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Week 1:

Concept of Data structures

This week Learning outcomes:

- Define data structure.
- Define data attributes: name, value range, datestyp
- Define units for identifying data character, dig| sub fields , records, files.

Data Structure

The logical or mathematical model of a paftacuorganization of data is called its data
structures. A data item is a single unitvalues. Itis a raw fact which becomes
information after processing . Data items forrapée , date are called group items if they can
be divided into subsystems. The date fataimce is represented by the day, the month
andumber is called an elementary item, becauusan not be sub-divided into sud-items.
Itis indeed treated as a single item. émity is used to describe anything thast
certain attributes or propreties, which may dssigned values. For example , the
following are possible attributes and theiorresponding values for an entity known as
STUDENT.

ATTRIBUTES NAME AGE SEX MATRIC NO
VALUES Paul 21 Male 800654

Entities with similar attributes for examplall the 200 level Computer science &
Statistics students form an entity set.

Main functions of data Structures:

* Seek to identify and develop entities, operations and appropriate classes of
problems to use them.

* Determine representations for abstract entities to implement abstract operations on
concrete representations.

Algorithm. A finite sequence of instructions, each of whiets a clear meaning and can be

executed with a finite amount of effort in finitene.

whatever the input values, an algorithm will deity terminate after executing a finite number

of instructions.



Charasteristics of algorithm:

* Has a finite set of steps with definite instructions.
e Instructions have definite order.

e Algorithm must eventually stop.

e Actions are deterministic.

Data:
Some abstraction simplification of reality.

e Abstract Data Structure is a conceptual organization without regard to how data is
organized on the machine.

Abstract Data Type:

e Abstract Data structure.
* Plus operations to perform on it.

What determines the nature of the abstraction?

e Kind of problem to solve.
e QOperations to be performed.
* Machine restrictions.

L anguage | ndependent ADT Specification

1. Syntactic Specification. (Form)
2. Semantic Specification. (Meaning)
3. Restrictions.

Data Declarations:

Causes storage space to be reserved for each variable.

1. Associate identifier name with storage to allow access.
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Contents of storage are interpreted according to language data types.
More efficient use of storage.

Better storage of management.

Static Type Checking.

vk wnN

Fundamental Data Structure
Bit—0,1
Boolean — compare

Assignment
1 byte word — 22 of info to manipulate.
4 byte word — 2* of info to manipulate.
Boolean — 2 Values
NewBoolean(ident)
MakeTrue(ident) ident=true

MakeFalse(ident) ident=false

IsTrue(ident) ident=true
IsFalse(ident) ident=false
Assign(ly,15) l1=I,
And(l4,1,) I && I,
Or(ly,1,) 12
Not(l;) Iy

char

NewChar(ld)
Assign(ly,15)

AreEqual(ly,l,)



Encode(ld)

Decode(ld)
Precedes(ly,1,) l1<l,
Delete(ld)

int

word

% word — Saves storage space!
short

int

long

MazSize()

Create(ld)

Delete(ld)

Assign(ly,15)
Equality(ly,15)
IsLessThan(l4,1,)
Negative(ld)

Sum(l4,l5)
Difference(l,1,)
Quotient(ly,l;) ~__ Float!
Mod(ly, 1)

Reals: float



Value range
All possible values that could be assigneda given atttibute of an entity set is
called the range of values of the attribute

Data types

In mathematics it is customary to classify varigldecording to certain important
characteristics. Clear distinctions are made betweal, complex, and logical variables or
between variables representing individual valuesets of values, or sets of sets, or between
functions, functionals, sets of functions, and sBoThis notion of classification is equally if not
more important in data processing. We will adherthe principle that every constant, variable,
expression, or function is of a certaype. This type essentially characterizes the set hfegto
which a constant belongs, or which can be assumedviariable or expression, or which can be
generated by a function .

Therefore, a data type is a set of values togetitbrthe operations defined on the values: {(vaJues
(operations)}. The operations are performed orviiees defined. E.g integer (-4,-1,1,3,4) areeslu
while(+,-,*,/) are operations.  Data types aldowalus to associate meaning to sequence of bttsein
computer memory. Eg strilBA @ integer 5 etc .

Data types operations storage representation
1. Integer *+,-/ 2's complement, sign magphé
2. Real
3. Boolean AND,OR,NOT True=0,False=1
4. Character 8 bits ASCII/EBCDIC

length followed by sequence of cheec
5. String Concatenation. Length, substringgg forAABC@we can
have: /3/A/BIC/
Pattern matching  sequence of characters tatedrby special symbols.
6. Pointers Value of "----->"  As fimtegers
DATA TYPES can be classified as :

Primitive (Also called built in) eg Integers, repbinters,

booleary They are native or local to the language. Theuagg knows their structure. They are part of
the original design .
Standard Primitive Types



Standard primitive types are those types that @adale on most computers as built-in features.
They include the whole numbers, the logical trualues, and a set of printable characters. On
many computers fractional numbers are also incatpdr together with the standard arithmetic
operations. We denote these types by the iderstifier

INTEGER, REAL, BOOLEAN, CHAR, SET

Integer types

The type INTEGER comprises a subset of the whoteb®rs whose size may vary among
individualcomputer systems.

Thetype REAL

The type REAL denotes a subset of the real numbéhereas arithmetic with operands of the
types INTEGER is assumed to yield exact resultdyraetic on values of type REAL is
permitted to be inaccurate within the limits of noeoff errors caused by computation on a finite
number of digits. This is the principal reasontfue explicit distinction between the types
INTEGER and REAL, as it is made in most programniargyuages.

The standard operators are the four basic aritiergrations of addition (+), subtraction (-),
multiplication (*), and division (/). It is an essee of data typing that different types are
incompatible under assignment. An exception te thie is made for assignment of integer
values to real variables, because here the sermamgainambiguous. After all, integers form a
subset of real numbers.

