
1

UNESCO-NIGERIA TECHNICAL & VOCATIONAL

EDUCATION REVITALISATION PROJECT-PHASE II

YEAR I- SE MESTER 2

THEORY

NATIONAL DIPLOMA IN

COMPUTER SCIENCE

DATA STRUCTURES AND ALGORITHMS

COURSE CODE: COM 124

2

Course contents

Table of Contents
Week 1 : Concept of data structures ... 5

Main functions of data Structures: ... 5

Charasteristics of algorithm: ... 6

Data: .. 6

Some abstraction simplification of reality. ... 6

Abstract Data Type: ... 6

Language Independent ADT Specification .. 6

Fundamental Data Structure .. 7

Introduction .. 16

Definitions ... 16

Relations.. 21

Symbol... 21

Language and symbols .. 22

Relational Operators 3
 ... 22

Logic Symbols 3
 .. 23

Set Symbols 3
 .. 23

Miscellaneous Math Symbols 3
 .. 24

Equivalence relation ... 24

Examples of equivalence relations ... 24

Examples of relations that are not equivalences .. 25

Connection to other relations ... 26

Equivalence class, quotient set, partition ... 26

Generating equivalence relations ... 27

Using composite identity relationships .. 30

Creating composite identity relationship definitions ... 30

Determining the relationship action ... 32

Computer representations of graphs ... 19 WEEK2

WEEK 3

3

Customizing map rules for a composite identity relationship .. 33

Sets, Elements, and Subsets.. 43

Intersection and Union ... 46

Stack Frames ... 55

Key terms ... 55

Implementation .. 58

Applications... 59

Expression evaluation and syntax parsing .. 59

Security ... 62

Linked lists ... 70

Handle for the list ... 70

Adding to a list .. 70

Types of linked lists ... 73

Linearly linked list ... 73

Circularly-linked list ... 74

Sentinel nodes ... 74

Applications of linked lists .. 74

Linked lists vs. arrays ... 75

Doubly-linked vs. singly-linked .. 77

Circularly-linked vs. linearly-linked ... 77

Sentinel nodes (header nodes) ... 77

Linked list operations .. 78

Linearly-linked lists .. 78

Circularly-linked list ... 82

Almost perfect ≅ balanced .. 86

Subcase # 1 ... 87

Subcase # 2 ... 87

Subcase # 3 ... 87

Binary Trees .. 90

Data Structure ... 91

Analysis ... 91

Key terms .. 92

WEEK 4

4

Different types of sorting revisited: .. 103

Bubble, Selection, Insertion Sorts .. 103

Bubble Sort .. 103

Analysis .. 104

Linear Search .. 105

Binary Search .. 106

5

Week 1 :

Concept of Data structures

This week Learning outcomes:

• Define data structure.
• Define data attributes: name, value range, data types.
• Define units for identifying data character, fields, sub fields , records, files.

Data Structure
The logical or mathematical model of a particular organization of data is called its data
structures. A data item is a single unit of values. It is a raw fact which becomes
information after processing . Data items for example , date are called group items if they can
be divided into subsystems. The date for instance is represented by the day, the month
andumber is called an elementary item, because it can not be sub-divided into sud-items.
It is indeed treated as a single item. An entity is used to describe anything that has
certain attributes or propreties, which may be assigned values. For example , the
following are possible attributes and their corresponding values for an entity known as
STUDENT.

ATTRIBUTES NAME AGE SEX MATRIC NO

VALUES Paul 21 Male 800654

Entities with similar attributes for example, all the 200 level Computer science &
Statistics students form an entity set.

Main functions of data Structures:

• Seek to identify and develop entities, operations and appropriate classes of

problems to use them.

• Determine representations for abstract entities to implement abstract operations on

concrete representations.
Algorithm. A finite sequence of instructions, each of which has a clear meaning and can be
executed with a finite amount of effort in finite time.
whatever the input values, an algorithm will definitely terminate after executing a finite number
of instructions.

6

Charasteristics of algorithm:

• Has a finite set of steps with definite instructions.

• Instructions have definite order.

• Algorithm must eventually stop.

• Actions are deterministic.

Data:

Some abstraction simplification of reality.

• Abstract Data Structure is a conceptual organization without regard to how data is

organized on the machine.

Abstract Data Type:

• Abstract Data structure.

• Plus operations to perform on it.

What determines the nature of the abstraction?

• Kind of problem to solve.

• Operations to be performed.

• Machine restrictions.

Language Independent ADT Specification

1. Syntactic Specification. (Form)

2. Semantic Specification. (Meaning)

3. Restrictions.

Data Declarations:

Causes storage space to be reserved for each variable.

1. Associate identifier name with storage to allow access.

Encapsulation into a whole

7

2. Contents of storage are interpreted according to language data types.

3. More efficient use of storage.

4. Better storage of management.

5. Static Type Checking.

Fundamental Data Structure

Bit – 0,1

Boolean – compare

 Assignment

1 byte word – 2
8
 of info to manipulate.

4 byte word – 2
32

 of info to manipulate.

Boolean – 2 Values

NewBoolean(ident)

MakeTrue(ident) ident=true

MakeFalse(ident) ident=false

IsTrue(ident) ident=true

IsFalse(ident) ident=false

Assign(I1,I2) I1=I2

And(I1,I2) I1 && I2

Or(I1,I2) I1 || I2

Not(I1) ! I1

char

NewChar(Id)

Assign(I1,I2)

AreEqual(I1,I2)

8

Encode(Id)

Decode(Id)

Precedes(I1,I2) I1<I2

Delete(Id)

int

word

½ word Saves storage space!

short

int

long

MazSize()

Create(Id)

Delete(Id)

Assign(I1,I2)

Equality(I1,I2)

IsLessThan(I1,I2)

Negative(Id)

Sum(I1,I2)

Difference(I1,I2)

Quotient(I1,I2) Float!

Mod(I1,I2)

Reals: float

9

Value range
All possible values that could be assigned to a given atttibute of an entity set is
called the range of values of the attribute.

Data types

In mathematics it is customary to classify variables according to certain important
characteristics. Clear distinctions are made between real, complex, and logical variables or
between variables representing individual values, or sets of values, or sets of sets, or between
functions, functionals, sets of functions, and so on. This notion of classification is equally if not
more important in data processing. We will adhere to the principle that every constant, variable,
expression, or function is of a certain type. This type essentially characterizes the set of values to
which a constant belongs, or which can be assumed by a variable or expression, or which can be
generated by a function .
Therefore, a data type is a set of values together with the operations defined on the values: {(values)
(operations)}. The operations are performed on the values defined. E.g integer (-4,-1,1,3,4) are values
while(+,-,*,/) are operations. Data types also allow us to associate meaning to sequence of bits in the
computer memory. Eg string AA@, integer 5 etc .

 Data types operations storage representation

 1. Integer *,+,-,/ 2's complement, sign magnitude

 2. Real """"""

 3. Boolean AND,OR,NOT True=0,False=1

 4. Character 8 bits ASCII/EBCDIC

 length followed by sequence of characters

 5. String Concatenation. Length, substring, eg for AABC@ we can

 have: /3/A/B/C/

Pattern matching sequence of characters terminated by special symbols.

 6. Pointers Value of "----->" As for integers

DATA TYPES can be classified as :

Primitive (Also called built in) eg Integers, real, pointers,

booleanY They are native or local to the language. The language knows their structure. They are part of
the original design .
 Standard Primitive Types

10

Standard primitive types are those types that are available on most computers as built-in features.
They include the whole numbers, the logical truth values, and a set of printable characters. On
many computers fractional numbers are also incorporated, together with the standard arithmetic
operations. We denote these types by the identifiers
INTEGER, REAL, BOOLEAN, CHAR, SET
 Integer types
The type INTEGER comprises a subset of the whole numbers whose size may vary among
individualcomputer systems.

The type REAL
The type REAL denotes a subset of the real numbers. Whereas arithmetic with operands of the
types INTEGER is assumed to yield exact results, arithmetic on values of type REAL is
permitted to be inaccurate within the limits of round-off errors caused by computation on a finite
number of digits. This is the principal reason for the explicit distinction between the types
INTEGER and REAL, as it is made in most programming languages.
The standard operators are the four basic arithmetic operations of addition (+), subtraction (-),
multiplication (*), and division (/). It is an essence of data typing that different types are
incompatible under assignment. An exception to this rule is made for assignment of integer
values to real variables, because here the semanitcs are unambiguous. After all, integers form a
subset of real numbers.

The type CHAR
The standard type CHAR comprises a set of printable characters. Unfortunately, there is no
generally accepted standard character set used on all computer systems. Therefore, the use of the
predicate "standard" may in this case be almost misleading; it is to be understood in the sense of
"standard on the computer system on which a certain program is to be executed."
The character set defined by the International Standards Organization (ISO), and particularly its
American version ASCII (American Standard Code for Information Interchange) is the most
widely accepted set. The ASCII set is therefore tabulated in Appendix A. It consists of 95
printable (graphic) characters and 33 control characters, the latter mainly being used in data
transmission and for the control of printing equipment.
In order to be able to design algorithms involving characters (i.e., values of type CHAR) that are
system independent, we should like to be able to assume certain minimal properties of character
sets, namely:
1. The type CHAR contains the 26 capital Latin letters, the 26 lower-case letters, the 10 decimal
 digits, and a number of other graphic characters, such as punctuation marks.
2. The subsets of letters and digits are ordered and contiguous
3. The type CHAR contains a non-printing, blank character and a line-end character that may be
 used as separators.

The type SET
The type SET denotes sets whose elements are integers in the range 0 to a small number,
typically 31 or 63.
Given, for example, variables
VAR r, s, t: SET
possible assignments are: r := {5}; s := {x, y .. z}; t := {}

11

PURPOSE OF TYPE INFORMATION:

Type information has 4 purposes:

a) It allows us to associate meaning to sequence of bits in the computer memory eg string

AA@ , integer 5YThis is because all data and instructions are store in the same manner as

 sequence of bits.

b) It is useful during program development to improve readability and debugging.

c) It helps simplify implementation, eg it is easier and more efficient for implementations to

allocate storage for integers only, rather that arbitrary value

d) It allows checking for compatibility between operation and

operands before execution e.g in the scope of the PASCAL declaration VAR X:integer, the

expression ANOT X@ would be an error because the type of operand "X" is not compatible with

the type expected by the boolean operator .NOT.

 A language is said to be STATIC type checking when it

requires type declaration that allow language translator to check data during translation.

A DYNAMIC type checking is one that checks for data type during program execution.

Some languages LISP,SNOBOLY use no declaration . This simplifies programming in these

languages and allows great flexibility in creating and manipulating data structure but the cost is

paid in Dynamic checking , less efficient data representation, and more complex storage

management, all on which slow program execution.

FORTRAN, COBOL PASCAL require extensive declaration for all data structure and also

introduce many related restrictions on the manner in which data may be created, destroyed and

modified. These requirements make programming considerably more complex but program

execution speed is greatly enhanced. A central problem in PL design is to find the proper balance

between added execution efficiency obtainable through explicit data declaration and the added

flexibility possible without them.

OPERATIONS: there are of 2 types:

Operations on the programmer defined data e.g add, subtract,*,/

12

Operations on system-defined data eg GOTO..

Subprogram Calls, naming of data structure, parameter transmissionY Operations on programmer

defined data may be further subdivided into:

 - Primitive ie operation built into the language

 -Programmer-defined operations eg subprograms

Type checking:
The main objective of type checking is to determine before program execution whether a

domain incompatibility can occur. If so, error messages occur for coercion or execution

time testing may be generated.

Type checking can be performed statically (before execution or during compilation) or

dynamically (at execution time)

 For example, static type checking occur in most languages such as FORTRAN,

COBOL, PASCALY

Dynamic type checking occurs in APLY

Static type checking has following advantages over dynamic type checking.

Advantages of Type checking:

a.) Efficiency: since the program is typically executed many times but

needs only be type-checked once.

b.) Furthermore type information may used by implementation to improve

 efficiency in many other ways.

c.) Minor programming errors could be detected before actual execution; this will

 simplify program testing and debugging eg when another operation is to be performed

 on non numerical data.

d.) Type specification also improves programme readability by making explicit the data

 representation used by the programmer.

Disadvantages:

- Syntax of a type language are usually more complex Inflexibility: restriction are

 imposed on the programmer’s freedom of expression.

 In conclusion, static type checking should be used in languages to prevent domain

incompatibility whenever the disadvantages outweigh its benefit.

 Primitive Data Types
A new, primitive type is definable by enumerating the distinct values belonging to it. Such a type
is called an enumeration type. Its definition has the form

13

TYPE T = (c1, c2, ... , cn)
T is the new type identifier, and the ci are the new constant identifiers.
Examples
TYPE shape = (rectangle, square, ellipse, circle)
TYPE color = (red, yellow, green)
TYPE sex = (male, female)
TYPE weekday = (Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday)
TYPE currency = (franc, mark, pound, dollar, shilling, lira, guilder,
krone, ruble, cruzeiro, yen)
TYPE destination = (hell, purgatory, heaven)
TYPE vehicle = (train, bus, automobile, boat, airplane)
TYPE rank = (private, corporal, sergeant, lieutenant, captain, major, colonel, general)
TYPE object = (constant, type, variable, procedure, module)
TYPE structure = (array, record, set, sequence)
TYPE condition = (manual, unloaded, parity, skew)
The definition of such types introduces not only a new type identifier, but at the same time the
set ofidentifiers denoting the values of the new type. These identifiers may then be used as
constants throughout
the program, and they enhance its understandability considerably. If, as an example, we
introduce variables
s, d, r, and b.
VAR s: sex
VAR d: weekday
VAR r: rank
then the following assignment statements are possible:
s := male
d := Sunday
r := major
b := TRUE
Evidently, they are considerably more informative than their counterparts
s := 1 d := 7 r := 6 b := 2 which are based on the assumption that c, d, r, and b are defined as
integers and that the constants are mapped onto the natural numbers in the order of their
enumeration.

 The Record Structure
The most general method to obtain structured types is to join elements of arbitrary types, that are
possibly themselves structured types, into a compound. Examples from mathematics are complex
numbers, composed of two real numbers, and coordinates of points, composed of two or more
numbers according to the dimensionality of the space spanned by the coordinate system. An
example from data processing is describing people by a few relevant characteristics, such as their
first and last names, their date of birth, sex, and marital status.
In mathematics such a compound type is the Cartesian product of its constituent types. This
stems from the fact that the set of values defined by this compound type consists of all possible
combinations of values, taken one from each set defined by each constituent type. Thus, the
number of such combinations, also called n-tuples, is the product of the number of elements in

14

each constituent set, that is, the cardinality of the compound type is the product of the
cardinalities of the constituent types.
In data processing, composite types, such as descriptions of persons or objects, usually occur in
files or data banks and record the relevant characteristics of a person or object. The word record
has therefore become widely accepted to describe a compound of data of this nature, and we
adopt this nomenclature in preference to the term Cartesian product. In general, a record type T
with components of the types T1, T2,... , Tn is defined as follows:
TYPE T = RECORD s1: T1; s2: T2; ... sn: Tn END
card(T) = card(T1) * card(T2) * ... * card(Tn)
Examples
TYPE Complex = RECORD re, im: REAL END
TYPE Date = RECORD day, month, year: INTEGER END
TYPE Person = RECORD name, firstname: Name;
birthdate: Date;
sex: (male, female);
marstatus: (single, married, widowed, divorced)
END
We may visualize particular, record-structured values of, for example, the variables
z: Complex
d: Date
p: Person

The following are the units for identifying data character, fields, sub

fields , records, files.

A file is a collection of logically related records; e.g students file, stock file.

A record is a collection of logically related data fields; e. g Data relating to students in students

file. In a database table records are usually in rows. Therefore, the table below has three (3)

records. While a field is consecutive storage position of values. It is a unit of data within a record

e. g student’s number, Name, Age. In a database concept fields are usually in columns of a

given table.

Data items for example , date are called group items if they can be divided into
subsystems. The date for instance is represented by the day, the month andumber is called
an elementary item, because it can not be sub-divided into sud-items otherwise known as
sub fields called . It is indeed treated as a single item.

15

Character is the smallest unit of information. It includes letters, digits and special
symbols such as + (Plus sign), _(minus sign), \, /, $,a,b,…z, A,B,…Z etc. Every character
requires one byte of memory unit for storage in computer system.

16

WEEK 2 :

Graph.

This week learning ontcomes:
• Define a graph.
• State properties of graph : routes, edge, sequence, directed and nondirected.
. Computer representation of graphs.
• Describe operations such as precede, less than points to , move to , search, change, entry.

Introduction

Graphs are a commonly used data structure because they can be used to model many real-world

problems. A graph consists of a set of nodes with an arbitrary number of connections, or edges,

between the nodes. These edges can be either directed or undirected and weighted or

unweighted.

In this study we will examine the basics of graphs and created a Graph class. This class was

similar to the BinaryTree class , the difference being that instead of only have a reference for at

most two edges, the Graph class's GraphNodes could have an arbitrary number of references.

This similarity is not surprising because trees are a special case of graphs

Definitions
Definition1. A graph is a finite nonempty set of objects called vertices (the singular is
vertex) together with a (possibly empty) set of unordered pairs of distinct vertices of called
edges.
 Graphs are a very expressive formalism for system modeling, especially when attributes are
allowed. Our research is mainly focused on the use of graphs for system verification.

Up to now, there are two main different approaches of modeling (typed) attributed graphs and

specifying their transformation. Here we report preliminary results of our investigation on a third

approach. In our approach we couple a graph to a data signature that consists of unary

operations only. Therefore, we transform arbitrary signatures into a structure comparable to what

is called a graph structure signature in the literature, and arbitrary algebras into the

corresponding algebra graph.

