0: return c->items[mid]; 
  /* key is less than mid, search lower half */ 
  case -1: return bin_search( c, low, mid-1, key); 
  /* key is greater than mid, search upper half */ 
  case 1: return bin_search( c, mid+1, high, key );  
  default : return NULL; 
  } 
 
 
void *FindInCollection( collection c, void *key ) {  
/* Find an item in a collection 
   Pre-condition:  
 c is a collection created by ConsCollection 
 c is sorted in ascending order of the key 
 key != NULL 
   Post-condition: returns an item identified by ke y if 
   one exists, otherwise returns NULL 
*/ 
 int low, high; 
 low = 0; high = c->item_cnt-1; 
 return bin_search( c, low, high, key ); 
} 

Points to note:  

a. bin_search  is recursive: it determines whether the search key lies in the lower or upper half of 

the array, then calls itself on the appropriate half.  

b. There is a termination condition (two of them in fact!)  

i. If low > high  then the partition to be searched has no elements in it and  

ii. If there is a match with the element in the middle of the current partition, then we can 

return immediately.  

c. AddToCollection  will need to be modified to ensure that each item added is placed in its 

correct place in the array. The procedure is simple:  

i. Search the array until the correct spot to insert the new item is found,  

ii. Move all the following items up one position and  

iii. Insert the new item into the empty position thus created.  

d. bin_search  is declared static . It is a local function and is not used outside this class: if it 

were not declared static, it would be exported and be available to all parts of the program. The 

static declaration also allows other classes to use the same name internally.  
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static  reduces the visibility of a function an should be used wherever possible to control 

access to functions!  

Analysis 

 

Each step of the algorithm divides 

the block of items being searched 

in half. We can divide a set of n 

items in half at most log2 n times.  

Thus the running time of a 

binary search is proportional to 

log n and we say this is a O(log 

n) algorithm.  
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Binary search requires a more complex program than 

our original search and thus for small n it may run 

slower than the simple linear search. However, for 

large n, 

 

Thus at large n, log n is much smaller than n, 

consequently an O(log n) algorithm is much faster 

than an O(n) one.  
 

Plot of n and log n vs n . 

We will examine this behaviour more formally in a later section. First, let's see what we can do 

about the insertion (AddToCollection ) operation.  

In the worst case, insertion may require n operations to insert into a sorted list.  

1. We can find the place in the list where the new item belongs using binary search in O(log n) 

operations.  

2. However, we have to shuffle all the following items up one place to make way for the new one. 

In the worst case, the new item is the first in the list, requiring n move operations for the 

shuffle!  

A similar analysis will show that deletion is also an O(n) operation.  

If our collection is static, ie it doesn't change very often - if at all - then we may not be 

concerned with the time required to change its contents: we may be prepared for the 

initial build of the collection and the occasional insertion and deletion to take some time. 

In return, we will be able to use a simple data structure (an array) which has little 

memory overhead.  
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However, if our collection is large and dynamic, ie items are being added and deleted 

continually, then we can obtain considerably better performance using a data structure 

called a tree.  

Note that Big Oh Is a notation formally describing the set of all functions which 
are bounded above by a nominated function.  
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