Thetype CHAR

The standard type CHAR comprises a set of printalégacters. Unfortunately, there is no

generally accepted standard character set usedl @mgputer systems. Therefore, the use of the

predicate "standard” may in this case be almodeadsg; it is to be understood in the sense of

"standard on the computer system on which a ceptaigram is to be executed.”

The character set defined by the International d&&teds Organization (ISO), and particularly its

American version ASCII (American Standard Codelfdormation Interchange) is the most

widely accepted set. The ASCII set is thereforaltatied in Appendix A. It consists of 95

printable (graphic) characters and 33 control attara, the latter mainly being used in data

transmission and for the control of printing equgr

In order to be able to design algorithms involvalgracters (i.e., values of type CHAR) that are

system independent, we should like to be ablegarae certain minimal properties of character

sets, namely:

1. The type CHAR contains the 26 capital Latindetf the 26 lower-case letters, the 10 decimal
digits, and a number of other graphic charac®ich as punctuation marks.

2. The subsets of letters and digits are orderddccantiguous

3. The type CHAR contains a non-printing, blankrelsger and a line-end character that may be
used as separators.

Thetype SET

The type SET denotes sets whose elements areligtieghe range 0 to a small number,
typically 31 or 63.

Given, for example, variables

VAR, s, t: SET

possible assignments are: r:={5}; s :={x, g}t :={}

10



PURPOSE OF TYPE INFORMATION:

Type information has 4 purposes:

a) It allows us to associate meaning to sequehbisan the computer memory eg string
AA@, integer ¥This is because all data and instructions are $tothe same manner as
sequence of bits.

b) Itis useful during program development t@iove readability and debugging.

c) It helps simplify implementation, eg it isse&xr and more efficient for implementations to
allocate storage for integers only, rather thaitieny value

d) It allows checking for compatibility betweeperation and

operands before execution e.g in the scope of M&CAL declaration VAR X:integer, the
expressiotANOT X@would be an error because the type of operands’ Mot compatible with
the type expected by the boolean operator .NOT.

A language is said to be STATIC type checking mvite
requires type declaration that allow language tedosto check data during translation.
A DYNAMIC type checking is one that checks for ditpe during program execution.

Some languages LISP,SNOB®ulse no declaration . This simplifies programmimghiese
languages and allows great flexibility in creatargl manipulating data structure but the cost is
paid in Dynamic checking , less efficient data espntation, and more complex storage
management, all on which slow program execution.

FORTRAN, COBOL PASCAL require extensive declarationall data structure and also
introduce many related restrictions on the manmevhich data may be created, destroyed and
modified. These requirements make programming denably more complex but program
execution speed is greatly enhanced. A centrall@nobn PL design is to find the proper balance
between added execution efficiency obtainable tjinaexplicit data declaration and the added
flexibility possible without them.

OPERATIONS: there are of 2 types:

Operations on the programmer defined data e.gsaddract,*,/

11



Operations on system-defined data eg GOTO..

Subprogram Calls, naming of data structure, pa@metnsmissiovi Operations on programmer
defined data may be further subdivided into:

- Primitive ie operation built into the language
-Programmer-defined operations eg subprograms

Type checking:

The main objective of type checking is to deternbeéore program execution whether a

domain incompatibility can occur. If so, error maggss occur for coercion or execution

time testing may be generated.

Type checking can be performed statically (befowmcation or during compilation) or

dynamically ( at execution time )

For example, static type checking occur in masgleges such as FORTRAN,

COBOL, PASCALY

Dynamic type checking occurs in AFL

Static type checking has following advantages olymamic type checking.

Advantages of Type checking:

a.) Efficiency: since the program is typically executedny times but
needs only be type-checked once.

b.) Furthermore type information may used by enpéntation to improve
efficiency in many other ways.

c.) Minor programming errors could be detected tetrtual execution; this will
simplify program testing and debugging eg whaeather operation is to be performed
on non numerical data.

d.) Type specification also improves programmelagdity by making explicit the data

representation used by the programmer.

Disadvantages:

- Syntax of a type language are usually morapiex Inflexibility: restriction are

imposed on the programmer’s freedom of esgion.
In conclusion, static type checking should be usddnguages to prevent domain
incompatibility whenever the disadvantages outwétigbenefit.

Primitive Data Types
A new, primitive type is definable by enumeratihg tistinct values belonging to it. Such a type
is called arenumeration type. Its definition has the form

12



TYPET =(cl, c2, ..., cn)

T is the new type identifier, and the ci are thes menstant identifiers.

Examples

TYPE shape = (rectangle, square, ellipse, circle)

TYPE color = (red, yellow, green)

TYPE sex = (male, female)

TYPE weekday = (Monday, Tuesday, Wednesday, Thyrseaday,

Saturday, Sunday)

TYPE currency = (franc, mark, pound, dollar, shdjj lira, guilder,

krone, ruble, cruzeiro, yen)

TYPE destination = (hell, purgatory, heaven)

TYPE vehicle = (train, bus, automobile, boat, air)

TYPE rank = (private, corporal, sergeant, lieuteéneaptain, major, colonel, general)
TYPE object = (constant, type, variable, procedaredule)

TYPE structure = (array, record, set, sequence)

TYPE condition = (manual, unloaded, parity, skew)

The definition of such types introduces not onlyeav type identifier, but at the same time the
set ofidentifiers denoting the values of the nepetyThese identifiers may then be used as
constants throughout

the program, and they enhance its understandabditgiderably. If, as an example, we
introduce variables

s, d, r, and b.

VAR s: sex

VAR d: weekday

VAR r: rank

then the following assignment statements are plassib

S := male

d := Sunday

I := major

b := TRUE

Evidently, they are considerably more informatilvart their counterparts
s:=1d:=7r:=6b:=2which are based onassumption that c, d, r, and b are defined as
integers and that the constants are mapped ontwatbheal numbers in the order of their
enumeration.