17

Some authors call a graph by the longer term ``undirected graph'' and simply use the following

definition of a directed graph as a graph. However when using Definition 1 of a graph, it is

standard practice to abbreviate the phrase ``directed graph'' (as done below in Definition 2) with

the word digraph.

Definition 2. A digraph is a finite nonempty set of vertices together with a (possibly

empty) set of ordered pairs of vertices of called arcs.

An arc that begins and ends at a same vertex u is called a loop. We usually (but not always)

disallow loops in our digraphs. By being defined as a set, E does not contain duplicate (or

multiple) edges/arcs between the same two vertices. For a given graph (or digraph) G we also

denote the set of vertices by and the set of edges (or arcs) by to lessen any ambiguity.

Definition 3. The order of a graph (digraph) is , sometimes denoted by , and the

size of this graph is .

Sometimes we view a graph as a digraph where every unordered edge is replaced by two

directed arcs and . In this case, the size of a graph is half the size of the corresponding

digraph.

In the next example we display a graph and a digraph both of order 5. The size of the graph

is 6 where = {(0, 1), (0, 2), (1, 2), (2, 3), (2, 4), (3, 4)} while the size of the digraph is 7

where = {(0, 2), (1, 0), (1, 2), (1, 3), (3, 1), (3, 4), (4, 2)}.

Example 4. A pictorial example of a graph and a digraph is given below.

18

Definition 5. A walk in a graph (digraph) is a sequence of vertices such that, for all

, , is an edge (arc) in . The length of the walk is the number (i.e., number of

edges/arcs). A path is a walk in which no vertex is repeated. A cycle is a walk (of length at least

three for graphs) in which and no other vertex is repeated; sometimes, if it is understood,

we omit from the sequence.

Example 6. For the graph of Example 4 the following sequences of vertices are classified as

being walks, paths, or cycles.

Example 7. For the digraph of Example 4 the following sequences of vertices are classified as

being walks, paths, or cycles.

Definition 8. A graph is connected if there is a path between all pairs of vertices and of .

A digraph is strongly connected if there is a path from vertex to vertex for all pairs and in

.

In Example 4 the graph is connected but the digraph is not strongly connected because there

are no arcs leaving vertex 2. The underlying graph (by replacing each arc with an edge) of is

connected, however.

Definition 9. In a graph, the degree of a vertex , denoted by deg(v), is the number of edges

incident to . For digraphs, the out-degree of a vertex is the number of arcs

incident from (leaving) and the in-degree of vertex is the number of arcs

incident to (entering).

19

For a graph the in-degree and out-degree's are the same as the degree. For our graph , we have

deg(0)=2, deg(1)=2, deg(2)=4, deg(3)=2 and deg(4)=2. We may concisely write this as a degree

sequence (2, 2, 4, 2, 2) if there is a natural ordering (e.g., 0,1,2,3,4) of the vertices. The in-degree

sequence and out-degree sequence of the digraph are (1, 1, 3, 1, 1) and (1, 3, 0, 2, 1),

respectively. The degree of a vertex of a digraph is sometimes defined as the sum of its in-degree

and out-degree. Using this definition, a degree sequence of would be (2, 4, 3, 3, 2).

Definition 10. The diameter of a connected graph (strongly connected digraph is the

least integer D such that for all vertices and in we have , where denotes the

distance from to in , that is, the length of a shortest path between and .

Example 11. The diameter of graph of Example 4 is 2. We calculated d(0,1)=1, d(0,2)=1,

d(0,3)=2, d(0,4)=2, d(1,2)=1, d(1,3)=2, d(1,4)=2, d(2,3)=1, d(2,4)=1 and d(3,4)=1. Note for

graphs, we have d(x, y) = d(y, x) for all vertices x and y.

Since the digraph is not strongly connected the diameter is undefined. However, we can

compute shortest distances between various pairs of vertices: d(0,2)=1, d(1,0)=1, d(1,2)=1,

d(3,1)=1, d(3,0)=2, d(3,2)=2, d(3,4)=1 and d(4,2)=1.

Computer representations of graphs

There are two common computer representations for graphs (or digraphs), called adjacency

matrices and adjacency lists. For a graph of order , an adjacency matrix representation is a

boolean matrix (often encoded with 0's and 1's) of dimension n such that entry is true if and

only if edge/arc is in E(). For a graph of order , an adjacency lists representation is lists

such that the -th list contains a sequence (often sorted) of out-neighbours of vertex of .

We can see the structure of these representations more clearly with examples.

Example 12. We give adjacency matrices for the graph and digraph of Example 4 below.

20

Notice that the 1's in the rows represent how many out-neighbours and the 1's in the columns

represent how many in-neighbours a vertex has.

Example 13. We give adjacency lists for the graph and digraph of Example 4 below.

Only the out-neighbours are listed in the adjacency lists representation. The numbers with colons

() denote the index of the lists (and are not really necessary). An empty list can occur (e.g., list

2 of the digraph).

For a graph/digraph with vertices and edges, the adjacency matrix representation requires O(

) storage while the adjacency lists representation requires O() storage. So for sparse graphs

the latter is probably preferable. However, to check whether edge/arc is in the graph the

adjacency matrix representation has constant-time lookup, while the adjacency lists

representation may require O() time in the worst case.

We mention that there are also other specialized graph representations besides the two mentioned

in this section. These data structures take advantage of the graph structure for improved storage

or access time, often for families of graphs sharing a common property.

21

WEEK 3 :

 Symbol, and relations
The week Learning outcomes :
• Define symbols, and relations.
• Explain equivalence relation.
• Explain composite relation.

Relations

A binary relation is determined by specifying all ordered pairs of objects in that relation; it does

not matter by what property the set of these ordered pairs is described. We are led to the

following definition.

Definition. A set R is a binary relation if all elements of R are ordered pairs, i.e., if for any z ∈ R there

exist x and y such that z = (x, y).

It is customary to write xRy instead of (x, y) ∈ R. We say that x is in relation R with y if xRy

holds.

The set of all x which are in relation R with some y is called the domain of R and denoted by

“dom R.” So dom R = {x | there exists y such that xRy}. dom R is the set of all first coordinates of

ordered pairs in R.

The set of all y such that, for some x, x is in relation R with y is called the range of R, denoted by

“ran R.” So ran R = {y | there exists x such that xRy}.

Symbol

A symbol is something such as an object, picture, written word, sound, or particular mark that

represents something else by association, resemblance, or convention. For example, a red

octagon may stand for "STOP". On maps, crossed sabres may indicate a battlefield. Numerals are

symbols for numbers.

22

All language consists of symbols. The word "cat" is not a cat, but represents the idea of a cat.

Language and symbols

All languages are made up of symbols. Spoken words are the symbols of mental experience, and

written words are the symbols of spoken words.

The word "cat", for example, whether spoken or written, is not a literal cat but a sequence of

symbols that by convention associate the word with a concept. Hence, the written or spoken

word "cat" represents (or stands for) a particular concept formed in the mind. A drawing of a cat,

or a stuffed cat, could also serve as a symbol for the idea of a cat.

The study or interpretation of symbols is known as symbology, and the study of signs is known

as semiotics.

Symbols and Corresponding HTML Entities

If the leftmost column below shows ≡ , a square or nothing instead of the actual symbol, your
browser does not support HTML entities; please use the picture version of this document instead.

Relational Operators 3

Symbol LaTeX Command 2 HTML Entity 1 Comment

≡ \equiv ≡

≈ \approx ≈

∝ \propto ∝

\simeq

∼ \sim ∼

≠ \neq ≠

\geq

\gg

\ll

23

Logic Symbols 3

Symbol LaTeX Command 2 HTML Entity 1 Comment

¬ \neg
¬

∧ \wedge
∧

∨ \vee
∨

⊕ \oplus
⊕

\Rightarrow

\Leftrightarrow

∃ \exists
∃

∀ \forall
∀

Set Symbols 3

Symbol LaTeX Command 2 HTML Entity 1 Comment

∩ \cap
∩

∪ \cup
∪

⊃ \supset
⊃

⊂ \subset
⊂

∅ \emptyset
∅

\mathbb{Z}

requires the amsfonts and amssymb
packages.

∈ \in
∈

∉ \notin
∉

\Join

requires the latexsym package (present in
most LaTeX distributions).

24

Miscellaneous Math Symbols 3

Symbol LaTeX Command 2 HTML Entity 1 Comment

′ \prime
′

⌋ \rfloor
⌋

∞ \infty
∞

Equivalence relation

Equivalence relation is a binary relation between two elements of a set which groups them

together as being "equivalent" in some way. Let a, b, and c be arbitrary elements of some set X.

Then "a ~ b" or "a ≡ b" denotes that a is equivalent to b.

An equivalence relation "~" is reflexive, symmetric, and transitive. In other words, the following

must hold for "~" to be an equivalence relation on X:

An equivalence relation partitions a set into several disjoint subsets, called equivalence classes.

All the elements in a given equivalence class are equivalent among themselves, and no element

is equivalent with any element from a different class.

• Reflexivity: a ~ a

• Symmetry: if a ~ b then b ~ a

• Transitivity: if a ~ b and b ~ c then a ~ c.

• The equivalence class of a under "~", denoted [a], is the subset of X for which every element b,

a~b. X together with "~" is called a setoid.

 Examples of equivalence relations

A ubiquitous equivalence relation is the equality ("=") relation between elements of any set.

Other examples include:

• "Has the same birthday as" on the set of all people, given naive set theory.

• "Is similar to" or "congruent to" on the set of all triangles.

25

• "Is congruent to modulo n" on the integers.

• "Has the same image under a function" on the elements of the domain of the function.

• Logical equivalence of logical sentences.

• "Is isomorphic to" on models of a set of sentences.

• In some axiomatic set theories other than the canonical ZFC (e.g., New Foundations and related

theories):

o Similarity on the universe of well-orderings gives rise to equivalence classes that are the

ordinal numbers.

o Equinumerosity on the universe of:

� Finite sets gives rise to equivalence classes which are the natural numbers.

� Infinite sets gives rise to equivalence classes which are the transfinite cardinal

numbers.

• Let a, b, c, d be natural numbers, and let (a, b) and (c, d) be ordered pairs of such numbers. Then

the equivalence classes under the relation (a, b) ~ (c, d) are the:

o Integers if a + d = b + c;

o Positive rational numbers if ad = bc.

• Let (rn) and (sn) be any two Cauchy sequences of rational numbers. The real numbers are the

equivalence classes of the relation (rn) ~ (sn), if the sequence (rn − sn) has limit 0.

• Green's relations are five equivalence relations on the elements of a semigroup.

• "Is parallel to" on the set of subspaces of an affine space.

 Examples of relations that are not equivalences

• The relation "≥" between real numbers is reflexive and transitive, but not symmetric. For

example, 7 ≥ 5 does not imply that 5 ≥ 7. It is, however, a partial order.

• The relation "has a common factor greater than 1 with" between natural numbers greater than

1, is reflexive and symmetric, but not transitive. (The natural numbers 2 and 6 have a common

factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have

a common factor greater than 1).

• The empty relation R on a non-empty set X (i.e. aRb is never true) is vacuously symmetric and

transitive, but not reflexive. (If X is also empty then R is reflexive.)

• The relation "is approximately equal to" between real numbers, even if more precisely defined,

is not an equivalence relation, because although reflexive and symmetric, it is not transitive,

since multiple small changes can accumulate to become a big change. However, if the

approximation is defined asymptotically, for example by saying that two functions f and g are

approximately equal near some point if the limit of f-g is 0 at that point, then this defines an

equivalence relation.

• The relation "is a sibling of" on the set of all human beings is not an equivalence relation.

Although siblinghood is symmetric (if A is a sibling of B, then B is a sibling of A) it is neither

reflexive (no one is a sibling of himself), nor transitive (since if A is a sibling of B, then B is a

sibling of A, but A is not a sibling of A). Instead of being transitive, siblinghood is "almost

transitive", meaning that if A ~ B, and B ~ C, and A ≠ C, then A ~ C. However, the relation "A is a

sibling of B or A is B" is an equivalence relation. (This applies only to full siblings. A and B could

have the same mother, and B and C the same father, without A and C having a common parent.)

• The concept of parallelism in ordered geometry is not symmetric and is, therefore, not an

equivalence relation.

26

• An equivalence relation on a set is never an equivalence relation on a proper superset of that

set. For example R = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)} is an equivalence

relation on {1,2,3} but not on {1,2,3,4} or on the natural number. The problem is that reflexivity

fails because (4,4) is not a member.

 Connection to other relations

• A congruence relation is an equivalence relation whose domain X is also the underlying set for

an algebraic structure, and which respects the additional structure. In general, congruence

relations play the role of kernels of homomorphisms, and the quotient of a structure by a

congruence relation can be formed. In many important cases congruence relations have an

alternative representation as substructures of the structure on which they are defined. E.g. the

congruence relations on groups correspond to the normal subgroups.

• A partial order replaces symmetry with antisymmetry and is thus reflexive, antisymmetric, and

transitive. Equality is the only relation that is both an equivalence relation and a partial order.

• A strict partial order is irreflexive, transitive, and asymmetric.

• A partial equivalence relation is transitive and symmetric. Transitive and symmetric imply

reflexive iff for all a∈X exists b∈X such that a~b.

• A dependency relation is reflexive and symmetric.

• A preorder is reflexive and transitive.

 Equivalence class, quotient set, partition

Let X be a nonempty set with typical elements a and b. Some definitions:

• The set of all a and b for which a ~ b holds make up an equivalence class of X by ~. Let [a] =: {x ∈

X : x ~ a} denote the equivalence class to which a belongs. Then all elements of X equivalent to

each other are also elements of the same equivalence class: ∀a, b ∈ X (a ~ b ↔ [a] = [b]).

• The set of all possible equivalence classes of X by ~, denoted X/~ =: {[x] : x ∈ X}, is the quotient

set of X by ~. If X is a topological space, there is a natural way of transforming X/~ into a

topological space; see quotient space for the details.

• The projection of ~ is the function π : X → X/~, defined by π(x) = [x], mapping elements of X into

their respective equivalence classes by ~.

Theorem on projections (Birkhoff and Mac Lane 1999: 35, Th. 19): Let the function f: X → B be

such that a ~ b → f(a) = f(b). Then there is a unique function g : X/~ → B, such that f = gπ. If f is a

surjection and a ~ b ↔ f(a) = f(b), then g is a bijection.

• The equivalence kernel of a function f is the equivalence relation, denoted Ef, such that xEfy ↔

f(x) = f(y). The equivalence kernel of an injection is the identity relation.

• A partition of X is a set P of subsets of X, such that every element of X is an element of a single

element of P. Each element of P is a cell of the partition. Moreover, the elements of P are

pairwise disjoint and their union is X.

27

Theorem ("Fundamental Theorem of Equivalence Relations": Wallace 1998: 31, Th. 8; Dummit

and Foote 2004: 3, Prop. 2):

• An equivalence relation ~ partitions X.

• Conversely, corresponding to any partition of X, there exists an equivalence relation ~ on X.

In both cases, the cells of the partition of X are the equivalence classes of X by ~. Since each

element of X belongs to a unique cell of any partition of X, and since each cell of the partition is

identical to an equivalence class of X by ~, each element of X belongs to a unique equivalence

class of X by ~. Thus there is a natural bijection from the set of all possible equivalence relations

on X and the set of all partitions of X.

Counting possible partitions. Let X be a finite set with n elements. Since every equivalence

relation over X corresponds to a partition of X, and vice versa, the number of possible

equivalence relations on X equals the number of distinct partitions of X, which is the nth Bell

number Bn:

 Generating equivalence relations

• Given any set X, there is an equivalence relation over the set of all possible functions X→X. Two

such functions are deemed equivalent when their respective sets of fixpoints have the same

cardinality, corresponding to cycles of length one in a permutation. Functions equivalent in this

manner form an equivalence class on X
2
, and these equivalence classes partition X

2
.

• An equivalence relation ~ on X is the equivalence kernel of its surjective projection π : X → X/~.

(Birkhoff and Mac Lane 1999: 33 Th. 18). Conversely, any surjection between sets determines a

partition on its domain, the set of preimages of singleton
[disambiguation needed]

s in the codomain.

Thus an equivalence relation over X, a partition of X, and a projection whose domain is X, are

three equivalent ways of specifying the same thing.

• The intersection of any collection of equivalence relations over X (viewed as a subset of X × X) is

also an equivalence relation. This yields a convenient way of generating an equivalence relation:

given any binary relation R on X, the equivalence relation generated by R is the smallest

equivalence relation containing R. Concretely, R generates the equivalence relation a ~ b iff

there exist elements x1, x2, ..., xn in X such that a = x1, b = xn, and (xi,xi+ 1)∈R or (xi+1,xi)∈R, i = 1, ...,

n-1.

Note that the equivalence relation generated in this manner can be trivial. For instance, the

equivalence relation ~ generated by:

28

• The binary relation ≤ has exactly one equivalence class, X itself, because x ~ y for all x

and y;

• An antisymmetric relation has equivalence classes that are the singletons
[disambiguation

needed]
 of X.

• Let r be any sort of relation on X. Then r ∪ r
−1

 is a symmetric relation. The transitive closure s of r

∪ r
−1

 assures that s is transitive and reflexive. Moreover, s is the "smallest" equivalence relation

containing r, and r/s partially orders X/s.

• Equivalence relations can construct new spaces by "gluing things together." Let X be the unit

Cartesian square [0,1] × [0,1], and let ~ be the equivalence relation on X defined by ∀a, b ∈ [0,1]

((a, 0) ~ (a, 1) ∧ (0, b) ~ (1, b)). Then the quotient space X/~ can be naturally identified with a

torus: take a square piece of paper, bend and glue together the upper and lower edge to form a

cylinder, then bend the resulting cylinder so as to glue together its two open ends, resulting in a

torus.