The Record Structure

The most general method to obtain structured tigesjoin elements of arbitrary types, that are
possibly themselves structured types, into a comgobxamples from mathematics are complex
numbers, composed of two real numbers, and codsdird points, composed of two or more
numbers according to the dimensionality of the spgmanned by the coordinate system. An
example from data processing is describing peoplke few relevant characteristics, such as their
first and last names, their date of birth, sex, ewadital status.

In mathematics such a compound type is the Carntgs@duct of its constituent types. This
stems from the fact that the set of values defmethis compound type consists of all possible
combinations of values, taken one from each sete@tby each constituent type. Thus, the
number of such combinations, also caltetliples, is the product of the number of elements in

13



each constituent set, that is, the cardinalityhef¢compound type is the product of the
cardinalities of the constituent types.

In data processing, composite types, such as gésas of persons or objects, usually occur in
files or data banks and record the relevant charatits of a person or object. The word record
has therefore become widely accepted to descrdoengound of data of this nature, and we
adopt this nomenclature in preference to the @amesian product. In general, a record type T
with components of the types T1, T2,..., Tn idred as follows:

TYPE T=RECORD s1: T1;s2: T2; ... sn: Tn END

card(T) = card(T1) * card(T2) * ... * card(Tn)

Examples

TYPE Complex = RECORD re, im: REAL END

TYPE Date = RECORD day, month, year: INTEGER END

TYPE Person = RECORD name, firsthame: Name;

birthdate: Date;

sex: (male, female);

marstatus: (single, married, widowed, divorced)

END

We may visualize particular, record-structured ealof, for example, the variables

z: Complex

d: Date

p: Person

The following are the units for identifying data character, fields, sub

fields, records, files.

A fileis a collection of logically related records; stgdents file, stock file.

A record is a collection of logically related data fiel@s;g Data relating to students in students
file. In a database table records are usuallywsrd herefore, the table below has three (3)
records. While dield is consecutive storage position of values. Itusik of data within a record
e. g student’s number, Name, Age. In a databaseepbfields are usually in columns of a
given table.

Data items for example , date are called grtemps if they can be divided into
subsystems. The date for instance is repredeby the day, the month andumber is called
an elementary item, because it can not ledsuded into sud-items otherwise known as
sub fieldscalled . Itis indeed treated as a singgen.

14



Character is the smallest unit of information. It indes letters, digits and special
symbols such as + (Plus sign), _(minus sigi)$.a,b,...z, A,B,...Z etc. Every character
requires onebyte of memory unit for storage in computer syste

15



WEEK 2 :

Graph.

This week learning ontcomes:

» Define a graph.

- State properties of graph : routes, edge, segueimected and nondirected.

. Computer representation of graphs.

« Describe operations such as precede, lesspbanrts to , move to , search, change, entry.

Introduction

Graphs are a commonly used data structure bedaegean be used to model many real-world
problems. A graph consists of a set of nodes witaraitrary number of connections, or edges,
between the nodes. These edges can be eitheredir@ctndirected and weighted or
unweighted.

In this study we will examine the basics of graphd created a Graph class. This class was
similar to the BinaryTree class , the differencanbehat instead of only have a reference for at
most two edges, the Graph class's GraphNodes bauklan arbitrary number of references.
This similarity is not surprising because treesaaspecial case of graphs

Definitions
Definitionl. A graph G = (V.E]is a finite nonempty satof objects calledertices (the singular is

vertex) together with a (possibly empty) se&if unordered pairs of distinct verticesaufalled
edges.

Graphs are a very expressive formalism for systexdeling, especially when attributes are
allowed. Our research is mainly focused on theafiggaphs for system verification.
Up to now, there are two main different approadafewodeling (typed) attributed graphs and
specifying their transformation. Here we reportlipnanary results of our investigation on a third
approach. In our approach we couple a graph to a data signature that consists of unary
operations only. Therefore, we transform arbitisignatures into a structure comparable to what
is called a graph structure signature in the liteeg and arbitrary algebras into the

corresponding algebra graph.

16



Some authors call a graph by the longer term "hextid graph” and simply use the following
definition of a directed graph as a graph. Howevieen using Definition 1 of a graph, it is
standard practice to abbreviate the phrase " @degtaph” (as done below in Definition 2) with

the word digraph.

Definition 2. A digraph @ =(¥%.Elis a finite honempty setf vertices together with a (possibly

empty) setof ordered pairs of vertices atalledarcs.

An arc that begins and ends at a same vertexallexdaloop. We usually (but not always)
disallow loops in our digraphs. By being definedhaset, E does not contain duplicate (or
multiple) edges/arcs between the same two vertiemsa given graph (or digraph) G we also

denote the set of vertices Bigland the set of edges (or arcs)&ilto lessen any ambiguity.

Definition 3. The order of a graph (digrapf)}= (¥ £lis| ¥ |, sometimes denoted b§ 1, and the
size of this graph isE|.

Sometimes we view a graph as a digraph where exvendered edge.xis replaced by two
directed arcgs.=land(x.=). In this case, the size of a graph is half the sizthe corresponding

digraph.

In the next example we display a grapand a digrapkesboth of order 5. The size of the graph
&his 6 wheregiGh)= {(0, 1), (0, 2), (1, 2), (2, 3), (2, 4), (3, 4phile the size of the digraphis 7
whereZ(@s,= {(0, 2), (1, 0), (1, 2), (1, 3), (3, 1), (3, 44, 2)}.

Example 4. A pictorial example of a graptiand a digrapla-is given below.

G G

2

3 4

17



Definition 5. A walk in a graph (digraphjis a sequence of verticess....such that, for all

0 <i «<n, (o, walis an edge (arc) ia. Thelength of the walkeme..uiS the numbes(i.e., number of
edges/arcs). path is a walk in which no vertex is repeatedcykle is a walk (of length at least
three for graphs) in whick = w.and no other vertex is repeated; sometimes, sfuniderstood,

we omitwfrom the sequence.

Example 6. For the grapla.of Example 4 the following sequences of verticesaassified as

being walks, paths, or cycles.

ot in wall'? | im path? im cycle? |
01231 yes yes 0
ag1zq yea no yea
a1z yeu yeu yes [understood)
LI na na na
nig yea no no ‘

Example 7. For the digraple-of Example 4 the following sequences of verticesaassified as

being walks, paths, or cycles.

toth .. in wallc? | in path? [ i= cycle? |
n12a4d no no no
ne4 no no no ‘
12 yea yea no
141 yea na yea ‘
413140 yea na na

Definition 8. A graphais connected if there is a path between all pairs of vertigasd-of V(G
A digraphais strongly connected if there is a path from vertaxo vertex.for all pairssand-in
Via),

In Example 4 the grapisis connected but the digrapkis not strongly connected because there
are no arcs leaving vertex 2. Tiwaderlying graph (by replacing each arc with an edgeya$

connected, however.

Definition 9. In a graph, theegree of a vertex,, denoted byleg(v), is the number of edges
incident to.. For digraphs, theut-degree of a vertexis the number of arcs
{{rsz) € E |z € VHincident frome(leaving.) and than-degree of vertex:is the number of arcs

{tzv) € E |z £ ¥}incident to:(enteringe).

18



For a graph the in-degree and out-degree's argathe as the degree. For our graptwe have
deg(0)=2, deg(1)=2, deg(2)=4, deg(3)=2 and deg(A¥2 may concisely write this aglegree
sequence (2, 2, 4, 2, 2) if there is a natural orderingy(e0,1,2,3,4) of the vertices. The in-degree
sequence and out-degree sequence of the digeaph (1, 1, 3, 1, 1) and (1, 3, 0, 2, 1),
respectively. The degree of a vertex of a digrapdometimes defined as the sum of its in-degree

and out-degree. Using this definition, a degreeisege ot=would be (2, 4, 3, 3, 2).

Definition 10. Thediameter of a connected graph (strongly connected digrapk¥: £lis the
least integer D such that for all verticgsd-in awe havedisus) < D whered{=.s)Jdenotes the

distance from 4t0 «in &, that is, the length of a shortest path betwaeral-.

Example 11. The diameter of graptnof Example 4 is 2. We calculated d(0,1)=1, d(0,2)=1
d(0,3)=2, d(0,4)=2, d(1,2)=1, d(1,3)=2, d(1,4)=,8)=1, d(2,4)=1 and d(3,4)=1. Note for
graphs, we have d(x, y) = d(y, x) for all verticeand y.

Since the digraphis not strongly connected the diameter is undefirEvever, we can
compute shortest distances between various pawrsrbEes: d(0,2)=1, d(1,0)=1, d(1,2)=1,
d(3,1)=1, d(3,0)=2, d(3,2)=2, d(3,4)=1 and d(4,2)=1

Computer representations of graphs

There are two common computer representationsréphg (or digraphs), called adjacency
matrices and adjacency lists. For a graphorders, an adjacency matrix representation is a
boolean matrix (often encoded with 0's and 1's)imfension n such that entilis true if and
only if edge/aréi.ilis in E(G). For a grapltof ordera, an adjacency lists representationlists

such that theth list contains a sequence (often sorted) ofrmigthbours of vertef a.
We can see the structure of these representatiores etearly with examples.

Example 12. We give adjacency matrices for the gragedind digraphz-of Example 4 below.

= - T
IR — 2
ol =2 = ]
L=—0 = =]
= S -
= o DS S
[ —3E — 2
= S -

———
(=N ]
[

P—— —
[ — N ]
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Notice that the 1's in the rows represent how n@aryneighbours and the 1's in the columns

represent how many in-neighbours a vertex has.

Example 13. We give adjacency lists for the grapiand digraphzs:of Example 4 below.

a. 1 2 a: 2

1: a 2 1: 0 2 23
2: 0 1 3 49,

4002 4 001 4
4: 2 1 4: 2

Only the out-neighbours are listed in the adjacdisty representation. The numbers with colons
(+: denote the indexf the lists (and are not really necessary). Antgriigt can occur (e.g., list
2 of the digraphzs).

For a graph/digraph witkvertices anéhedges, the adjacency matrix representation reqQifes
»%) storage while the adjacency lists representaggunires Og) storage. So for sparse graphs
the latter is probably preferable. However, to éhebether edge/aré ilis in the graph the
adjacency matrix representation has constant-toleup, while the adjacency lists

representation may require &(time in the worst case.

We mention that there are also other specializadigrepresentations besides the two mentioned
in this section. These data structures take adgarafthe graph structure for improved storage

or access time, often for families of graphs slgparcommon property.
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WEEK 3:

Symbol, and relations

The week Learning outcomes :
*» Define symbols, and relations.

- Explain equivalence relation.

« Explain composite relation.

Relations

A binary relation is determined by specifying altlered pairs of objects in that relation; it does
not matter by what property the set of these odipeers is described. We are led to the

following definition.

Definition. A set R is a binary relation if all elements of R are ordered pairs, i.e., if for any z € R there
exist x and y such that z = (x, y).

It is customary to writaRy instead of X, y) € R. We say thaxisinrelation Rwithy if xRy
holds.

The set of alk which are in relatio®R with somey is called thedomain of R and denoted by
“‘dom R.” So domR = {x | there existy such thakRy}. dom R is the set of all first coordinates of
ordered pairs ifr.