Composite Relations

If the elements of a set A are related to those of a set B, and those of B are in turn related to the
elements of a set C, then one can expect a relation between A and C. For example, if Tom is my
father(parent-child relation) and Sarah is a sister of Tom (sister relation), then Sarah is my aunt
(aunt-nephew/niece relation). Composite relations give that kind of relations.

Definition(composite relation): Let R1 be a binary relation from a set A to a set B, R2 a binary
relation from B to a set C. Then the composite relation from A to C denoted by R1R2(also

denoted by R1 R2 is defined as

R1R2 = {<a, c> | a A c C b [b B <a, b> R1 <b, c> R2] } .

In English, this means that an element a in A is related to an element c in C if there is an element
b in B such that a is related to b by R1 and b is related to c by R2 . Thus R1R2 is a relation from A
to C via B in a sense. If R1 is a parent-child relation and R2 is a sister relation, then R1R2 is an
aunt-nephew/niece relation.

Example 1: Let A = {a1 , a2} , B = {b1 , b2 , b3} , and C = {c1 , c2} . Also let R1 = {<a1 , b1> , <a1 ,
b2> , <a2 , b3> } , and R2 = {<b1 , c1> , <b2 , c1> , <b2 , c2> , <b3 , c1> } . Then R1R2 = {<a1 , c1> ,
<a1 , c2> , <a2 , c1> } .

This is illustrated in the following figure. The dashed lines in the figure of R1R2 indicate the
ordered pairs in R1R2, and dotted lines show ordered pairs that produce the dashed lines. (The
lines in the left figure are all supposed to be solid lines.)

29

Example 2: If R is the parent-child relation on a set of people A, then RR, also denoted by R2, is
the grandparent-grandchild relation on A.

More examples:
The digraphs of R2 for several simple relations R are shown below:

Properties of Composite
Relations

Composite relations
defined above have the
following properties. Let
R1 be a relation from A to
B, and R2 and R3 be
relations from B to C.
Then

1. R1(R2R3) =
(R1R2)R3
2. R1(R2 R3) =
R1R2 R1R3
3. R1(R2 R3)

R1R2 R1R3

Proofs for these
properties are not
necessary

Powers of Relation

Let R be a binary relation
on A. Then Rn for all
positive integers n is
defined recursively as
follows:

Definition(power of
relation):

Basis Clause: R0 = E, where E is the equality relation on A.

30

Inductive Clause: For an arbitrary natural number n , Rn+1 = RnR.
Note that there is no need for extremal clause here.

Thus for example R1 = R, R2 = RR, and R3 = R2R = (RR)R = R(RR) = RRR.

The powers of binary relation R on a set A defined above have the following properties.

1. Rm+n = RmRn,
2. (Rm)n = Rmn.

Using composite identity relationships

An identity relationship establishes an association between business objects or other data on a

one-to-one basis. A composite identity relationship relates two business objects through a

composite key attribute.

Creating composite identity relationship definitions

Identity relationship definitions differ from lookup relationship definitions in that the participant

types are business objects, not of the type Data (the first selection in the participant types list).

As with a simple identity relationship:

• The composite identity relationship consists of the generic business object and at least
one application-specific business object.

• The participant type is a business object for all participants.

However, for a composite identity relationship, the participant attribute for every participant is a

composite key. This composite key usually consists of a unique key from a parent business

object and a nonunique key from a child business object.

Steps for creating composite identity relationship definitions

To create a relationship definition for a composite identity relationship, perform the following

steps:

1. Create a participant definition whose participant type is the parent business object.
2. Set the first participant attribute to the key of the parent business object.

Tip: Expand the parent business object and select the key attribute.

31

3. Set the second participant attribute to the key of the child attribute.

Tip: Expand the parent business object, then expand the child attribute within the parent.

Select the key attribute from this child object.

4. Repeat steps 1-3 for each of the participants. As with all composite identity relationships,
this relationship contains one participant for the generic business object and at least one
participant for a application-specific business object. Each participant consists of two
attributes: the key of the parent business object and the key of the child business object
(from the attribute within the parent business object).

Restriction: To manage composite relationships, the server creates internal tables. A table is

created for each role in the relationship. A unique index is then created on these tables across all

key attributes of the relationship. (In other words, the columns which correspond to the key

attributes of the relationship are the participants of the index.) The column sizes of the internal

tables have a direct relation to the attributes of the relationship and are determined by the value

of the MaxLength attribute for the relationship.

Databases typically have restrictions on the size of the indexes that can be created. For instance,

DB2 has an index limitation of 1024 bytes with the default page size. Thus, depending on the

MaxLength attribute of a relationship and the number of attributes in a relationship, you could

run into an index size restriction while creating composite relationships.

Important:

• You must ensure that appropriate MaxLength values are set in the repository file for all
key attributes of a relationship, such that the total index would never exceed the index
size limitations of the underlying DBMS.

If the MaxLength attribute for type String is not specified, the default is nvarchar(255) in

the SQLServer. Thus, if a relationship has N Keys, all of type String and the default

MaxLength attribute of 255 bytes, the index size would be ((N*255)*2) + 16 bytes. You

can see that you would exceed the SQLServer 7 limit of 900 bytes quite easily when N

takes values of >=2 for the default MaxLength value of 255 bytes for type String.

• Remember, too, that even when some DBMS'es support large indexes, it comes at the
cost of performance; hence, it is always a good idea to keep index sizes to the minimum.

32

Determining the relationship action

Table 100 shows the activity function blocks that the Mapping API provides to maintain a

composite identity relationship from the child attribute of the parent source business object. The

actions that these methods take depends on the source object's verb and the calling context.

Table 100. Maintaining a composite identity relationship from the child attribute

Function block Description

General/APIs/Identity Relationship/
Maintain Child Verb

Set source child verb correctly

General/APIs/Identity Relationship/
Maintain Composite Relationship

Perform appropriate action on the
relationship tables

Actions of General/APIs/Identity Relationship/Maintain Composite Relationship

The Maintain Composite Relationship function block will generate Java code that calls the

mapping API maintainCompositeRelationship(), which will manage relationship tables for a

composite identity relationship. This method ensures that the relationship instances contain the

associated application-specific key values for each relationship instance ID. This method

automatically handles all of the basic adding and deleting of participants and relationship

instances for a composite identity relationship.

The actions that maintainCompositeRelationship() takes are based on the value of the business

object's verb and the calling context. The method iterates through the child objects of a specified

participant, calling the maintainSimpleIdentityRelationship() on each one to correctly set the

child key value. As with maintainSimpleIdentityRelationship(), the action that

maintainCompositeRelationship() takes is based on the following information:

• The calling context: EVENT_DELIVERY, ACCESS_REQUEST,
SERVICE_CALL_REQUEST, SERVICE_CALL_RESPONSE,
SERVICE_CALL_FAILURE, and ACCESS_RESPONSE

• The verb of the source business object: Create, Update, Delete, or Retrieve

33

The maintainCompositeRelationship() method deals only with composite keys that extend to

only two nested levels. In other words, the method cannot handle the case where the child

object's composite key depends on values in its grandparent objects.

Example: If A is the top-level business object, B is the child of A, and C is the child of B, the

two methods will not support the participant definitions for the child object C that are as follows:

• The participant type is A and the attributes are:
• key attribute of A: ID
• key attribute of B: B[0].ID
• key attribute of C: B[0].C[0].ID

• The participant type is A and the attributes are:
• key attribute of A: ID
• key attribute of C: B[0].C[0].ID

To access a grandchild object, these methods only support the participant definitions that are as

follows:

• The participant type is B and the attributes are:
• key attribute of B: ID
• key attribute of C: C[0].ID

• The participant type is B and the attributes are:
• key attribute of B: ID
• first key attribute of C: C[0].ID1
• second key attribute of C: C[0].ID2

Actions of General/APIs/Identity Relationship/Maintain Child Verb

The Maintain Child Verb function block will generate Java code that calls the mapping API

maintainChildVerb(), which will maintain the verb of the child objects in the destination

business object. It can handle child objects whose key attributes are part of a composite identity

relationship. When you call maintainChildVerb() as part of a composite relationship, make sure

that its last parameter has a value of true. This method ensures that the verb settings are

appropriate given the verb in the parent source object and the calling context.

Customizing map rules for a composite identity relationship

Once you have created the relationship definition and participant definitions for the composite

identity relationship, you can customize the map to maintain the composite identity relationship.

34

A composite identity relationship manages a composite key. Therefore, managing this kind of

relationship involves managing both parts of the composite key. To code a composite identity

relationship, you need to customize the mapping transformation rules for both the parent and

child business objects, as Table 3.1 shows.

Table 3.1 Activity function blocks for a composite identity relationship

Map
involved

Business
object
involved Attribute Activity function blocks

Main Parent
business
object

Top-level
business
object

Use a Cross-Reference transformation
rule

 Child
attribute
(child
business
object)

General/APIs/Identity
Relationship/Maintain Composite
Relationship
General/APIs/Identity
Relationship/Maintain Child Verb
General/APIs/Identity
Relationship/Update My Children
(optional)

Submap Child
business
object

Key
attribute
(nonunique
key)

Define a Move or Set Value
transformation for the verb.

If child business objects have a nonunique key attribute, you can relate these child business

objects in a composite identity relationship.

The following sections describe the steps for customizing this composite identity relationship:

• Steps for customizing the main map
• Customizing the submap
• Managing child instances

35

Steps for customizing the main map

In the map for the parent business object (the main map), add the mapping code to the parent

attributes:

1. Map the verb of the top-level business object by defining a Move or Set Value
transformation rule.

2. Define a Cross-Reference transformation between the top-level business objects.
3. Define a Custom transformation for the child attribute and use the General/APIs/Identity

Relationship/Maintain Composite Relationship function block in Activity Editor.

Steps for coding the child attribute

The child attribute of the parent object contains the child business object. This child object is

usually a multiple cardinality business object. It contains a key attribute whose value identifies

the child. However, this key value is not required to be unique. Therefore, it does not uniquely

identify one child object among those for the same parent nor is it sufficient to identify the child

object among child objects for all instances of the parent object.

To identify such a child object uniquely, the relationship uses a composite key. In the composite

key, the parent key uniquely identifies the parent object. The combination of parent key and

child key uniquely identifies the child object. In the map for the parent business object (the main

map), add the mapping code to the attribute that contains the child business object. In Activity

Editor for this attribute, perform the following steps to code a composite identity relationship:

1. Define a Submap transformation for the child business object attribute of the main map.
Usually mapping transformations for a child object are done within a submap, especially
if the child object has multiple cardinality.

2. In the main map, define a Custom transformation rule for the child verb and use the
General/APIs/Identity Relationship/Maintain Child Verb function block to maintain the
child business object's verb.

The last input parameter of the General/APIs/Identity Relationship/Maintain Child Verb

function block is a boolean flag to indicate whether the child objects are participating in a

composite relationship. Make sure you pass a value of true as the last argument to

maintainChildVerb() because this child object participates in a composite, not a simple

identity relationship. Make sure you call maintainChildVerb() before the code that calls

the submap.

36

3. To maintain this composite key for the parent source object, customize the mapping rule
to use the General/APIs/Identity Relationship/Maintain Composite Relationship function
block.

4. To maintain the relationship tables in the case where a parent object has an Update verb
caused by child objects being deleted, customize the mapping rule to use the
General/APIs/Identity Relationship/Update My Children function block.

Tip: Make sure the transformation rule that contains the Update My Children function

block has an execution order after the transformation rule that contains the Maintain

Composite Relationship function block.

Example of customizing the map for a Composite Identity Relationship

The following example describes how the map can be customized for a Composite Identity

Relationship.

1. In the main map, define a Custom transformation rule between the child business object's
verbs. Use the General/APIs/Identity Relationship/Maintain Child Verb function block in
the customized activity to maintain the verb for the child business objects.

The goal of this custom activity is to use the maintainChildVerb() API to set the child

business object verb based on the map execution context and the verb of the parent

business object. Figure3.2 shows this custom activity.

Figure 3.2. Using the Maintain Child Verb function block

37

2. If necessary, define a Submap transformation rule between the child business object to
perform any mapping necessary in the child level.

3. Define a Custom transformation rule between the top-level business objects. Use the
General/APIs/Identity Relationship/Maintain Composite Relationship function block in
the customized activity to maintain the composite identity relationship for this map.

The goal of this custom activity is to use the maintainComposite Relationship() API to

maintain a composite identity relationship within the map. Figure 3.3 shows this custom

activity.

Figure 3.3. Using the Maintain Composite Relationship function block

4. Define a Custom transformation rule mapping from the source top-level business object
to the destination child business object attribute. Use the General/APIs/Identity
Relationship/Update My Children function block in the customized activity to maintain
the child instances in the relationship.

The goal of this custom activity is to use the updateMyChildren() API to add or delete

child instances in the specified parent/child relationship of the identity relationship.

38

Figure 3.4 shows this custom activity.

Figure 3.4. Using the Update My Children function block

Example of coding the child attribute

Here is a sample of how the code in the child attribute of the parent map might look. This code

fragment would exist in the Order Line Item attribute of an SAP Order business object. It uses

maintainChildVerb() to set the child object verbs, then calls a submap

(Sub_SaOrderLieItem_to_CwOrderLineItem) in a for loop to handle mapping of the Order line

items child object:

{
BusObjArray srcCollection_For_ObjSAP_Order_SAP_OrderLineItem =
 ObjSAP_Order.getBusObjArray("SAP_OrderLineItem");

//
// LOOP ONLY ON NON-EMPTY ARRAYS
// -----------------------------
//
// Perform the loop only if the source array is non-empty.
//
if ((srcCollection_For_ObjSAP_Order_SAP_OrderLineItem != null) &&
 (srcCollection_For_ObjSAP_Order_SAP_OrderLineItem.size() > 0))
 {

39

 int currentBusObjIndex_For_ObjSAP_Order_SAP_OrderLineItem;
 int lastInputIndex_For_ObjSAP_Order_SAP_OrderLineItem =
 srcCollection_For_ObjSAP_Order_SAP_OrderLineItem.getLastIndex();

 // ----
 IdentityRelationship.maintainChildVerb(
 "OrdrLine",
 "SAPOrln",
 "CWOrln",
 ObjSAP_Order,
 "SAP_OrderLineItem",
 ObjOrder,
 "OrderLineItem",
 cwExecCtx,
 true,
 true);

 // ----
 for (currentBusObjIndex_For_ObjSAP_Order_SAP_
 OrderLineItem = 0;
 currentBusObjIndex_For_ObjSAP_Order_SAP_OrderLineItem <=
 lastInputIndex_For_ObjSAP_Order_SAP_OrderLineItem;
 currentBusObjIndex_For_ObjSAP_Order_SAP_OrderLineItem++)
 {
 BusObj currentBusObj_For_ObjSAP_Order_SAP_OrderLineItem =
(BusObj) (srcCollection_For_ObjSAP_Order_SAP_OrderLineItem.elementAt(
 currentBusObjIndex_For_ObjSAP_Order_SAP_OrderLineItem));

 //
 // INVOKE MAP ON VALID OBJECTS
 // ---------------------------
 //
 // Invoke the map only on those children objects that meet
 // certain criteria.
 //
 if (currentBusObj_For_ObjSAP_Order_SAP_OrderLineItem != null)
 {
 BusObj[] _cw_inObjs = new BusObj[2];
 _cw_inObjs[0] =
 currentBusObj_For_ObjSAP_Order_SAP_OrderLineItem;
 _cw_inObjs[1] = ObjSAP_Order;
 logInfo ("*** Inside SAPCW header, verb is: " +
 (_cw_inObjs[0].getVerb()));

 try
 {

40

 BusObj[] _cw_outObjs = DtpMapService.runMap(
 "Sub_SaOrderLineItem_to_CwOrderLineItem",
 "CwMap",
 _cw_inObjs,
 cwExecCtx);
 _cw_outObjs[0].setVerb(_cw_inObjs[0].getVerb());
 ObjOrder.setWithCreate("OrderLineItem", _cw_outObjs[0]);
 }

 catch (MapNotFoundException me)
 {
 logError(5502,
 " Sub_SaOrderLineItem_to_CwOrderLineItem ");
 throw new MapFailureException ("Submap not found");
 }
 }
 }

 // Start of the child relationship code
 BusObjArray temp = (BusObjArray)ObjOrder.get("OrderLineItem");
 try
 {
 IdentityRelationship.maintainCompositeRelationship(
 "OrdrLine",
 "SAPOrln",
 ObjSAP_Order,
 temp,
 cwExecCtx);
 }

 catch RelationshipRuntimeException re
 {
 logError(re.toString());
 }

 // This call to updateMyChildren() assumes the existence of the
 // OrdrOrln parent/child relationship between the SAP_Order
 // (parent) and SAP_OrderItem (child)
 IdentityRelationship.updateMyChildren(
 "OrdrOrln",
 "SAOrders",
 ObjSAP_Order,
 "SAOrdrLn",
 "LineItem",
 "OrdrLine",
 "SAPOrln",

41

 cwExecCtx);

 // End of the child relationship code
 }
}

Customizing the submap

In the map for the child business object (the submap), add the mapping code to the the key

attribute of the child object. The only code you need to add is a call to the setVerb() method to

set the child object's verb to the parent object's verb.

Note:

When the child object primary key requires the maintainCompositeRelationship()
method, make the call in the parent map, right after the end of the for loop for calling the
submap. In the submap, the code for the destination object's primary key should contain
the following line:

// maintainCompositeRelationship()
is called in the parent map.

42

WEEK 4 :

SETS

This week Learning outcomes:
• Define sets .
• Define set operations.
 • Define the elements of set , subsets, super sets, universal sets and null set.
• Explain Storage set representation.