The set of ally such that, for some x is in relationR with y is called theange of R, denoted by
“ran R” So ranR = {y | there existg such thakRy}.

Symbol

A symbol is something such as abject picture written word, sound, or particular mark that
represents something else by association, reseagylanconvention. For example, a red
octagon may stand for "STOP". On maps, crosseasabay indicate a battlefieldumeralsare

symbols fomumbers
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All language consists of symbols. The word "cat" is not a cat, but represents the idea of a cat.

Language and symbols

All languages are made up of symb@poken words are the symbols of mental experieanuzt,
written words are the symbols of spoken words.

The word "cat", for example, whether spoken orteni is not a literal cat but a sequence of
symbols that by convention associate the word aitloncept. Hence, the written or spoken
word "cat" represents (or stands for) a particatarcept formed in the mind. A drawing of a cat,

or a stuffed cat, could also serve as a symbdhiidea of a cat.

The study or interpretation of symbols is knowrsasibology and the study of signs is known
assemiotics

Symbols and Corresponding HTML Entities

If the leftmost column below shows &equiv; , a square or nothing instead of the actual symbol, your
browser does not support HTML entities; please use the picture version of this document instead.

Relational Operators *

Symbol  LaTeX Command * HTML Entity * Comment
= \equiv &equiv;

= \approx &asymp;

« \propto &prop;

o \simeq

~ \sim &sim;

# \neq &ne;

= \geq

> \gg

& \ll
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Logic Symbols 3

Symbol  LaTeX Command * HTML Entity * Comment
- \neg &not:
A \wedge gand:
Y% \vee &or:
@) \oplus goplus:
== \Rightarrow
s \Leftrightarrow
3 \exists gexist:
v \forall gforall:
Set Symbols ?
Symbol  LaTeX Command * HTML Entity * Comment
N \cap &cap;
U \cup .
&cup;
o) \supset &sup;
c \subset &sub:
[0) \emptyset gempty:
7 \mathbb{Z} requires the amsfonts and amssymb
packages.
€ \in &isin;
¢ \notin &notin;
v \Join requires the latexsym package (present in

most LaTeX distributions).
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Miscellaneous Math Symbols *

Symbol  LaTeX Command * HTML Entity * Comment
\prime &prime:

| \rfloor &rfloor;

% \infty &infin;

Equivalence relation

Equivalencerelation is abinary relatiorbetween two elements okatwhich groups them
together as being "equivalent” in some way.d,d1, andc be arbitrary elements of some Xet

Then 'a~b" or "a=b" denotes tha& is equivalent td.

An equivalence relation "~" i®flexive, symmetri¢ andtransitive In other words, the following

must hold for "~" to be an equivalence relationXon

An equivalence relatiopartitionsa set into severalisjoint subsets, calledquivalence classes
All the elements in a given equivalence class grevalent among themselves, and no element

is equivalent with any element from a differentssla

e Reflexivity: a~a
e  Symmetry:ifa~bthenb~a
e Transitivity: ifa~band b~ cthena~c.

e The equivalence class of a under "~", denoted [a], is the subset of X for which every element b,
a~b. X together with "~" is called a setoid.

Examples of equivalence relations

A ubiquitous equivalence relation is teguality("=") relation between elements of any set.

Other examples include:

« "Has the same birthday as" on the set of all people, given naive set theory.
e "Issimilar to" or "congruent to" on the set of all triangles.
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* "Is congruent to modulo n" on the integers.
+ "Has the same image under a function" on the elements of the domain of the function.
» Logical equivalence of logical sentences.

+ "Isisomorphic to" on models of a set of sentences.
« In some axiomatic set theories other than the canonical ZFC (e.g., New Foundations and related
theories):

o Similarity on the universe of well-orderings gives rise to equivalence classes that are the
ordinal numbers.
o Equinumerosity on the universe of:
=  Finite sets gives rise to equivalence classes which are the natural numbers.
= Infinite sets gives rise to equivalence classes which are the transfinite cardinal
numbers.
e Leta, b, c, dbe natural numbers, and let (a, b) and (c, d) be ordered pairs of such numbers. Then
the equivalence classes under the relation (a, b) ~ (c, d) are the:
o Integersifa+d=b+c;
o Positive rational numbers if ad = bc.
« Let(r,) and (s,) be any two Cauchy sequences of rational numbers. The real numbers are the
equivalence classes of the relation (r,) ~ (s,), if the sequence (r, - s,) has limit 0.
» Green's relations are five equivalence relations on the elements of a semigroup.
» "Is parallel to" on the set of subspaces of an affine space.

Examples of relations that are not equivalences

e The relation "2" between real numbers is reflexive and transitive, but not symmetric. For
example, 7 2 5 does not imply that 5 2 7. It is, however, a partial order.

e The relation "has a common factor greater than 1 with" between natural numbers greater than
1, is reflexive and symmetric, but not transitive. (The natural numbers 2 and 6 have a common
factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have
a common factor greater than 1).

e The empty relation R on a non-empty set X (i.e. aRb is never true) is vacuously symmetric and
transitive, but not reflexive. (If X is also empty then R is reflexive.)

e The relation "is approximately equal to" between real numbers, even if more precisely defined,
is not an equivalence relation, because although reflexive and symmetric, it is not transitive,
since multiple small changes can accumulate to become a big change. However, if the
approximation is defined asymptotically, for example by saying that two functions fand g are
approximately equal near some point if the limit of f-g is 0 at that point, then this defines an
equivalence relation.

« The relation "is a sibling of" on the set of all human beings is not an equivalence relation.
Although siblinghood is symmetric (if A is a sibling of B, then B is a sibling of A) it is neither
reflexive (no one is a sibling of himself), nor transitive (since if A is a sibling of B, then Bis a
sibling of A, but A is not a sibling of A). Instead of being transitive, siblinghood is "almost
transitive", meaning that if A~ B, and B~ C, and A # C, then A ~ C. However, the relation "Ais a
sibling of B or A is B" is an equivalence relation. (This applies only to full siblings. A and B could
have the same mother, and B and C the same father, without A and C having a common parent.)

e The concept of parallelism in ordered geometry is not symmetric and is, therefore, not an
equivalence relation.
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* An equivalence relation on a set is never an equivalence relation on a proper superset of that
set. For example R={(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)} is an equivalence
relation on {1,2,3} but not on {1,2,3,4} or on the natural number. The problem is that reflexivity
fails because (4,4) is not a member.

Connection to other relations

e A congruence relation is an equivalence relation whose domain X is also the underlying set for
an algebraic structure, and which respects the additional structure. In general, congruence
relations play the role of kernels of homomorphisms, and the quotient of a structure by a
congruence relation can be formed. In many important cases congruence relations have an
alternative representation as substructures of the structure on which they are defined. E.g. the
congruence relations on groups correspond to the normal subgroups.

e A partial order replaces symmetry with antisymmetry and is thus reflexive, antisymmetric, and
transitive. Equality is the only relation that is both an equivalence relation and a partial order.

e Astrict partial order is irreflexive, transitive, and asymmetric.

» A partial equivalence relation is transitive and symmetric. Transitive and symmetric imply
reflexive iff for all a€X exists bEX such that a~b.

* Adependency relation is reflexive and symmetric.

» Apreorderis reflexive and transitive.

Equivalence class, quotient set, partition

Let X be a nonempty set with typical elemeatsndb. Some definitions:

e The set of all a and b for which a ~ b holds make up an equivalence class of X by ~. Let [a] =: {x €
X : x~ a} denote the equivalence class to which a belongs. Then all elements of X equivalent to
each other are also elements of the same equivalence class: Va,bEX(a~b<&>[a]=[b]).

« The set of all possible equivalence classes of X by ~, denoted X/~ =: {[x] : x € X}, is the quotient
set of X by ~. If X is a topological space, there is a natural way of transforming X/~ into a
topological space; see quotient space for the details.

» The projection of ~ is the function i : X > X/~, defined by n(x) = [x ], mapping elements of X into
their respective equivalence classes by ~.

Theorem on projections (Birkhoff and Mac Lane 1999: 35, Th. 19): Let the function f: X - B be
such that a ~ b > f(a) = f(b). Then there is a unique function g : X/~ = B, such that f=gmn. If fis a
surjection and a ~ b <> f(a) = f(b), then g is a bijection.

e The equivalence kernel of a function fis the equivalence relation, denoted Ef, such that xEfy <>
f(x) = fly). The equivalence kernel of an injection is the identity relation.

e A partition of X is a set P of subsets of X, such that every element of X is an element of a single
element of P. Each element of P is a cell of the partition. Moreover, the elements of P are
pairwise disjoint and their union is X.
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Theorem ("Fundamental Theorem of Equivalence Relationsdils¢e 1998: 31, Th. 8; Dummit
and Foote 2004: 3, Prop. 2):

* An equivalence relation ~ partitions X.

« Conversely, corresponding to any partition of X, there exists an equivalence relation ~ on X.
In both cases, the cells of the partitionXadire the equivalence classes<dfy ~. Since each
element ofX belongs to a unique cell of any partitiongfand since each cell of the patrtition is
identical to arequivalence classf X by ~, each element &f belongs to a unique equivalence
class ofX by ~. Thus there is a natuta)ectionfrom the set of all possible equivalence relations

on X and the set of all partitions &f

Counting possible partitions. Let X be a finite set witim elements. Since every equivalence
relation overX corresponds to a partition ¥f and vice versa, the number of possible
equivalence relations oiequals the number of distinct partitionsgfwhich is thenth Bell

numberBy;

Generating equivalence relations

e Given any set X, there is an equivalence relation over the set of all possible functions X=>X. Two
such functions are deemed equivalent when their respective sets of fixpoints have the same
cardinality, corresponding to cycles of length one in a permutation. Functions equivalent in this
manner form an equivalence class on X?, and these equivalence classes partition X°.

« Anequivalence relation ~ on X is the equivalence kernel of its surjective projection i : X > X/~.
(Birkhoff and Mac Lane 1999: 33 Th. 18). Conversely, any surjection between sets determines a
partition on its domain, the set of preimages of singleton [#sembiauation neededlg 3 tha codomain.
Thus an equivalence relation over X, a partition of X, and a projection whose domain is X, are
three equivalent ways of specifying the same thing.

e The intersection of any collection of equivalence relations over X (viewed as a subset of X x X) is
also an equivalence relation. This yields a convenient way of generating an equivalence relation:
given any binary relation R on X, the equivalence relation generated by R is the smallest
equivalence relation containing R. Concretely, R generates the equivalence relation a ~ b iff
there exist elements x3, x5, ..., X, in X such that a = x;, b = x,,, and (x;,x;. 1)€R or (xix1,X)ER, i =1, ...,
n-1.

Note that the equivalence relation generated in this manner can be trivial. For instance, the
equivalence relation ~ generated by:
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» The binary relation < has exactly one equivalence class, X itself, because x ~ y for all x
and y;

* An antisymmetric relation has equivalence classes that are the singletons
needed] of X

[disambiguation

« Letrbe any sort of relation on X. Then r U r'' is a symmetric relation. The transitive closure s of r
U r* assures that s is transitive and reflexive. Moreover, s is the "smallest" equivalence relation

containing r, and r/s partially orders X/s.

e Equivalence relations can construct new spaces by "gluing things together." Let X be the unit
Cartesian square [0,1] x [0,1], and let ~ be the equivalence relation on X defined by Va, b € [0,1]
((a, 0) ~(a, 1) A (0, b) ~ (1, b)). Then the quotient space X/~ can be naturally identified with a
torus: take a square piece of paper, bend and glue together the upper and lower edge to form a
cylinder, then bend the resulting cylinder so as to glue together its two open ends, resulting in a
torus.