The type SET

The objects of study of Set Theory are sets. As sets are fundamental objects that can be used to

define all other concepts in mathematics, they are not defined in terms of more fundamental

concepts. Rather, sets are introduced either informally, and are understood as something self-

evident, or, as is now standard in modern mathematics, axiomatically, and their properties are

postulated by the appropriate formal axioms.

The language of set theory is based on a single fundamental relation, called membership. We say

that A is a member of B (in symbols A ∈ B), or that the set B contains A as its element. The

understanding is that a set is determined by its elements; in other words, two sets are deemed

equal if they have exactly the same elements. In practice, one considers sets of numbers, sets of

points, sets of functions, sets of some other sets and so on. In theory, it is not necessary to

distinguish between objects that are members and objects that contain members -- the only

objects one needs for the theory are sets. See the supplement

The type SET denotes sets whose elements are integers in the range 0 to a small number,
typically 31 or 63.
Given, for example, variables
VAR r, s, t: SET
possible assignments are
r := {5}; s := {x, y .. z}; t := {}
Here, the value assigned to r is the singleton set consisting of the single element 5; to t is
assigned the
empty set, and to s the elements x, y, y+1, … , z-1, z.

43

Set Operations

A relation is a set. It is a set of ordered pairs if it is a binary relation, and it is a set of ordered n-
tuples if it is an n-ary relation. Thus all the set operations apply to relations such as , , and
complementing.

For example, the union of the "less than" and "equality" relations on the set of integers is the
"less than or equal to" relation on the set of integers. The intersection of the "less than" and "less
than or equal to" relations on the set of integers is the "less than" relation on the same set. The
complement of the "less than" relation on the set of integers is the "greater than or equal to"
relation on the same set.

Therefore, the following are the elementary operators are defined on variables of type SET:
* set intersection
+ set union
- set difference
/ symmetric set difference
IN set membership
Constructing the intersection or the union of two sets is often called set multiplication or set
addition, respectively; the priorities of the set operators are defined accordingly, with the
intersection operator having priority over the union and difference operators, which in turn have
priority over the membership operator, which is classified as a relational operator. Following are
examples of set expressions and their fully parenthesized equivalents:
r * s + t = (r*s) + t
r - s * t = r - (s*t)
r - s + t = (r-s) + t
THIS IS A TEXT
18
r + s / t = r + (s/t)
x IN s + t = x IN (s+t)

Sets, Elements, and Subsets

One dictionary has, among the many definitions for set, the following: a number of things naturally

connected by location, formation, or order in time.

Although set holds the record for words with the most dictionary definitions, there are terms

mathematicians choose to leave undefined, or actually, defined by usage. Set, element, member,

and subset are four such terms which will be discussed in today's lesson. Today's activity will

also explore the concept.

44

Each item inside a set is termed an element.

The brace symbols { and } are used to enclose the elements in a set.

Each element is a member of the set (or belongs to the set).

The symbol for membership is . It can be read "is an element of" and looks quite similar to the

Greek letter epsilon ().

A subset is a portion of a set.

The symbol for subset is . Some books will allow and use it reversed—we will not.

A superset is a set that includes other sets.

For example: If A B, then A is a subset of B and B is a superset of A.

A subset might have no members, in which case it is termed the null set or empty set.

The empty set is denoted either by {} or by , a Norwegian letter. The null set is a subset of

every set.

Note: a common mistake is to use {} to denote the null set. This is actually a set with one

element and that element is the null set. Since some people slash their zeroes, it is safest when

handwriting to always use the notation {} to denote the empty or null set.

A singleton is a set with only one element.

A subset might contain every member of the original set.

In this case it is termed an improper subset.

45

A proper subset does not contain every member of the original set.

Sets may be finite, {1, 2, 3,..., 10}, or infinite, {1, 2, 3,...}. The cardinality of a set A, n(A), is

how many elements are in the set. The symbol ... called ellipses means to continue in the

indicated pattern. There are 2n subsets of any set, where n is the set's cardinality—check it out for

n=3!

The power set of a set is the complete set of subsets of the set.

In this class we will consider only safe sets, that is, any set we consider should be well-defined.

There should be no ambiguity as to whether or not an element belongs to a set. That is why we

will avoid things like the village barber who shaves everyone in the village that does not shave

himself. This results in a contradiction as to whether or not he shaves himself. Also consider

Russell's Paradox: Form the set of sets that are not members of themselves. It is both true and

false that this set must contain itself. These are examples of ill-defined sets.

Sometimes, instead of listing elements in a set, we use set builder notation: {x| x is a letter in the

word "mathematics"}. The symbol | can be read as "such that." Sometimes the symbol is

reserved to mean proper subset and the symbol is used to allow the inclusion of the improper

subset. Compare this with the use of < and to exclude or include an endpoint. We will make no

such distinction. A set may contain the same elements as another set. Such sets are equal or

identical sets— element order is unimportant. A = B where A = {m,o,r,e} and B = {r,o,m,e}, in

general A=B if A B and B A. Sets may be termed equivalent if they have the same

cardinality. If they are equivalent, a one-to-one correspondence can be established between

their elements.

The universal set is chosen arbitrarily, but must be large enough to include all elements of all sets under

discussion.

Complementary set, A', is a set that contains all the elements of the universal set that are not included

in A. The symbol ' can be read "prime."

46

For example: if U={0, 1, 2, 3, 4, 5, 6,...} and A={0, 2, 4, 6, ...}, then A'={1, 3, 5, ...}.

Such paradoxes as those mentioned above, particularily involving infinities (discussed in the

next lesson), were well known by the ancient Greeks. During the 19th century, mathematicians

were able to tame such paradoxes and about the turn of the 20th century Whitehead and Russell

started an ambitious project to carefully codify mathematics. Set theory was developed about this

time and serves to unify the many branches of mathematics. Although in 1931 Kurt Gödel

showed this approach to be fatally flawed, it is still a good way to explore areas of mathematics

such as: arithmetic, number theory, [abstract] algebra, geometry, probability, etc.

Geometry has a long history of such systematic study. The ancient Greek Euclid similarily

codified the mathematics of his time into 13 books called The Elements. Although these books

were not limited to Geometry, that is what they are best known for. In fact, up until about my

grandfather's day, The Elements was the textbook of choice for the study of Geometry! The

Elements carefully separated the assumptions and definitions from what was to be proved. The

concept of proof dates back another couple hundred years to the ancient Greek Pythagoras and

his school, the Pythagorean School.

Intersection and Union

Once we have created the concept of a set, we can manipulate sets in useful ways termed set

operations. Consider the following sets: animals, birds, and white things. Some animals are

white: polar bears, mountain goats, big horn sheep, for example. Some birds are white: dove,

stork, sea gulls. Some white things are not birds or animal (but birds are animals!): snow, milk,

wedding gowns (usually).

The intersection of sets are those elements which belong to all intersected sets.

Although we usually intersect only two sets, the definition above is general. The symbol for

intersection is .

The union of sets are those elements which belong to any set in the union.

47

Again, although we usually form the union of only two sets, the definition above is general. The

symbol for union is .

For the example given above, we can see that:

{white things} {birds} = white birds

{white animals} {birds} = white animals and all birds

{white birds} {white animals} {animals}

Another name for intersection is conjuction. This comes from the fact that an element must be a

member of set A and set B to be a member of A B. Another name for union is disjunction.

This comes from the fact that an element must be a member of set A or set B to be a member of

A B. Conjunction and disjunction are grammar terms and date back to when Latin was widely

used.

I should note the very mathematical use of the word or in the sentence above. Common usage now of

the word or means one or the other, but not both (excludes both). Mathematicians and computer

scientists on the other hand mean one or the other, possibly both (including both). This ambiguity can

cause all kinds of problems! Mathematicians term the former exclusive or (EOR or XOR) and the latter

inclusive or. We will see ands & ors again in numbers lesson 6 on truth tables.

Representation of Sets
A set s is conveniently represented in a computer store by its characteristic function C(s). This is
an array of logical values whose ith component has the meaning “i is present in s”. As an
example, the set of small
integers s = {2, 3, 5, 7, 11, 13} is represented by the sequence of bits, by a bitstring:
C(s) = (… 0010100010101100)
The representation of sets by their characteristic function has the advantage that the operations of
computing the union, intersection, and difference of two sets may be implemented as elementary
logical operations. The following equivalences, which hold for all elements i of the base type of
the sets x and y, relate logical operations with operations on sets:
i IN (x+y) = (i IN x) OR (i IN y)
i IN (x*y) = (i IN x) & (i IN y)
i IN (x-y) = (i IN x) & ~(i IN y)
These logical operations are available on all digital computers, and moreover they operate
concurrently on
all corresponding elements (bits) of a word. It therefore appears that in order to be able to
implement the
basic set operations in an efficient manner, sets must be represented in a small, fixed number of
words upon
which not only the basic logical operations, but also those of shifting are available. Testing for
membership

48

is then implemented by a single shift and a subsequent (sign) bit test operation. As a
consequence, a test of
the form x IN {c1, c2, ... , cn} can be implemented considerably more efficiently than the
equivalent
Boolean expression
(x = c1) OR (x = c2) OR ... OR (x = cn)
A corollary is that the set structure should be used only for small integers as elements, the largest
one being
the wordlength of the underlying computer (minus 1).

49

WEEK 5:

String structure.

This week Learning outcomes :
• Define Define string .
•.Explain basic operations of strings.

String Processing
A finite sequence S of zero or more characters is called a string. The number of character
in a string is called its length. The string with zero character is called the empty string
or the null string. The following are strings of length 9,18, 14 and 0 respectively:

I.) “ND1 CLASS”
II.) “COMPUTER DEPARTMENT”
III.) “CAMPUS SHUTTLE” ,and
IV.) “ “

Note that the blank is regarded as a character only when it appears swith other
characters .

Concatenation of Strings
Let S1 and S2 be strings, the string consisting of the characters of S1 followed by the
characters of S1 is called concatenation of S1 and S1.
 This is donated by S1//S2. E.g. “STARLETS”//”//”DEFEAT”//”EA..GLET”
A string Y is called a substring of a string S if there exist strings X and Z such that
S=X//Y//Z.
If X is an empty string, then Y is called an intial substing of S, and if Z is an empty
string then Y is called a terminal substring of S.
E.g.’BE OR NOT’ is a substring of ‘TO BE OR NOT TO BE’.
‘THE’ is an initial substring of ‘THE END’.

Length
The general form is LENGTH(string) and this will return the number of character(s) in a
giving string.

i.) LENGTH(‘student’)=7
ii.) LENGTH(‘ ‘)=0

Insertion
Suppose we want to insert a strings in a given text T so that S starts in position K. We
denote this operation as INSERT(text, position, string)
E.g. INSERT(‘ABCDEFG’, 3,’XYZ’)=’ABXYZCDEFG’
The INSERT function can be implemented by using the string operation as follows:
INSERT(T,K,S)=SUBSTRING(T,1,K-1)//S//SUBSTRING(T,K,LENGTH(T)-K+1).

50

That is, the initial substring of T before the position K , which has length K-1, is
concatenated with the string, and the result is concatenated with the remaining part of T,
which begins in position K and has length, LENGTH(T)-(K-1)=LENGTH(T)-K+1.

Deletion
The general form is DELETE(text,position,length).
E.g. DELETE(‘ABCDEFG’,4,2)=’ABCFG’
We assume that nothing is deleted if position K=0.
Thus DELETE(‘ABCDEFG’,0,2)=’ABCDEFG’
The DELETE function can be implemented using the string operations given as follows:

DELETE(T,K,L)=SUBSTRING(T,1,K-1)//SUBSTRING(T,K+L,LENTGH(T)-K-L+1)

That is the initial substring of T before position K is concatenated with the terminal
substring of T beginning in position K+L, and the length of the terminal substring is :
LENGTH(T)-(K+L-1)=LENGTH(T)-K-L+1

When K=0, we assume that DELETE(T,K,L)=T
Suppose that text T and pattern P are given and it is required to delete from T the first
occurrence of the pattern P. We can use the following DELETE function

DELETE(T,INDEX(T,P),LENGTH(P))
E.g. = ‘ABCDEFG’, P=’CD’, then
DELETE(T,INDEX(T,P),LENGTH(P))=DELETE(‘ABCDEFG’,INDEX(‘ABCDEFG’,’CD’)
,2)=’ABEFG’
Suppose that we want to delete every occurrence of the pattern P in the text T, then we
can do this by repeatedly applying DELETE(T,INDEX(T,P),LENGTH(P))
Until INDEX(T,P)=0 that is, until P does not appear in T.
The following algorithm is used to accomplish this:

Algorithm:
A text T and a pattern P are in computer memory. This algorithm deletes every
occurrence of P in T.

i.) Find index of P in T. Set K=INDEX(T,P)
ii.) Repeat while K not equal to 0

a. [Delete P from T.]
Set T:= DELETE(T,INDEX(T,P),LENGTH(P))

b. [Update index]
 Set K:= INDEX(T,P)

 [End of loop]
iii.) Write: T.
iv.) Exit.

REPLACEMENT

51

Suppose in a given T we want to replace the first occurrence of a patter P1 by a
pattern P2, we will denote this operation by REPLACE(test,pattern1,pattern2)
E.g. REPLACE(‘XABYABZ,’AB’,’C’)=’XCYABZ’
 REPLACE(‘XABYABZ,’BA’,’C’)=’XABYABZ’
In the second case, the pattern BA does not occur, and hence there is no change.
Suppose a text T and patterns P and Q are in the memory of a computer. Suppose we
want to replace every occurrence of the pattern P in T by the Pattern Q. This might be
accomplished by repeatedly applying REPLACE(T,P.Q), UNTIL(T,P)=0

This could be done using the following algorithm:

1. [Find index of P] Set K :=INDEX(T,P)
2. Repeat while K>0:

a.) [Replace P by Q] Set T:=REPLACE(T,P,Q)
b.) [Updarte] Set K:= INDEX(T,P)

 [Eend loop]
3. Write: T
4. Exit.

Exercise
a.) T=XABYABZ

P=AB
Q=C
REPLACE(T,P,Q)

b.) If T=XAB
 P=A
 Q=AB
 REPLACE(T,P,Q)
Use the algorithm above to solve the problems.

52

WEEK 6:

Queues and Stacks.

This week learning outcomes:
• Queue data structure .
• Stack data structure..

Queues

Queues are dynamic collections which have some concept of order. This can be either based on

order of entry into the queue - giving us First-In-First-Out (FIFO) or Last-In-First-Out (LIFO)

queues. Both of these can be built with linked lists: the simplest "add-to-head" implementation of

a linked list gives LIFO behaviour. A minor modification - adding a tail pointer and adjusting the

addition method implementation - will produce a FIFO queue.

Representation of queues:
Two pointer variable namely FRONT and REAR are used in quiues, FRONT contains
the location of the front element of the queue, and REAR contains the location of the
rear element of the queue. The condition FRONT=NULL will indicate that the queue is
empty.
Whenever an item is deleted from the queue, the value of FRONT is increased by 1 ,
that is , FRONT=FRONT + 1.
Whenever, an item is added to the queue, the value of REAR is increased by 1 that is,
REAR=REAR +1.

A B C D …… …. N-1 N

FRONT=1 , and REAR = 4
Suppose that we want to insert an element ITEM into a queue at the time the queue
does occupy the last part of the array that is , when REAR=N and the queue is not
yet filled. To do this, we can assume that the queue is circular, that is, that QUEUE(1)
comes after QUEUE(N) in the array. With this assumption, insert ITEM into the queue
by assigning ITEM to QUEUE(1). Instead of increasing REAR to N+1, we reset REAR=1
and then assign QUEUE[REAR]=ITEM.
Similarly, if FRONT=N and element of queue is deleted, we reset FRONT=1 instead of
increasing FRONT to N+1.
If the queue is empty, we assign FRONT=REAR=NULL.

EXAMPLE

53

The following example shows how a queue may be maintained by a circular array
QUEUE with N=5 memory locations

a.) Initially empty:FRONT=0

1 2 3 4 5

REAR=0

b.) A and B and C inserted: FRONT= 1

 A B C

1 2 3 4 5

REAR=3

c.) A deleted FRONT =2

 B C

1 2 3 4 5

REAR=3

Stacks
Another way of storing data is in a stack. A stack is a linear structure in which items may
be added or removed only at one end for example, a stack of dishes, stack of pennies .
Only two (2) operations can be carried out on a stack. A stack is generally implemented
with only two principle operations (apart from a constructor and destructor methods):

Push adds an item to a stack

Pop extracts the most recently pushed item from the stack

Other methods such as

Top returns the item at the top without removing it

isempty determines whether the stack has anything in it

54

are sometimes added.

A common model of a stack is a plate or coin stacker. Plates
are "pushed" onto to the top and "popped" off the top.

Stacks form Last-In-First-Out (LIFO) queues and have many
applications from the parsing of algebraic expressions to ...

A formal specification of a stack class would look like:

typedef struct t_stack *stack;

stack ConsStack(int max_items, int item_size);
/* Construct a new stack
 Pre-condition: (max_items > 0) && (item_size > 0)
 Post-condition: returns a pointer to an empty st ack
*/

void Push(stack s, void *item);
/* Push an item onto a stack
 Pre-condition: (s is a stack created by a call t o ConsStack) &&
 (existing item count < max_items) &&
 (item != NULL)
 Post-condition: item has been added to the top o f s
*/

void *Pop(stack s);
/* Pop an item of a stack
 Pre-condition: (s is a stack created by a call t o
 ConsStack) &&
 (existing item count >= 1)
 Post-condition: top item has been removed from s
*/

Points to note:

a. A stack is simply another collection of data items and thus it would be possible to use
exactly the same specification as the one used for our general collection. However,
collections with the LIFO semantics of stacks are so important in computer science that it
is appropriate to set up a limited specification appropriate to stacks only.

b. Although a linked list implementation of a stack is possible (adding and deleting from the
head of a linked list produces exactly the LIFO semantics of a stack), the most common
applications for stacks have a space restraint so that using an array implementation is a

55

natural and efficient one (In most operating systems, allocation and de-allocation of
memory is a relatively expensive operation, there is a penalty for the flexibility of linked
tlist implementations.).