Composite Relations

If the elements of a sét are related to those of a &tand those dB are in turn related to the
elements of a s&, then one can expect a relation betwdeandC. For example, if Tom is my
father(parent-child relation) and Sarah is a sistdfom (sister relation), then Sarah is my aunt
(aunt-nephew/niece relation). Composite relatiams that kind of relations.

Definition(compositerelation): LetR; be a binary relation from a s&tto a seB, R, a binary
relation fromB to a seC. Then thecomposite relation from A to C denoted byRr;Rx(also

denoted byR; &Ry is defined as
= = = = =
R1R2 = {<a, c> | a A !'ﬁ\C C ;"‘E'b [b B (h\<a, b> R]_ !h\<b, c> R2] } .

In English, this means that an elemarm A is related to an elemeain C if there is an element
b in B such that is related td by R; andb is related t@ by R, . ThusR;R; is a relation fronA
to CviaB in a sense. IR; is a parent-child relation af} is a sister relation, thd®R; is an
aunt-nephew/niece relation.

Examplel: LetA={a;,a},B={by, by, bs},andC={c;, ¢} . Also letR; = {<a; , b;>, <ay,
by>, <ay,bs>}, andRy={<b;, c1>,<by, 1>, <by, c>,<bs,ci>} . ThenRiR; = {<a;, c;>,
<a;,C>,<ay,C>}.

This is illustrated in the following figure. Thestaed lines in the figure &R, indicate the
ordered pairs ifR;R,, and dotted lines show ordered pairs that protlueelashed lines. (The
lines in the left figure are all supposed to bedslihes.)

IJ1 c
e - 1
by
a, . c,
b3




Example 2: If R is the parent-child relation on a set of pedhl¢henRR, also denoted bi?, is
the grandparent-grandchild relation An

Mor e examples:
The digraphs oR? for several simple relatiori® are shown below:
2 2
— P Properties of Composite
Relations
3
3
3

Composite relations
defined above have the
following properties. Let
R be a relation from to
B, andR, andR3 be
relations fromB to C.
Then

2
Ry Rj

1 1
4 4
1 (R1R2)Rs3
2. R]_(Rz URg) =
RiR> LUR1Rs
3.Ry(R; NRy)
RiR> MR1R3

Proofs for these
RZ properties are not
2 necessary

1. Ry(R:R3) =

3

R,

Power s of Relation

2 1
2 1 Let R be a binary relation
Q ] OnA ThenR" for all
2 positive integers is

defined recursively as
follows:
R 2
3 R3 .
Definition(power of
relation):
Basis Clause: R° = E, wherekE is the equality relation oA.
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Inductive Clause: For an arbitrary natural number, R™* = R"R.
Note that there is no need for extremal clause.here

Thus for exampl®' = R, R = RR, andR® = R°R = (RR)R = R(RR) = RRR.

The powers of binary relatidR on a sef defined above have the following properties.
1.R™" =R"R"

2.(R™M"=R™,

Using composite identity relationships

An identity relationship establishes an associabietween business objects or other data on a
one-to-one basis. A composite identity relationship relates twoibass objects through a

composite key attribute.

Creating composite identity relationship definitions

Identity relationship definitions differ from lookurelationship definitions in that the participant
types are business objeatst of the type Data (the first selection in the paptant types list).

As with a simple identity relationship:

- The composite identity relationship consists ofgkaeric business object and at least
one application-specific business object.
- The participant type is a business objectbparticipants.

However, for a composite identity relationship, gagticipant attribute for every participant is a
composite key. This composite key usually congites unique key from a parent business

object and a nonunique key from a child businegscbb

Steps for creating composite identity relationship definitions

To create a relationship definition for a compogitntity relationship, perform the following

steps:

1. Create a participant definition whose participaipetis the parent business object.
2. Set the first participant attribute to the keylod parent business object.

Tip: Expand the parent business object and seleciethatkribute.
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3. Set the second participant attribute to the kethefchild attribute.

Tip: Expand the parent business object, then expanchifteattribute within the parent.
Select the key attribute from this child object.

4. Repeat steps 1-3 for each of the participants. Wts al composite identity relationships,
this relationship contains one participant for gle@eric business object and at least one
participant for a application-specific businesseahj Each participant consists of two
attributes: the key of the parent business objedttae key of the child business object
(from the attribute within the parent business ot)je

Restriction: To manage composite relationships, the serveteséaternal tables. A table is
created for each role in the relationship. A unigquiex is then created on these tables across all
key attributes of the relationship. (In other words, the colunaisch correspond to the key
attributes of the relationship are the participaritghe index.) The column sizes of the internal
tables have a direct relation to the attributethefrelationship and are determined by the value

of the MaxLength attribute for the relationship.

Databases typically have restrictions on the sizbeindexes that can be created. For instance,
DB2 has an index limitation of 1024 bytes with tefault page size. Thus, depending on the
MaxLength attribute of a relationship and the nundfeattributes in a relationship, you could

run into an index size restriction while creatirgnposite relationships.
| mportant:

« You must ensure that appropriate MaxLength valueset in the repository file for all
key attributes of a relationship, such that the total index waudder exceed the index
size limitations of the underlying DBMS.

If the MaxLength attribute for type String is ngiesified, the default is nvarchar(255) in
the SQLServer. Thus, if a relationship hNaKeys, all of type String and the default
MaxLength attribute of 255 bytes, the index sizalldde ((N*255)*2) + 16 bytes. You
can see that you would exceed the SQLServer 7 4h800 bytes quite easily when N
takes values of >=2 for the default MaxLength valti@55 bytes for type String.