Stack Frames

The data structure containing all the data (arguments, local variables, return address, etc) needed
each time a procedure or function is called.

Almost invariably, programs compiled from modern high level languages (even C!) make use of
a stack frame for the working memory of each procedure or function invocation. When any
procedure or function is called, a number of words - the stack frame - is pushed onto a program
stack. When the procedure or function returns, this frame of data is popped off the stack.

As a function calls another function, first its arguments, then the return address and finally space
for local variables is pushed onto the stack. Since each function runs in its own "environment" or
context, it becomes possible for a function to call itself - a technique known as recursion. This
capability is extremely useful and extensively used - because many problems are elegantly
specified or solved in a recursive way.

Program stack after executing a pair of mutually
recursive functions:
function f(int x, int y) {
 int a;
 if (term_cond) return ...;
 a =;
 return g(a);
 }

function g(int z) {
 int p,q;
 p = ...; q = ...;
 return f(p,q);
 }

Note how all of function f and g's environment (their
parameters and local variables) are found in the stack
frame. When f is called a second time from g, a new
frame for the second invocation of f is created.

Key terms
push, pop

Generic terms for adding something to, or removing something from a stack
context

56

The environment in which a function executes: includes argument values, local variables
and global variables. All the context except the global variables is stored in a stack frame.

A number of programming languages are stack-oriented, meaning they define most basic

operations (adding two numbers, printing a character) as taking their arguments from the stack,

and placing any return values back on the stack. For example, PostScript has a return stack and

an operand stack, and also has a graphics state stack and a dictionary stack.

Forth uses two stacks, one for argument passing and one for subroutine return addresses. The use

of a return stack is extremely commonplace, but the somewhat unusual use of an argument stack

for a human-readable programming language is the reason Forth is referred to as a stack-based

language.

Many virtual machines are also stack-oriented, including the p-code machine and the Java virtual

machine..

Almost all computer runtime memory environments use a special stack (the "call stack") to hold

information about procedure/function calling and nesting in order to switch to the context of the

called function and restore to the caller function when the calling finishes. They follow a runtime

protocol between caller and callee to save arguments and return value on the stack. Stacks are an

important way of supporting nested or recursive function calls. This type of stack is used

implicitly by the compiler to support CALL and RETURN statements (or their equivalents) and

is not manipulated directly by the programmer.

Some programming languages use the stack to store data that is local to a procedure. Space for

local data items is allocated from the stack when the procedure is entered, and is deallocated

when the procedure exits. The C programming language is typically implemented in this way.

Using the same In computer science, a stack is an abstract data type and data structure based on

the principle of Last In First Out (LIFO). Stacks are used extensively at every level of a modern

computer system. For example, a modern PC uses stacks at the architecture level, which are used

in the basic design of an operating system for interrupt handling and operating system function

calls. Among other uses, stacks are used to run a Java Virtual Machine, and the Java language

itself has a class called "Stack", which can be used by the programmer. The stack is ubiquitous.

57

As an abstract data type, the stack is a container of nodes and has two basic operations: push and

pop. Push adds a given node to the top of the stack leaving previous nodes below. Pop removes

and returns the current top node of the stack. A frequently used metaphor is the idea of a stack of

plates in a spring loaded cafeteria stack. In such a stack, only the top plate is visible and

accessible to the user, all other plates remain hidden. As new plates are added, each new plate

becomes the top of the stack, hiding each plate below, pushing the stack of plates down. As the

top plate is removed from the stack, they can be used, the plates pop back up, and the second

plate becomes the top of the stack. Two important principles are illustrated by this metaphor: the

Last In First Out principle is one; the second is that the contents of the stack are hidden. Only the

top plate is visible, so to see what is on the third plate, the first and second plates will have to be

removed. This can also be written as FILO-First In Last Out, i.e. the record inserted first will be

popped out at last.

 Operations

In modern computer languages, the stack is usually implemented with more operations than just

"push" and "pop". The length of a stack can often be returned as a parameter. Another helper

operation top (also known as peek or peak) can return the current top element of the stack

without removing it from the stack.

This section gives pseudocode for adding or removing nodes from a stack, as well as the length

and top functions. Throughout we will use null to refer to an end-of-list marker or sentinel value,

which may be implemented in a number of ways using pointers.

 record Node {
 data // The data being stored in the node
 next // A reference to the next node; null for last node
 }
 record Stack {
 Node stackPointer // points to the 'top' node; null for an empty stac k
 }
 function push(Stack stack, Element element) { // push element onto stack
 new(newNode) // Allocate memory to hold new node
 newNode.data := element
 newNode.next := stack.stackPointer
 stack.stackPointer := newNode
 }
 function pop(Stack stack) { // increase the stack pointer and return 'top'
node data

58

 // You could check if stack.stackPointer is null he re.
 // If so, you may wish to error, citing the stack u nderflow.
 node := stack.stackPointer
 stack.stackPointer := node.next
 element := node.data
 return element
 }
 function top(Stack stack) { // return 'top' node
 return stack.stackPointer.data
 }
 function length(Stack stack) { // return the amount of nodes in the stack
 length := 0
 node := stack.stackPointer
 while node not null {
 length := length + 1
 node := node.next
 }
 return length
 }

As you can see, these functions pass the stack and the data elements as parameters and return

values, not the data nodes that, in this implementation, include pointers. A stack may also be

implemented as a linear section of memory (i.e. an array), in which case the function headers

would not change, just the internals of the functions.

 Implementation

A typical storage requirement for a stack of n elements is O(n). The typical time requirement of

O(1) operations is also easy to satisfy with a dynamic array or (singly) linked list

implementation.

C++'s Standard Template Library provides a "stack " templated class which is restricted to only

push/pop operations. Java's library contains a Stack class that is a specialization of Vector . This

could be considered a design flaw because the inherited get() method from Vector ignores the

LIFO constraint of the Stack .

Here is a simple example of a stack with the operations described above (but no error checking)

in Python.

class Stack (object) :
 def __init__ (self) :
 self .stack_pointer = None

 def push (self , element) :

59

 self .stack_pointer = Node (element, self .stack_pointer)

 def pop (self) :
 e = self .stack_pointer.element
 self .stack_pointer = self .stack_pointer.next
 return e

 def peek (self) :
 return self .stack_pointer.element

 def __len__ (self) :
 i = 0
 sp = self .stack_pointer
 while sp:
 i += 1
 sp = sp.next
 return i

class Node (object) :
 def __init__ (self , element= None, next= None) :
 self .element = element
 self .next = next

if __name__ == '__main__' :
 # small use example
 s = Stack ()
 [s.push (i) for i in xrange (10)]
 print [s.pop () for i in xrange (len (s))]

The above is admittedly redundant as Python supports the 'pop' and 'append' functions to lists.

Applications

Stacks are ubiquitous in the computing world.

Expression evaluation and syntax parsing

Calculators employing reverse Polish notation use a stack structure to hold values. Expressions

can be represented in prefix, postfix or infix notations. Conversion from one form of the

expression to another form needs a stack. Many compilers use a stack for parsing the syntax of

expressions, program blocks etc. before translating into low level code. Most of the

programming languages are context-free languages allowing them to be parsed with stack based

machines.

For example, The calculation: ((1 + 2) * 4) + 3 can be written down like this in postfix notation

with the advantage of no precedence rules and parentheses needed:

60

1 2 + 4 * 3 +

The expression is evaluated from the left to right using a stack:

• push when encountering an operand and

• pop two operands and evaluate the value when encountering an operation.

• push the result

Like the following way (the Stack is displayed after Operation has taken place):

Input Operation Stack

1 Push operand 1

2 Push operand 1, 2

+ Add 3

4 Push operand 3, 4

* Multiply 12

3 Push operand 12, 3

+ Add 15

The final result, 15, lies on the top of the stack at the end of the calculation.

example : implementation in pascal. using marked sequential file as data archives.

{

programmer : clx321
file : stack.pas
unit : Pstack.tpu
}
program TestStack;
{this program use ADT of Stack, i will assume that the unit of ADT of Stack
has already existed}

uses
 PStack; {ADT of STACK}

61

{dictionary}
const
 mark = '.' ;
var
 data : stack;
 f : text;
 cc : char;
 ccInt, cc1, cc2 : integer;

 {functions}
 IsOperand (cc : char) : boolean; {JUST Prototype}
 {return TRUE if cc is operand}
 ChrToInt (cc : char) : integer; {JUST Prototype}
 {change char to integer}
 Operator (cc1, cc2 : integer) : integer; {JUST Prototype}
 {operate two operands}

{algorithms}
begin
 assign (f, cc) ;
 reset (f) ;
 read (f, cc) ; {first elmt}
 if (cc = mark) then
 begin
 writeln ('empty archives !') ;
 end
 else
 begin
 repeat
 if (IsOperand (cc)) then
 begin
 ccInt := ChrToInt (cc) ;
 push (ccInt, data) ;
 end
 else
 begin
 pop (cc1, data) ;
 pop (cc2, data) ;
 push (data, Operator (cc2, cc1)) ;
 end;
 read (f, cc) ; {next elmt}
 until (cc = mark) ;
 end;
 close (f) ;
end.

 Runtime stack for both data and procedure calls has important security implications (see below)

of which a programmer must be aware in order to avoid introducing serious security bugs into a

program.

62

Security

Some computing environments use stacks in ways that may make them vulnerable to security

breaches and attacks. Programmers working in such environments must take special care to

avoid the pitfalls of these implementations.

For example, some programming languages use a common stack to store both data local to a

called procedure and the linking information that allows the procedure to return to its caller. This

means that the program moves data into and out of the same stack that contains critical return

addresses for the procedure calls. If data is moved to the wrong location on the stack, or an

oversized data item is moved to a stack location that is not large enough to contain it, return

information for procedure calls may be corrupted, causing the program to fail.

Malicious parties may attempt to take advantage of this type of implementation by providing

oversized data input to a program that does not check the length of input. Such a program may

copy the data in its entirety to a location on the stack, and in so doing it may change the return

addresses for procedures that have called it. An attacker can experiment to find a specific type of

data that can be provided to such a program such that the return address of the current procedure

is reset to point to an area within the stack itself (and within the data provided by the attacker),

which in turn contains instructions that carry out unauthorized operations.

This type of attack is a variation on the buffer overflow attack and is an extremely frequent

source of security breaches in software, mainly because some of the most popular programming

languages (such as C) use a shared stack for both data and procedure calls, and do not verify the

length of data items. Frequently programmers do not write code to verify the size of data items,

either, and when an oversized or undersized data item is copied to the stack, a security breach

may occur.

63

WEEK 7 :

Properties linear Array.

 These weeks Learning outcomes :
•Define linear Array.
•Discuss various operations that can be performed on ordered list.

Linear Arrays

Data structures are classified as either linear or nonlinear. It is said to be linear if its
elements form a sequence , that is, a linear list, otherwise nonlinear for example, trees
and graphs , records .They are mainly used to represent data containing a hierarchical
relationship between elements.. Strings, array lists, and queues are linear types of data
structure.The operations normally performed on linear lists include:

a.) Traversal: processing each element in the list.
b.) Search: finding the location of the element with a given value or the record with

a given key.
c.) Insertion: adding a new element to the list.
d.) Deletion: removing an element from the list.
e.) Sorting: arranging the elements in some type of order.
f.) Merging: combining two lists into a single list.

A linear array is a list of a finite number, n, of homogeneous data elements, where the
number n of elements is called the length or size of the array. The elements array A ,
may be denoted as follws:
A1, A2,……..An or A(1), A(2),………A(n) or A[1],A[2],………A[n]
Where 1 is the the lower bound, LB of the array and n, the upperbound, UB of the array.

Example:
Let DATA be a 5-element linear array of integers such that DATA[1]=24,
DATA[2]=56. DATA[3]=405. DATA[4]=35, DATA[5]=87

The array DATA is fryquently pictured as either of the following:
DATA
DATA[1] 24

DATA[2] 56

DATA[3] 405

DATA[4] 35

64

DATA[5] 87

24 56 405 35 87

1 2 3 4 5

 DATA

MULTIDIMENTIONAL ARRAYS

The linear arrays earlier discussed are also one-dimensional arrays, since each element in
the array is referenced by a single subscript. Most programming languages allow 2-
dimentional and 3-dimentional arrays, some allow the number of dimensions for an array
to be as high as 7.

Two-dimensionnal arrays are called Matrices in mathematics and tables in business
applications.

A 2-dimensional m*n array is a collection of m.n data elements such that each
Element is specified by a pair of integers (such as J,K), called subscripts, with the
property that :
 1 ≤ J ≤ m ,and 1 ≤ K ≤ n
e.g. the element of A with first subscript J and second subscript K will be denoted by
A(j.k) or A[j, k]

Example
Suppose each student in a class of 10 students in a given 3 tests. Assuming the students
are numbered according, the test scores can be assigned to a 10 *3 matrix array
SCORE. Thus, SCORE[K,L] contains the Kth student’s score on Lth test.

This can be represented as follows:

Student Test 1 Test 2 Test 3

1 56 46 90

2 78 90 98

3 . . .

4 . . .

5 . . .

6 . . .

65

7 . . .

8 . . .

9 . . .

10 78 82 85

The Array Structure
The array is probably the most widely used data structure; in some languages it is even the only
one
available. An array consists of components which are all of the same type, called its base type; it
is
therefore called a homogeneous structure. The array is a random-access structure, because all
components
can be selected at random and are equally quickly accessible. In order to denote an individual
component,
the name of the entire structure is augmented by the index selecting the component. This index is
to be an
integer between 0 and n-1, where n is the number of elements, the size, of the array.
TYPE T = ARRAY n OF T0

Examples

TYPE Row = ARRAY 4 OF REAL
TYPE Card = ARRAY 80 OF CHAR
TYPE Name = ARRAY 32 OF CHAR
A particular value of a variable
VAR x: Row
with all components satisfying the equation xi = 2-i, may be visualized as shown in Fig. 1.2.
Fig. 1.2 Array of type Row with xi = 2-i
An individual component of an array can be selected by an index. Given an array variable x, we
denote an array selector by the array name followed by the respective component's index i, and
we write xi or x[i].
Because of the first, conventional notation, a component of an array component is therefore also
called a subscripted variable.
The common way of operating with arrays, particularly with large arrays, is to selectively update
single components rather than to construct entirely new structured values. This is expressed by
considering an
array variable as an array of component variables and by permitting assignments to selected
components, such as for example x[i] := 0.125. Although selective updating causes only a single
component value to change, from a conceptual point of view we must regard the entire
composite value as having changed too.
The fact that array indices, i.e., names of array components, are integers, has a most important

66

consequence: indices may be computed. A general index expression may be substituted in place
of an index constant; this expression is to be evaluated, and the result identifies the selected
component. This
generality not only provides a most significant and powerful programming facility, but at the
same time it also gives rise to one of the most frequently encountered programming mistakes:
The resulting value may be outside the interval specified as the range of indices of the array. We
will assume that decent computing systems provide a warning in the case of such a mistaken
access to a non-existent array component.
The cardinality of a structured type, i. e. the number of values belonging to this type, is the
product of the cardinality of its components. Since all components of an array type T are of the
same base type T0, we obtain
card(T) = card(T0)n
x0 1.0
x1 0.5
x2 0.25
x3 0.125
19
Constituents of array types may themselves be structured. An array variable whose components
are again
arrays is called a matrix. For example,
M: ARRAY 10 OF Row
is an array consisting of ten components (rows), each constisting of four components of type
REAL, and is
called a 10 × 4 matrix with real components. Selectors may be concatenated accordingly, such
that Mij and M[i][j] denote the j th component of row Mi, which is the i th component of M. This
is usually abbreviated as M[i, j] and in the same spirit the declaration
M: ARRAY 10 OF ARRAY 4 OF REAL
can be written more concisely as M: ARRAY 10, 4 OF REAL.
If a certain operation has to be performed on all components of an array or on adjacent
components of a section of the array, then this fact may conveniently be emphasized by using the
FOR satement, as shown in the following examples for computing the sum and for finding the
maximal element of an array declared as

VAR a: ARRAY N OF INTEGER
sum := 0;
FOR i := 0 TO N-1 DO sum := a[i] + sum END
k := 0; max := a[0];
FOR i := 1 TO N-1 DO
IF max < a[i] THEN k := i; max := a[k] END
END.
In a further example, assume that a fraction f is represented in its decimal form with k-1 digits,
i.e., by an
array d such that

f = S i : 0 ≤i < k: di * 10-i or
f = d0 + 10*d1 + 100*d2 + … + dk-1*10k-1

67

Now assume that we wish to divide f by 2. This is done by repeating the familiar division
operation for all
k-1 digits di, starting with i=1. It consists of dividing each digit by 2 taking into account a
possible carry
from the previous position, and of retaining a possible remainder r for the next position:
r := 10*r +d[i]; d[i] := r DIV 2; r := r MOD 2
This algorithm is used to compute a table of negative powers of 2. The repetition of halving to
compute 2-1,
2-2, ... , 2-N is again appropriately expressed by a FOR statement, thus leading to a nesting of
two FOR
statements.
PROCEDURE Power(VAR W: Texts.Writer; N: INTEGER);
(*compute decimal representation of negative powers of 2*)
VAR i, k, r: INTEGER;
d: ARRAY N OF INTEGER;
BEGIN
FOR k := 0 TO N-1 DO
Texts.Write(W, "."); r := 0;
FOR i := 0 TO k-1 DO
r := 10*r + d[i]; d[i] := r DIV 2; r := r MOD 2;
Texts.Write(W, CHR(d[i] + ORD("0")))
END ;
d[k] := 5; Texts.Write(W, "5"); Texts.WriteLn(W)
END
END Power.
The resulting output text for N = 10 is
20
.5
.25
.125
.0625
.03125
.015625
.0078125
.00390625
.001953125
.0009765625

A representation of an array structure is a mapping of the (abstract) array with components of
type T onto the store which is an array with components of type BYTE. The array should be
mapped in such a way that the computation of addresses of array components is as simple (and
therefore as efficient) as possible. The address i of the j-th array component is computed by the
linear mapping function i = i0 + j*s
where i0 is the address of the first component, and s is the number of words that a component
occupies.

68

Assuming that the word is the smallest individually transferable unit of store, it is evidently
highly desirable that s be a whole number, the simplest case being s = 1. If s is not a whole
number (and this is the normal case), then s is usually rounded up to the next larger integer S.
Each array component then occupies
S words, whereby S-s words are left unused (see Figs. 1.5 and 1.6). Rounding up of the number
of words
needed to the next whole number is called padding. The storage utilization factor u is the
quotient of the
minimal amounts of storage needed to represent a structure and of the amount actually used:
u = s / (s rounded up to nearest integer)

69

WEEK 8 :

 Linked list.

• Define linked list .
• Define linked list and compare it with linear list.
• Discuss the advantages and disadvantages of linked list.

Lists

Linked list is an algorithm for storing a list of items. It is made of any number of pieces of
memory (nodes) and each node contains whatever data you are storing along with a pointer (a
link) to another node. By locating the node referenced by that pointer and then doing the same
with the pointer in that new node and so on, you can traverse the entire list.

Because a linked list stores a list of items, it has some similarities to an array. But the two are
implemented quite differently. An array is a single piece of memory while a linked list contains
as many pieces of memory as there are items in the list. Obviously, if your links get messed up,
you not only lose part of the list, but you ill lose any reference to those items no longer included
in the list (unless you store another pointer to those items somewhere).

Some advantages that a linked list has over an array are that you can quickly insert and delete
items in a linked list. Inserting and deleting items in an array requires you to either make room
for new items or fill the "hole" left by deleting an item. With a linked list, you imply rearrange
those pointers that are affected by the change. linked lists also allow you to have different-sized
nodes in the list. Some disadvantages to linked lists include that hey are quite difficult to sort.
Also, you cannot immediately locate, say, the hundredth element in a linked list the way you can
in an array. Instead, you must traverse the list until you've found the hundredth element.

Again, the array implementation of our collection has one serious drawback: you must know the

maximum number of items in your collection when you create it. This presents problems in

programs in which this maximum number cannot be predicted accurately when the program

starts up. Fortunately, we can use a structure called a linked list to overcome this limitation.

70

Linked lists

The linked list is a very flexible dynamic data structure that is structure which grows or

shrinks as the data they hold changes. Lists, stacks and trees are all dynamic structures.: items

may be added to it or deleted from it at will. A programmer need not worry about how many

items a program will have to accommodate: this allows us to write robust programs which

require much less maintenance. A very common source of problems in program maintenance is

the need to increase the capacity of a program to handle larger collections: even the most

generous allowance for growth tends to prove inadequate over time!

In a linked list, each item is allocated space as it is added to the list. A link is kept with each item

to the next item in the list.

Each node of the list has two elements

1. the item being stored in the list and

2. a pointer to the next item in the list

The last node in the list contains a NULL

pointer to indicate that it is the end or tail of

the list.

As items are added to a list, memory for a node is dynamically allocated. Thus the number of

items that may be added to a list is limited only by the amount of memory available.

Handle for the list

The variable (or handle) which represents the list is simply a pointer to the node at the head of the list.

Adding to a list

The simplest strategy for adding an item to a list is to:

a. allocate space for a new node,

b. copy the item into it,

c. make the new node's next pointer point to the current head of the list and

d. make the head of the list point to the newly allocated node.

71

This strategy is fast and efficient, but each item is added to the head of the list.

An alternative is to create a structure for the list which contains both head and tail pointers:

 struct fifo_list {
 struct node *head;
 struct node *tail;
 };

The code for AddToCollection is now trivially modified to make a list in which the item most

recently added to the list is the list's tail.

The specification remains identical to that used for the array implementation: the max_item

parameter to ConsCollection is simply ignored .

Thus we only need to change the implementation. As a consequence, applications which use this

object will need no changes. The ramifications for the cost of software maintenance are

significant.

The data structure is changed, but since the details (the attributes of the object or the elements of

the structure) are hidden from the user, there is no impact on the user's program.

Points to note:

a. This implementation of our collection can be substituted for the first one with no changes to a

client's program. With the exception of the added flexibility that any number of items may be

added to our collection, this implementation provides exactly the same high level behaviour as

the previous one.

b. The linked list implementation has exchanged flexibility for efficiency - on most systems, the

system call to allocate memory is relatively expensive. Pre-allocation in the array-based

implementation is generally more efficient. More examples of such trade-offs will be found

later.

The study of data structures and algorithms will enable you to make the implementation decision

which most closely matches your users' specifications.

72

Advantages of Linked List over its array counterpart

Some advantages that a linked list has over an array are as follows:

i.) that you can quickly insert and delete items in a linked list.

ii.) Inserting and deleting items in an array requires you to either make room for new items

or fill the "hole" left by deleting an item.

iii.) With a linked list, you imply rearrange those pointers that are affected by the change.

iv.) linked lists also allow you to have different-sized nodes in the list.

 Some disadvantages of linked lists include that :

i.) They are quite difficult to sort.

ii.) Also, you cannot immediately locate, say, the hundredth element in a linked list the

way you can in an array. Instead, you must traverse the list until you've found the

hundredth element.

73

WEEK 9 :

Properties of linked list.

This week learning outcomes:

• Explain types of linked list.

 •Applications of linked lists.

• Implementation of different operations of linked lists.

Types of linked lists

 Linearly linked list

 Singly-linked list

The simplest kind of linked list is a singly-linked list (or slist for short), which has one link per

node. This link points to the next node in the list, or to a null value or empty list if it is the final

node.

A singly-linked list containing two values: the value of the current node and a link to the next node

A singly linked list's node is divided into two parts. The first part holds or points to information

about the node, and second part holds the address of next node. A singly linked list travels one

way.

 Doubly-linked list

A more sophisticated kind of linked list is a doubly-linked list or two-way linked list. Each

node has two links: one points to the previous node, or points to a null value or empty list if it is

the first node; and one points to the next, or points to a null value or empty list if it is the final

node. A doubly-linked list containing three integer values: the value, the link forward to the next node, and the link

backward to the previous node

74

In some very low level languages, XOR-linking offers a way to implement doubly-linked lists

using a single word for both links, although the use of this technique is usually discouraged.

Circularly-linked list

In a circularly-linked list, the first and final nodes are linked together. This can be done for both

singly and doubly linked lists. To traverse a circular linked list, you begin at any node and follow

the list in either direction until you return to the original node. Viewed another way, circularly-

linked lists can be seen as having no beginning or end. This type of list is most useful for

managing buffers for data ingest, and in cases where you have one object in a list and wish to

iterate through all other objects in the list in no particular order.

The pointer pointing to the whole list may be called the access pointer.A circularly-linked list

containing three integer values

Sentinel nodes

Linked lists sometimes have a special dummy or sentinel node at the beginning and/or at the end

of the list, which is not used to store data. Its purpose is to simplify or speed up some operations,

by ensuring that every data node always has a previous and/or next node, and that every list

(even one that contains no data elements) always has a "first" and "last" node. Lisp has such a

design - the special value nil is used to mark the end of a 'proper' singly-linked list, or chain of

cons cells as they are called. A list does not have to end in nil, but a list that did not would be

termed 'improper'.

 Applications of linked lists

Linked lists are used as a building block for many other data structures, such as stacks, queues

and their variations.

The "data" field of a node can be another linked list. By this device, one can construct many

linked data structures with lists; this practice originated in the Lisp programming language,

where linked lists are a primary (though by no means the only) data structure, and is now a

common feature of the functional programming style.

75

Sometimes, linked lists are used to implement associative arrays, and are in this context called

association lists. There is very little good to be said about this use of linked lists; they are easily

outperformed by other data structures such as self-balancing binary search trees even on small

data sets (see the discussion in associative array). However, sometimes a linked list is

dynamically created out of a subset of nodes in such a tree, and used to more efficiently traverse

that set.

Linked lists vs. arrays

Array Linked list

Indexing O(1) O(n)

Inserting / Deleting at end O(1) O(1) or O(n)
[2]

Inserting / Deleting in middle (with iterator) O(n) O(1)

Persistent No Singly yes

Locality Great Bad

Linked lists have several advantages over arrays. Elements can be inserted into linked lists

indefinitely, while an array will eventually either fill up or need to be resized, an expensive

operation that may not even be possible if memory is fragmented. Similarly, an array from which

many elements are removed may become wastefully empty or need to be made smaller.

Further memory savings can be achieved, in certain cases, by sharing the same "tail" of elements

among two or more lists — that is, the lists end in the same sequence of elements. In this way,

one can add new elements to the front of the list while keeping a reference to both the new and

the old versions — a simple example of a persistent data structure.

76

On the other hand, arrays allow random access, while linked lists allow only sequential access to

elements. Singly-linked lists, in fact, can only be traversed in one direction. This makes linked

lists unsuitable for applications where it's useful to look up an element by its index quickly, such

as heapsort. Sequential access on arrays is also faster than on linked lists on many machines due

to locality of reference and data caches. Linked lists receive almost no benefit from the cache.

Another disadvantage of linked lists is the extra storage needed for references, which often

makes them impractical for lists of small data items such as characters or boolean values. It can

also be slow, and with a naïve allocator, wasteful, to allocate memory separately for each new

element, a problem generally solved using memory pools.

A number of linked list variants exist that aim to ameliorate some of the above problems.

Unrolled linked lists store several elements in each list node, increasing cache performance while

decreasing memory overhead for references. CDR coding does both these as well, by replacing

references with the actual data referenced, which extends off the end of the referencing record.

A good example that highlights the pros and cons of using arrays vs. linked lists is by

implementing a program that resolves the Josephus problem. The Josephus problem is an

election method that works by having a group of people stand in a circle. Starting at a

predetermined person, you count around the circle n times. Once you reach the nth person, take

them out of the circle and have the members close the circle. Then count around the circle the

same n times and repeat the process, until only one person is left. That person wins the election.

This shows the strengths and weaknesses of a linked list vs. an array, because if you view the

people as connected nodes in a circular linked list then it shows how easily the linked list is able

to delete nodes (as it only has to rearrange the links to the different nodes). However, the linked

list will be poor at finding the next person to remove and will need to recurse through the list

until it finds that person. An array, on the other hand, will be poor at deleting nodes (or elements)

as it cannot remove one node without individually shifting all the elements up the list by one.

However, it is exceptionally easy to find the nth person in the circle by directly referencing them

by their position in the array.

77

The list ranking problem concerns the efficient conversion of a linked list representation into an

array. Although trivial for a conventional computer, solving this problem by a parallel algorithm

is complicated and has been the subject of much research.

Doubly-linked vs. singly-linked

Double-linked lists require more space per node (unless one uses xor-linking), and their

elementary operations are more expensive; but they are often easier to manipulate because they

allow sequential access to the list in both directions. In particular, one can insert or delete a node

in a constant number of operations given only that node's address. Comparing with singly-linked

lists, it requires the previous node's address in order to correctly insert or delete. Some

algorithms require access in both directions. On the other hand, they do not allow tail-sharing,

and cannot be used as persistent data structures.

Circularly-linked vs. linearly-linked

Circular linked lists are most useful for describing naturally circular structures, and have the

advantage of regular structure and being able to traverse the list starting at any point. They also

allow quick access to the first and last records through a single pointer (the address of the last

element). Their main disadvantage is the complexity of iteration, which has subtle special cases.

Sentinel nodes (header nodes)

Doubly linked lists can be structured without using a front and NULL pointer to the ends of the

list. Instead, a node of object type T set with specified default values is used to indicate the

"beginning" of the list. This node is known as a Sentinel node and is commonly referred to as a

"header" node. Common searching and sorting algorithms are made less complicated through the

use of a header node, as every element now points to another element, and never to NULL. The

header node, like any other, contains a "next" pointer that points to what is considered by the

linked list to be the first element. It also contains a "previous" pointer which points to the last

element in the linked list. In this way, a doubly linked list structured around a Sentinel Node is

circular.

78

The Sentinel node is defined as another node in a doubly linked list would be, but the allocation

of a front pointer is unnecessary as the next and previous pointers of the Sentinel node will point

to itself. This is defined in the default constructor of the list.

next == this; prev == this;

If the previous and next pointers point to the Sentinel node, the list is considered empty.

Otherwise, if one or more elements is added, both pointers will point to another node, and the list

will contain those elements. [3]

Sentinel node may simplify certain list operations, by ensuring that the next and/or previous

nodes exist for every element. However sentinel nodes use up extra space (especially in

applications that use many short lists), and they may complicate other operations. To avoid the

extra space requirement the sentinel nodes can often be reused as references to the first and/or

last node of the list.

The Sentinel node eliminates the need to keep track of a pointer to the beginning of the list, and

also eliminates any errors that could result in the deletion of the first pointer, or any accidental

relocation.

Linked list operations

When manipulating linked lists in-place, care must be taken to not use values that you have

invalidated in previous assignments. This makes algorithms for inserting or deleting linked list

nodes somewhat subtle. This section gives pseudocode for adding or removing nodes from

singly, doubly, and circularly linked lists in-place. Throughout we will use null to refer to an

end-of-list marker or sentinel, which may be implemented in a number of ways.

Linearly-linked lists

 Singly-linked lists

Our node data structure will have two fields. We also keep a variable firstNode which always

points to the first node in the list, or is null for an empty list.

79

 record Node {
 data // The data being stored in the node
 next // A reference to the next node, null for last node
 }
 record List {
 Node firstNode // points to first node of list; null for empty lis t
 }

Traversal of a singly-linked list is simple, beginning at the first node and following each next

link until we come to the end:

 node := list.firstNode
 while node not null {
 (do something with node.data)
 node := node.next
 }

The following code inserts a node after an existing node in a singly linked list. The diagram

shows how it works. Inserting a node before an existing one cannot be done; instead, you have to

locate it while keeping track of the previous node.

 function insertAfter(Node node, Node newNode) { // insert newNode after node
 newNode.next := node.next
 node.next := newNode
 }

Inserting at the beginning of the list requires a separate function. This requires updating

firstNode.

 function insertBeginning(List list, Node newNode) { // insert node before
current first node
 newNode.next := list.firstNode
 list.firstNode := newNode
 }

Similarly, we have functions for removing the node after a given node, and for removing a node

from the beginning of the list. The diagram demonstrates the former. To find and remove a

particular node, one must again keep track of the previous element.

 function removeAfter(node node) { // remove node past this one
 obsoleteNode := node.next
 node.next := node.next.next
 destroy obsoleteNode
 }
 function removeBeginning(List list) { // remove first node
 obsoleteNode := list.firstNode

80

 list.firstNode := list.firstNode.next // point past deleted
node
 destroy obsoleteNode
 }

Notice that removeBeginning() sets list.firstNode to null when removing the last node in the list.

Since we can't iterate backwards, efficient "insertBefore" or "removeBefore" operations are not

possible.

Appending one linked list to another can be inefficient unless a reference to the tail is kept as

part of the List structure, because we must traverse the entire first list in order to find the tail, and

then append the second list to this. Thus, if two linearly-linked lists are each of length n, list

appending has asymptotic time complexity of O(n). In the Lisp family of languages, list

appending is provided by the append procedure.

Many of the special cases of linked list operations can be eliminated by including a dummy

element at the front of the list. This ensures that there are no special cases for the beginning of

the list and renders both insertBeginning() and removeBeginning() unnecessary. In this case, the

first useful data in the list will be found at list.firstNode.next.

 Doubly-linked lists

With doubly-linked lists there are even more pointers to update, but also less information is

needed, since we can use backwards pointers to observe preceding elements in the list. This

enables new operations, and eliminates special-case functions. We will add a prev field to our

nodes, pointing to the previous element, and a lastNode field to our list structure which always

points to the last node in the list. Both list.firstNode and list.lastNode are null for an empty list.

 record Node {
 data // The data being stored in the node
 next // A reference to the next node; null for last node
 prev // A reference to the previous node; null for first node
 }
 record List {
 Node firstNode // points to first node of list; null for empty lis t
 Node lastNode // points to last node of list; null for empty list
 }

81

Iterating through a doubly linked list can be done in either direction. In fact, direction can change

many times, if desired.

Forwards

 node := list.firstNode
 while node ≠ null
 <do something with node.data>
 node := node.next

Backwards

 node := list.lastNode
 while node ≠ null
 <do something with node.data>
 node := node.prev

These symmetric functions add a node either after or before a given node, with the diagram

demonstrating after:

 function insertAfter(List list, Node node, Node newNode)
 newNode.prev := node
 newNode.next := node.next
 if node.next = null
 list.lastNode := newNode
 else
 node.next.prev := newNode
 node.next := newNode
 function insertBefore(List list, Node node, Node newNode)
 newNode.prev := node.prev
 newNode.next := node
 if node.prev is null
 list.firstNode := newNode
 else
 node.prev.next := newNode
 node.prev := newNode

We also need a function to insert a node at the beginning of a possibly-empty list:

 function insertBeginning(List list, Node newNode)
 if list.firstNode = null
 list.firstNode := newNode
 list.lastNode := newNode
 newNode.prev := null
 newNode.next := null
 else
 insertBefore(list, list.firstNode, newNode)

A symmetric function inserts at the end:

82

 function insertEnd(List list, Node newNode)
 if list.lastNode = null
 insertBeginning(list, newNode)
 else
 insertAfter(list, list.lastNode, newNode)

Removing a node is easier, only requiring care with the firstNode and lastNode:

 function remove(List list, Node node)
 if node.prev = null
 list.firstNode := node.next
 if node.next != null
 node.next.prev := null
 else
 node.prev.next := node.next
 if node.next = null
 list.lastNode := node.prev
 if node.prev != null
 node.prev.next := null
 else
 node.next.prev := node.prev
 destroy node

One subtle consequence of this procedure is that deleting the last element of a list sets both

firstNode and lastNode to null, and so it handles removing the last node from a one-element list

correctly. Notice that we also don't need separate "removeBefore" or "removeAfter" methods,

because in a doubly-linked list we can just use "remove(node.prev)" or "remove(node.next)"

where these are valid.

 Circularly-linked list

Circularly-linked lists can be either singly or doubly linked. In a circularly linked list, all nodes

are linked in a continuous circle, without using null. For lists with a front and a back (such as a

queue), one stores a reference to the last node in the list. The next node after the last node is the

first node. Elements can be added to the back of the list and removed from the front in constant

time.

Both types of circularly-linked lists benefit from the ability to traverse the full list beginning at

any given node. This often allows us to avoid storing firstNode and lastNode, although if the list

may be empty we need a special representation for the empty list, such as a lastNode variable

which points to some node in the list or is null if it's empty; we use such a lastNode here. This

83

representation significantly simplifies adding and removing nodes with a non-empty list, but

empty lists are then a special case.

 Doubly-circularly-linked lists

Assuming that someNode is some node in a non-empty list, this code iterates through that list

starting with someNode (any node will do):

Forwards

 node := someNode
 do
 do something with node.value
 node := node.next
 while node ≠ someNode

Backwards

 node := someNode
 do
 do something with node.value
 node := node.prev
 while node ≠ someNode

Notice the postponing of the test to the end of the loop. This is important for the case where the

list contains only the single node someNode.

This simple function inserts a node into a doubly-linked circularly-linked list after a given

element:

 function insertAfter(Node node, Node newNode)
 newNode.next := node.next
 newNode.prev := node
 node.next.prev := newNode
 node.next := newNode

To do an "insertBefore", we can simply "insertAfter(node.prev, newNode)". Inserting an element

in a possibly empty list requires a special function:

 function insertEnd(List list, Node node)
 if list.lastNode = null
 node.prev := node
 node.next := node
 else

84

 insertAfter(list.lastNode, node)
 list.lastNode := node

To insert at the beginning we simply "insertAfter(list.lastNode, node)". Finally, removing a node

must deal with the case where the list empties:

 function remove(List list, Node node)
 if node.next = node
 list.lastNode := null
 else
 node.next.prev := node.prev
 node.prev.next := node.next
 if node = list.lastNode
 list.lastNode := node.prev;
 destroy node

As in doubly-linked lists, "removeAfter" and "removeBefore" can be implemented with

"remove(list, node.prev)" and "remove(list, node.next)".

Doubly Linked Lists

Doubly linked lists have

a pointer to the

preceding item as well

as one to the next.

They permit scanning or searching of the list in both directions. (To go backwards in a simple list, it is

necessary to go back to the start and scan forwards.) Many applications require searching backwards

and forwards through sections of a list: for example, searching for a common name like "Kim" in a

Korean telephone directory would probably need much scanning backwards and forwards through a

small region of the whole list, so the backward links become very useful. In this case, the node structure

is altered to have two links:

struct t_node {
 void *item;
 struct t_node *previous;
 struct t_node *next;
 } node;

85

WEEK 10:

Non- Linear structures.

This week learning outcomes :
• Define a tree .
• State properties of tree.
• Describe different types of tree.(General tree , binary tree)
 • Explain binary tree reprentation.

Tree Structures
 Basic Concepts and Definitions
Srings, arrays, and queues are linear types of data structure. However, tree is a nonlinear
data structure is mainly used to represent data containing a hierarchical relationship
between elements . Examples of this feature include records, family tree and table of
contents.

Trees

void BST :: clearhelp (NodePtr *P)

{

 if (P == NULL) return;

 clearhelp (P � Left)

 clearhelp (P � Right);

 delete P;

}

 balance ≅ {left – right}

A

B

D

E

H

C

 I

F

G

86

 Almost perfect ≅≅≅≅ balanced

In databases, you use this type of Array based implementation.

Height-balanced trees = AVL trees

To insert and maintain balance:

1. Travel down the appropriate branch and keep track of balance. Left deepest node balance

+1 or –1. This is called the pivot node.

2. From pivot-down, recompute all balance factors along insertion path.

3. Determine whether newly computed balance changes |1| � |2|

4. There was a change-manipulated pointers centered at pivot node to restore balance.

(AVL Rotation)

4 cases – – discussing unbalancing

• Insert into left subtree of a left child of pivot node.

• Insert into right tree of right child of pivot node.

• Insert into right subtree of left child.

• Insert into left subtree of right child.

AVL Trees:

 Pivot Pivot Pivot

 BF = 1 BF=2 BF=0

 BF=0

 BF= -1 BF = 0

 BF = 0

 Y

R - L

87

X = Node [Pivot].Left;

Y = Node [X].Right;

Node {Pivot}.Left = Node [Y].Right;

Node [X].Right = Node [Y].Left;

Node [Y].Left = X;

Node [Y].Right = Pivot;

Pivot = Y;

Subcase # 1

if Node [Pivot].BF = 0 then

{

 Node [Node [Pivot].Left].BF = 0

 Node [Node [Pivot].Right].BF = 0

}

Subcase # 2

else if Node [Pivot].BF = 1 then

{

 Node [Pivot].BF = 0

Node [Node [Pivot].Left].BF = 1

 Node [Node [Pivot].Right].BF = -1

}

Subcase # 3

else Node [Pivot].BF = 0

{

88

 Node [Pivot].BF = 0

 Node [Node [Pivot].Left].BF = +1

 Node [Node [Pivot].Right].BF = 0

Priority Ques:

1. Linked List

Insert by priority order.

2. Array

Sort it and rearrange the elements.

3. Queue – Search

4. Heap Sort – Partial Ordered tree.

5. Array of Queues – Small & Priorities.

The priority of Node V is not greater than its children.

Trees that have lots of dependents (general trees)

 3

5 9 Divide & Conquer

6 8 9 10 O (log(n))

10 18

89

Left pointer points to a list of children.

Right pointer points to a list of siblings.

Other way to implement this is Array of Pointers.

In-Order Traversal:

Traverse forest of first tree inorder.

• Visit root of first tree.

• Visit forest of remaining trees in order.

Algorithm:

void intra (Ptr K)

{

 if (R == NULL) then

 return

 else

 {

 intra (R � child);

 R � Info >> cout;

 intra (R � sib);

 }

}

90

WEEK 11:

Non- Linear structures.

This week learning outcomes :
• Describe binary tree.
 • Analysis of a complete tree .

Binary Trees

The simplest form of tree is a binary tree. A binary tree consists of

a. a node (called the root node) and

b. left and right sub-trees.

Both the sub-trees are themselves binary trees.

You now have a recursively defined data structure. (It is also possible to define a list recursively:

can you see how?)

A binary tree

The nodes at the lowest levels of the tree (the ones with no sub-trees) are called leaves.

91

In an ordered binary tree,

1. the keys of all the nodes in the left sub-tree are less than that of the root,

2. the keys of all the nodes in the right sub-tree are greater than that of the root,

3. the left and right sub-trees are themselves ordered binary trees.

Data Structure

The data structure for the tree implementation simply adds left and right pointers in place of the next

pointer of the linked list implementation. [Load the tree struct.]

The AddToCollection method is, naturally, recursive. [Load the AddToCollection method.]

Similarly, the FindInCollection method is recursive. [Load the FindInCollection method.]

Analysis

Complete Trees

Before we look at more general cases, let's make the optimistic assumption that we've managed to fill

our tree neatly, ie that each leaf is the same 'distance' from the root.

A complete tree

This forms a complete tree, whose

height is defined as the number of links

from the root to the deepest leaf.

First, we need to work out how many nodes, n, we have in such a tree of height, h.

Now,

n = 1 + 2
1
 + 2

2
 + + 2

h

From which we have,

n = 2
h+1

 - 1

and

92

h = floor(log2n)

Examination of the Find method shows that in the worst case, h+1 or ceiling(log2n)

comparisons are needed to find an item. This is the same as for binary search.

However, Add also requires ceiling(log2n) comparisons to determine where to add an item.

Actually adding the item takes a constant number of operations, so we say that a binary tree

requires O(logn) operations for both adding and finding an item - a considerable improvement

over binary search for a dynamic structure which often requires addition of new items.

Deletion is also an O(logn) operation.

General binary trees

However, in general addition of items to an ordered tree will not produce a complete tree. The worst

case occurs if we add an ordered list of items to a tree.

What will happen? Think before you click here!

This problem is readily overcome: we use a structure known as a heap. However, before looking

at heaps, we should formalise our ideas about the complexity of algorithms by defining carefully

what O(f(n)) means.

Key terms
Root Node

Node at the "top" of a tree - the one from which all operations on the tree commence. The root

node may not exist (a NULL tree with no nodes in it) or have 0, 1 or 2 children in a binary tree.

Leaf Node

Node at the "bottom" of a tree - farthest from the root. Leaf nodes have no children.

Complete Tree

Tree in which each leaf is at the same distance from the root. A more precise and formal

definition of a complete tree is set out later.

Height

Number of nodes which must be traversed from the root to reach a leaf of a tree.

93

WEEK 12:

Non- Linear structures.

This week learning outcomes :
• Binary tree structure revisited .
• State properties of tree.
 • Basic Operations on Binary Trees.

Binary Tree
A binary tree T , is defined as a finite set of elements called nodes, such that

a.) T is empty (called the null tree or empty tree) or
b.) T contains a distinguished node R, called the root of T, and the remaining nodes

of T form an order pair of disjoint binary trees T1 and T2.
If T contains a root R, then the two trees T1 and T2 are called respectively, the left and
right sub-tree of R , if T1 is nonempty, then its root is called the left successor of R ,
similarly if T2 is nonempty, then its root is called the right successor of R.

 A

A left-downward slanted line from a node N indicates a left successor of N, and a
right-downward slanted line from N indicates a right successor of N . Observe that :
 i.) B is a left successor and C is a right successor of the node A.
 ii.) The left sub-tree of the root A consists of the nodes B,D,E and F .

iii.) The right sub-tree of A consists of the nodes C,G,H,J,K ,,and L.

G

A

C

D

A

 J

H

A

K

A

B

94

Any node N in a binary tree T has either 0,1, or 2 successors. The nodes A,B,C and H
have 2 successors, the nodes E and J have only one successor, and the nodes D,F,G,L,
and K have no successors. The nodes with zero successors are called terminal nodes.

Terminology
 Suppose N is a node in T with left successor S1 and right successor S2 then N is
called the parent (or father) of S1 and S2 . Analogously, S1 is called the left child
(or son) of N and S2 is called the right child (or son). Furthermore, S1 and S2 are said to
be siblings (or brothers). Every node N in a binary tree T, except the root has a unique
parent, called the predecessor of N.
The terms, descendant and ancestor have their usual meaning. That is , a node L is
called a descendant of node N (and N is called an ancestor of L) if there is a succession
of children from N to L. In particular, L is called a left or right descendant of N
according to whether L belongs to the left or right sub-tree of N . The line drawn
from a node N of T to a successor is called an edge, and a sequence of consecutive
edges is called a path. A terminal node is called a leaf, and path ending in a leaf is
called a branch. Each node in a binary tree T is assigned a level number as follows:

The root R of the tree T is assigned the level number 0 , and every other node is assigned
a level number which is 1 more than the level number of its parent . Those nodes
with the same level are said to belong to the same generation .

The depth (or height) of a tree T is the maximum number of nodes in a branch of T. This
turns ont to be 1 more than the largest level number of T. Binary tree T and T1 are said
to be similar if they have the same structure or in other words, if they have the same
shape . The trees are said to be copies if they are similar and if they have the same
contents at corresponding nodes.

 TRAVERSING BINARY TREES

Basic Operations on Binary Trees
There are many tasks that may have to be perfomed on a tree structure; a common one is that of
executing a given operation P on each element of the tree. P is then understood to be a parameter
of the more general task of visting all nodes or, as it is usually called, of tree traversal. If we
consider the task as a single sequential process, then the individual nodes are visited in some
specific order and may be considered as being laid out in a linear arrangement. In fact, the
description of many algorithms is considerably facilitated if we can talk about processing the
next element in the tree based in an underlying order. There are three principal orderings that
emerge naturally from the structure of trees. Like the treestructure itself, they are conveniently
expressed in recursive terms. Referring to the binary tree .
Let R denote the root and A and B denote the left and right subtrees, the three orderings are
1. Preorder: R, A, B (visit root before the subtrees)
2. Inorder: A, R, B
3. Postorder: A, B, R (visit root after the subtrees)
In other words, there are three (3) standard ways of travasing a binary tree T with root
R. These three algorithms are called preorder, inorder, and postorder.

95

Preorder:

a.) Process the root R.
b.) Traverse the left sub-tree of R in preorder.
c.) Traverse the right sub-tree of R in Preorder.

Inorder:

a.) Traverse the left sub-tree of R inorder.
b.) Process the root R .
c.) Traverse the right sub-tree of R inorder .

Postorder:

a.) Traverse the left sub-tree of R in preorder.
b.) Traverse the right sub-tree of R in Postorder.
c.) Process the root R.

Traverse the following binary tree using:
i.) Preorder algorithm
ii.) Inorder algorithm
iii.) Postorder algorithm.

Solution:

i.) Preorder algorithm: 12489510367

ii.) Inorder algorithm: ?

iii.) Postorder algorithm: ?

1

2 3

4 5 6 7

10

8 9

96

WEEK 13:

Sorting

This week Learning outcomes :
• Define sorting.
• Explain various categories of sorting.

 Sorting

Sorting is one of the most important operations performed by computers. In the days of magnetic
tape storage before modern data-bases, it was almost certainly the most common operation
performed by computers as most "database" updating was done by sorting transactions and
merging them with a master file. It's still important for presentation of data extracted from
databases: most people prefer to get reports sorted into some relevant order before wading
through pages of data!

 Sorting is generally understood to be the process of rearranging a given set of objects in a
specific order. The purpose of sorting is to facilitate the later search for members of the sorted
set. As such it is an almost universally performed, fundamental activity. Objects are sorted in
telephone books, in income tax files, in tables of contents, in libraries, in dictionaries, in
warehouses, and almost everywhere that stored objects have to be searched and retrieved. Even
small children are taught to put their things "in order", and they are confronted with some sort of
sorting long before they learn anything about arithmetic.
Hence, sorting is a relevant and essential activity, particularly in data processing. What else
would be easier to sort than data! Nevertheless, our primary interest in sorting is devoted to the
even more fundamental techniques used in the construction of algorithms. There are not many
techniques that do not occur somehere in connection with sorting algorithms. In particular,
sorting is an ideal subject to demonstrate a great diversity of algorithms, all having the same
purpose, many of them being optimal in some sense, and most of them having advantages over
others. It is therefore an ideal subject to demonstrate the necessity of
performance analysis of algorithms. The example of sorting is moreover well suited for showing
how a very significant gain in performance may be obtained by the development of sophisticated
algorithms when obvious methods are readily available.

Different categories of sorting
The dependence of the choice of an algorithm on the structure of the data to be processed -- an
ubiquitous phenomenon -- is so profound in the case of sorting that sorting methods are generally
classified into two categories, namely:

i.) sorting of arrays, and
ii.) sorting of (sequential) files.

 The two classes are often called internal and external sorting because arrays are
stored in the fast, high-speed, random-access "internal" store of computers and files
are appropriate on the slower, but more spacious "external" stores based on
mechanically moving devices (disks and tapes).

97

WEEK 14:

Different types of sorting techniques.

This week Learning outcomes :
• Explain Sorting by insertion.
• Explain Sorting by insertion.
• Explain Sorting by exchange.

Different types of sorting techniques.
Sorting methods that sort items in situ can be classified into three principal categories according
to their underlying method:
Sorting by insertion
Sorting by selection
Sorting by exchange
These three pinciples will now be examined and compared. The procedures operate on a global
variable a whose components are to be sorted in situ, i.e. without requiring additional, temporary
storage. The components are the keys themselves. We discard other data represented by the
record type Item, thereby simplifying matters. In all algorithms to be developed in this chapter,
we will assume the presence of an array a and a constant n, the number of elements of a:

TYPE Item = INTEGER;
VAR a: ARRAY n OF Item

 Sorting by Straight Insertion
This method is widely used by card players. The items (cards) are conceptually divided into a
destination sequence a1 ... ai-1 and a source sequence ai ... an. In each step, starting with i = 2
and incrementing i by unity, the i th element of the source sequence is picked and transferred into
the destination sequence by inserting it at the appropriate place.
47
Initial Keys: 44 55 12 42 94 18 06 67
i=1 44 55 12 42 94 18 06 67
i=2 12 44 55 42 94 18 06 67
i=3 12 42 44 55 94 18 06 67
i=4 12 42 44 55 94 18 06 67
i=5 12 18 42 44 55 94 06 67
i=6 06 12 18 42 44 55 94 67
i=7 06 12 18 42 44 55 67 94
 A Sample Process of Straight Insertion Sorting.
The process of sorting by insertion is shown in an example of eight numbers chosen at random .
The algorithm of straight insertion is as follows:

FOR i := 1 TO n-1 DO
x := a[i];

98

insert x at the appropriate place in a0 ... ai
END

In the process of actually finding the appropriate place, it is convenient to alternate between
comparisons and moves, i.e., to let x sift down by comparing x with the next item aj, and either
inserting x or moving aj to the right and proceeding to the left. We note that there are two distinct
conditions that may cause the termination of the sifting down process:
1. An item aj is found with a key less than the key of x.
2. The left end of the destination sequence is reached.
PROCEDURE StraightInsertion;
VAR i, j: INTEGER; x: Item;
BEGIN
FOR i := 1 TO n-1 DO
x := a[i]; j := i;
WHILE (j > 0) & (x < a[j-1] DO a[j] := a[j-1]; DEC(j) END ;
a[j] := x
END
END StraightInsertion
Analysis of straight insertion. The number Ci of key comparisons in the i-th sift is at most i-1, at
least 1, and-- assuming that all permutations of the n keys are equally probable -- i/2 in the
average. The number Mi of moves (assignments of items) is Ci + 2 (including the sentinel).
Therefore, the total numbers of comparisons
and moves are
Cmin = n-1 Mmin = 3*(n-1)
Cave = (n2 + n - 2)/4 Mave = (n2 + 9n - 10)/4
Cmax = (n2 + n - 4)/4 Mmax = (n2 + 3n - 4)/2
The minimal numbers occur if the items are initially in order; the worst case occurs if the items
are initially in reverse order. In this sense, sorting by insertion exhibits a truly natural behavior. It
is plain that the given algorithm also describes a stable sorting process: it leaves the order of
items with equal keys unchanged.
The algorithm of straight insertion is easily improved by noting that the destination sequence
a0 ... ai-1, in which the new item has to be inserted, is already ordered. Therefore, a faster
method of determining the insertion point can be used. The obvious choice is a binary search that
samples the destination sequence in the middle and continues bisecting until the insertion point is
found. The modified sorting algorithm is called binary insertion.
PROCEDURE BinaryInsertion(VAR a: ARRAY OF Item; n: INTEGER);
VAR i, j, m, L, R: INTEGER; x: Item;
BEGIN
FOR i := 1 TO n-1 DO
48
x := a[i]; L := 1; R := i;
WHILE L < R DO
m := (L+R) DIV 2;
IF a[m] <= x THEN L := m+1 ELSE R := m END
END ;
FOR j := i TO R+1 BY -1 DO a[j] := a[j-1] END ;

99

a[R] := x
END
END BinaryInsertion
 Sorting by Straight Selection
This method is based on the following principle:
1. Select the item with the least key.
2. Exchange it with the first item a0.
3. Then repeat these operations with the remaining n-1 items, then with n-2 items, until only one
item -- the largest -- is left.
This method is shown on the same eight keys as given above.
Initial keys 44 55 12 42 94 18 06 67
06 55 12 42 94 18 44 67
06 12 55 42 94 18 44 67
06 12 18 42 94 55 44 67
06 12 18 42 94 55 44 67
49
06 12 18 42 44 55 94 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 67 94

 A Sample Process of Straight Selection Sorting.
The algorithm is formulated as follows:
FOR i := 0 TO n-1 DO
assign the index of the least item of ai ... an-1 to k;
exchange ai with ak
END
This method, called straight selection, is in some sense the opposite of straight insertion: Straight
insertion
considers in each step only the one next item of the source sequence and all items of the
destination array to
find the insertion point; straight selection considers all items of the source array to find the one
with the least
key and to be deposited as the one next item of the destination sequence..
PROCEDURE StraightSelection;
VAR i, j, k: INTEGER; x: Item;
BEGIN
FOR i := 0 TO n-2 DO
k := i; x := a[i];
FOR j := i+1 TO n-1 DO
IF a[j] < x THEN k := j; x := a[k] END
END ;
a[k] := a[i]; a[i] := x
END
END StraightSelection

100

 Sorting by Straight Exchange
The classification of a sorting method is seldom entirely clear-cut. Both previously discussed
methods can also be viewed as exchange sorts. In this section, however, we present a method in
which the exchange of two items is the dominant characteristic of the process. The subsequent
algorithm of straight exchanging is based on the principle of comparing and exchanging pairs of
adjacent items until all items are sorted.
As in the previous methods of straight selection, we make repeated passes over the array, each
time sifting the least item of the remaining set to the left end of the array. If, for a change, we
view the array to be in a vertical instead of a horizontal position, and -- with the help of some
imagination -- the items as bubbles in a water tank with weights according to their keys, then
each pass over the array results in the ascension of a
bubble to its appropriate level of weight (see Table below). This method is widely known as the
Bubblesort.
I = 1 2 3 4 5 6 7 8
44 06 06 06 06 06 06 06
55 44 12 12 12 12 12 12
12 55 44 18 18 18 18 18
42 12 55 44 42 42 42 42
94 42 18 55 44 44 44 44
18 94 42 42 55 55 55 55
06 18 94 67 67 67 67 67
67 67 67 94 94 94 94 94
 A Sample of Bubblesorting.

PROCEDURE BubbleSort;
VAR i, j: INTEGER; x: Item;
BEGIN
FOR i := 1 TO n-1 DO
FOR j := n-1 TO i BY -1 DO
IF a[j-1] > a[j] THEN
x := a[j-1]; a[j-1] := a[j]; a[j] := x
END
END
END
END BubbleSort

 Insertion Sort by Diminishing Increment
A refinement of the straight insertion sort was proposed by D. L. Shell in l959. The method is
explained and demonstrated on our standard example of eight items. First, all items that are four
positions apart are grouped and sorted separately. This process is called a 4-sort. In this example
of eight items, each group contains exactly two items. After this first pass, the items are
regrouped into groups with items two positions apart and then sorted anew. This process is called
a 2-sort. Finally, in a third pass, all items are sorted in an ordinary sort or 1-sort.

101

One may at first wonder if the necessity of several sorting passes, each of which involves all
items, does not introduce more work than it saves. However, each sorting step over a chain either
involves relatively few items or the items are already quite well ordered and comparatively few
rearrangements are required.
It is obvious that the method results in an ordered array, and it is fairly obvious that each pass
profits from previous passes (since each i-sort combines two groups sorted in the preceding 2i-
sort). It is also obvious that any sequence of increments is acceptable, as long as the last one is
unity, because in the worst case the last pass does all the work. It is, however, much less obvious
that the method of diminishing increments yields
even better results with increments other than powers of 2.
44 55 12 42 94 18 06 67
4-sort yields 44 18 06 42 94 55 12 67
2-sort yield 06 18 12 42 44 55 94 67
1-sort yields 06 12 18 42 44 55 67 94
Table 2.5 An Insertion Sort with Diminishing Increments.
The procedure is therefore developed without relying on a specific sequence of increments. The
T increments are denoted by h0, h1, ... , hT-1 with the conditions
ht-1 = 1, hi+1 < hi

The algorithm is described by the procedure Shellsort [2.11] for t = 4:
PROCEDURE ShellSort;
CONST T = 4;
VAR i, j, k, m, s: INTEGER;
x: Item;
h: ARRAY T OF INTEGER;
BEGIN h[0] := 9; h[1] := 5; h[2] := 3; h[3] := 1;
FOR m := 0 TO T-1 DO
k := h[m];
FOR i := k+1 TO n-1 DO
x := a[i]; j := i-k;
WHILE (j >= k) & (x < a[j]) DO a[j+k] := a[j]; j := j-k END ;
a[j+k] := x
END
END
END ShellSort
Analysis of Shellsort. The analysis of this algorithm poses some very difficult mathematical
problems, many of which have not yet been solved. In particular, it is not known which choice of
increments yields the best results. One surprising fact, however, is that they should not be
multiples of each other. This will avoid the phenomenon evident from the example given above
in which each sorting pass combines two chains that
before had no interaction whatsoever. It is indeed desirable that interaction between various
chains takes place as often as possible, and the following theorem holds: If a k-sorted sequence
is i-sorted, then it remains k-sorted. Knuth [2.8] indicates evidence that a reasonable choice of
increments is the sequence (written in reverse order)
1, 4, 13, 40, 121, ...

102

where hk-1 = 3hk+1, ht = 1, and t = k×log3(n) - 1. He also recommends the sequence
1, 3, 7, 15, 31, ...
where hk-1 = 2hk+1, ht = 1, and t = k×log2(n) - 1. For the latter choice, mathematical analysis
yields an effort proportional to n2 required for sorting n items with the Shellsort algorithm.
Although this is a significant improvement over n2, we will not expound further on this method,
since even better algorithms are known.

103

WEEK 15:

Different sorting and searching .

This week Learning outcomes :
• Explain various sorting techniques.
• Explain linear and binary search algorithm.

Different types of sorting revisited:

 Bubble, Selection, Insertion Sorts

There are a large number of variations of one basic strategy for sorting. It's the same strategy that
you use for sorting your bridge hand. You pick up a card, start at the beginning of your hand and
find the place to insert the new card, insert it and move all the others up one place.

/* Insertion sort for integers */

void insertion(int a[], int n) {
/* Pre-condition: a contains n items to be sorted * /
 int i, j, v;
 /* Initially, the first item is considered 'sor ted' */
 /* i divides a into a sorted region, x<i, and a n
 unsorted one, x >= i */
 for(i=1;i<n;i++) {
 /* Select the item at the beginning of the
 as yet unsorted section */
 v = a[i];
 /* Work backwards through the array, findin g where v
 should go */
 j = i;
 /* If this element is greater than v,
 move it up one */
 while (a[j-1] > v) {
 a[j] = a[j-1]; j = j-1;
 if (j <= 0) break;
 }
 /* Stopped when a[j-1] <= v, so put v at po sition j */
 a[j] = v;
 }
 }

Bubble Sort

Another variant of this procedure, called bubble sort, is commonly taught:
/* Bubble sort for integers */
#define SWAP(a,b) { int t; t=a; a=b; b=t; }

void bubble(int a[], int n)
/* Pre-condition: a contains n items to be sorted * /

104

 {
 int i, j;
 /* Make n passes through the array */
 for(i=0;i<n;i++)
 {
 /* From the first element to the end
 of the unsorted section */
 for(j=1;j<(n-i);j++)
 {
 /* If adjacent items are out of order, s wap them */
 if(a[j-1]>a[j]) SWAP(a[j-1],a[j]);
 }
 }

Analysis

Each of these algorithms requires n-1 passes: each pass places one item in its correct place. (The
nth is then in the correct place also.) The ith pass makes either ior n - i comparisons and moves.
So:

or O(n2) - but we already know we can use heaps to get an O(n logn) algorithm. Thus these
algorithms are only suitable for small problems where their simple code makes them faster than
the more complex code of the O(n logn) algorithm. As a rule of thumb, expect to find an O(n
logn) algorithm faster for n>10 - but the exact value depends very much on individual machines!.

They can be used to squeeze a little bit more performance out of fast sort algorithms

Quick Sort

Quicksort is a very efficient sorting algorithm invented by C.A.R. Hoare. It has two phases:

• the partition phase and
• the sort phase.

As we will see, most of the work is done in the partition phase - it works out where to divide the
work. The sort phase simply sorts the two smaller problems that are generated in the partition
phase.

This makes Quicksort a good example of the divide and conquer strategy for solving problems.
(You've already seen an example of this approach in the binary search procedure.) In quicksort,
we divide the array of items to be sorted into two partitions and then call the quicksort procedure
recursively to sort the two partitions, ie we divide the problem into two smaller ones and conquer
by solving the smaller ones. Thus the conquer part of the quicksort routine looks like this:

105

quicksort(void *a, int low, int
high)
 {
 int pivot;
 /* Termination condition! */
 if (high > low)
 {
 pivot = partition(a, low,
high);
 quicksort(a, low, pivot-1
);
 quicksort(a, pivot+1, high
);
 }
 }

Initial Step - First Partition

Sort Left Partition in the same way

For the strategy to be effective, the partition phase must ensure that all the items in one part (the
lower part) and less than all those in the other (upper) part.

To do this, we choose a pivot element and arrange that all the items in the lower part are less than
the pivot and all those in the upper part greater than it. In the most general case, we don't know
anything about the items to be sorted, so that any choice of the pivot element will do - the first
element is a convenient one.

As an illustration of this idea, you can view this animation, which shows a partition algorithm in
which items to be sorted are copied from the original array to a new one: items smaller than the
pivot are placed to the left of the new array and items greater than the pivot are placed on the
right. In the final step, the pivot is dropped into the remaining slot in the middle.

Searching

Computer systems are often used to store large amounts of data from which individual records

must be retrieved according to some search criterion. Thus the efficient storage of data to

facilitate fast searching is an important issue. In this section, we shall investigate the

performance of some searching algorithms and the data structures which they use.

 Linear Search

The simplest type of search is linear search , where every item in the item in the table is

searched in sequence . If the the table is sorted on the field being searched (the key field)

then the search can be be abandoned as soon as the search value exeeds the field.

106

The pseudocode for a procedure to search the table for a given course code is as follows:

Procedure SEACH_Table

Begin

 Subscript=0

 Code_found = false

 Repeat

 Subscript =subscript + 1

 If course[substript].cource_code=Item_sought

 Then code_found = true

 Endif

Until code_found=true or subscript=no_of_elements

 Or courses[subscript].course_code > item_sought

End procedure

The procedure sets a boolean variable code_founf to true if the course code is found.

Binary Search

However, if we place our items in an array and sort them in either ascending or descending order on the

key first, then we can obtain much better performance with an algorithm called binary search.

Binary search is a technique for searching an ordered list in which we first check the middle item and -

based on that comparison - "discard" half the data. The same procedure is then applied to the remaining

half until a match is found or there are no more items left.

That is In binary search, we first compare the key with the item in the middle position of the

array. If there's a match, we can return immediately. If the key is less than the middle key, then

the item sought must lie in the lower half of the array; if it's greater then the item sought must lie

in the upper half of the array. So we repeat the procedure on the lower (or upper) half of the

array.

107

Our FindInCollection function can now be implemented:

static void *bin_search(collection c, int low, int high, void *key) {
 int mid;
 /* Termination check */
 if (low > high) return NULL;
 mid = (high+low)/2;
 switch (memcmp(ItemKey(c->items[mid]),key,c->size)) {
 /* Match, return item found */
 case 0: return c->items[mid];
 /* key is less than mid, search lower half */
 case -1: return bin_search(c, low, mid-1, key);
 /* key is greater than mid, search upper half */
 case 1: return bin_search(c, mid+1, high, key);
 default : return NULL;
 }

void *FindInCollection(collection c, void *key) {
/* Find an item in a collection
 Pre-condition:
 c is a collection created by ConsCollection
 c is sorted in ascending order of the key
 key != NULL
 Post-condition: returns an item identified by ke y if
 one exists, otherwise returns NULL
*/
 int low, high;
 low = 0; high = c->item_cnt-1;
 return bin_search(c, low, high, key);
}

Points to note:

a. bin_search is recursive: it determines whether the search key lies in the lower or upper half of

the array, then calls itself on the appropriate half.

b. There is a termination condition (two of them in fact!)

i. If low > high then the partition to be searched has no elements in it and

ii. If there is a match with the element in the middle of the current partition, then we can

return immediately.

c. AddToCollection will need to be modified to ensure that each item added is placed in its

correct place in the array. The procedure is simple:

i. Search the array until the correct spot to insert the new item is found,

ii. Move all the following items up one position and

iii. Insert the new item into the empty position thus created.

d. bin_search is declared static . It is a local function and is not used outside this class: if it

were not declared static, it would be exported and be available to all parts of the program. The

static declaration also allows other classes to use the same name internally.

108

static reduces the visibility of a function an should be used wherever possible to control

access to functions!

Analysis

Each step of the algorithm divides

the block of items being searched

in half. We can divide a set of n

items in half at most log2 n times.

Thus the running time of a

binary search is proportional to

log n and we say this is a O(log

n) algorithm.

109

Binary search requires a more complex program than

our original search and thus for small n it may run

slower than the simple linear search. However, for

large n,

Thus at large n, log n is much smaller than n,

consequently an O(log n) algorithm is much faster

than an O(n) one.

Plot of n and log n vs n .

We will examine this behaviour more formally in a later section. First, let's see what we can do

about the insertion (AddToCollection) operation.

In the worst case, insertion may require n operations to insert into a sorted list.

1. We can find the place in the list where the new item belongs using binary search in O(log n)

operations.

2. However, we have to shuffle all the following items up one place to make way for the new one.

In the worst case, the new item is the first in the list, requiring n move operations for the

shuffle!

A similar analysis will show that deletion is also an O(n) operation.

If our collection is static, ie it doesn't change very often - if at all - then we may not be

concerned with the time required to change its contents: we may be prepared for the

initial build of the collection and the occasional insertion and deletion to take some time.

In return, we will be able to use a simple data structure (an array) which has little

memory overhead.

110

However, if our collection is large and dynamic, ie items are being added and deleted

continually, then we can obtain considerably better performance using a data structure

called a tree.

Note that Big Oh Is a notation formally describing the set of all functions which
are bounded above by a nominated function.

	Cover
	Table of Cotents
	Week 1 :
	WEEK 2 :
	WEEK 3 :
	WEEK 4 :
	WEEK 5:
	WEEK 6:
	WEEK 7 :
	WEEK 8 :
	WEEK 9 :
	WEEK 10:
	WEEK 11:
	WEEK 12:
	WEEK 13:
	WEEK 14:
	WEEK 15:
	Return to Table