- Remember, too, that even when some DBMS'es sulgnge indexes, it comes at the
cost of performance; hence, it is always a good tdekeep index sizes to the minimum.
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Deter mining the relationship action

Table 100shows the activity function blocks that the Magp#&P| provides to maintain a
composite identity relationship from the child goiite of the parent source business object. The

actions that these methods take depends on theesobject's verb and the calling context.

Table 100. Maintaining a composite identity relationship from the child attribute

Function block Description

General/APlIs/Identity Relationship/ Set source child verb correctly
Maintain Child Verb

General/APlIs/Identity Relationship/ Perform appropriate action on the
Maintain Composite Relationship relationship tables

Actions of General/API </l dentity Relationship/Maintain Composite Relationship

The Maintain Composite Relationship function blegKk generate Java code that calls the
mapping APl maintainCompositeRelationship(), whigh manage relationship tables for a
composite identity relationship. This method ensubhat the relationship instances contain the
associated application-specific key values for gatdtionship instance ID. This method
automatically handles all of the basic adding aglétthg of participants and relationship

instances for a composite identity relationship.

The actions that maintainCompositeRelationshig(g@saare based on the value of the business
object's verb and the calling context. The metheiies through the child objects of a specified
participant, calling the maintainSimpleldentityReaship() on each one to correctly set the
child key value. As with maintainSimpleldentityRibeship(), the action that
maintainCompositeRelationship() takes is basederidllowing information:

« The calling context: EVENT_DELIVERY, ACCESS_REQUEST
SERVICE_CALL_REQUEST, SERVICE_CALL_RESPONSE,
SERVICE_CALL_FAILURE, and ACCESS_RESPONSE

- The verb of the source business object: Createatép®delete, or Retrieve
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The maintainCompositeRelationship() method dealg with composite keys that extend to
only two nested levels. In other words, the mettaahot handle the case where the child

object's composite key depends on values in itsdyparent objects.

Example: If A is the top-level business object, B is thddlof A, and C is the child of B, the

two methods willhot support the participant definitions for the cloloject C that are as follows:

« The participant type is A and the attributes are:
-key attribute of A: ID
« key attribute of B: B[0].ID
- key attribute of C: B[0].C[0].ID

« The participant type is A and the attributes are:
- key attribute of A: ID
«key attribute of C: B[0].C[0].ID

To access a grandchild object, these methods oplyast the participant definitions that are as

follows:

- The participant type is B and the attributes are:
+key attribute of B: ID
- key attribute of C: C[0].ID

« The participant type is B and the attributes are:
-key attribute of B: ID
«first key attribute of C: C[0].ID1
-second key attribute of C: C[0].ID2

Actions of General/API ¢l dentity Relationship/Maintain Child Verb

The Maintain Child Verb function block will geneealava code that calls the mapping API
maintainChildVerb(), which will maintain the verl the child objects in the destination
business object. It can handle child objects wikeseattributes are part of a composite identity
relationship. When you call maintainChildVerb()pest of a composite relationship, make sure
that its last parameter has a value of true. Thaghod ensures that the verb settings are

appropriate given the verb in the parent sourceatlgnd the calling context.

Customizing map rulesfor a composite identity relationship

Once you have created the relationship definitioeh garticipant definitions for the composite

identity relationship, you can customize the mam#ontain the composite identity relationship.
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A composite identity relationship manages a contpdsdy. Therefore, managing this kind of
relationship involves managing both parts of thenposite key. To code a composite identity
relationship, you need to customize the mappingstaamation rules for both the parent and

child business objects, asble 31 shows.

Table 3.1 Activity function blocksfor a composite identity relationship

Business

Map object

involved involved Attribute Activity function blocks

Main Parent Top-level Use a Cross-Reference transformation
business business rule
object object

Child General/APls/Identity

attribute Relationship/Maintain Composite

(child Relationship

business General/APls/Identity

object) Relationship/Maintain Child Verb
General/APls/Identity
Relationship/Update My Children
(optional)

Submap Child Key Define a Move or Set Value
business attribute transformation for the verb.
object (nonunique

key)

If child business objects have a nonunique keybaitie, you can relate these child business

objects in a composite identity relationship.

The following sections describe the steps for anstng this composite identity relationship:

« Steps for customizing the main map
« Customizing the submap
« Managing child instances
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Steps for customizing the main map

In the map for the parent business object (the mmep), add the mapping code to the parent

attributes:

wn

Map the verb of the top-level business object inde a Move or Set Value
transformation rule.

Define a Cross-Reference transformation betweetofhdevel business objects.

Define a Custom transformation for the child atitdband use the General/APIs/Identity
Relationship/Maintain Composite Relationship fumetblock in Activity Editor.

Steps for coding the child attribute

The child attribute of the parent object contahmes ¢hild business object. This child object is

usually a multiple cardinality business objectdntains a key attribute whose value identifies

the child. However, this key value is not requitedbe unique. Therefore, it does not uniquely

identify one child object among those for the sgraeent nor is it sufficient to identify the child

object among child objects for all instances oflheent object.

To identify such a child object uniquely, the redaship uses a composite key. In the composite

key, the parent key uniquely identifies the paa)ect. The combination of parent key and

child key uniquely identifies the child object.time map for the parent business object (the main

map), add the mapping code to the attribute thatatos the child business object. In Activity

Editor for this attribute, perform the followingegis to code a composite identity relationship:

1.

Define a Submap transformation for the child bussnebject attribute of the main map.
Usually mapping transformations for a child object done within a submap, especially
if the child object has multiple cardinality.

In the main map, define a Custom transformatioa foi the child verb and use the
General/APIs/Identity Relationship/Maintain ChiléN function block to maintain the
child business object's verb.

The last input parameter of the General/APls/Idgfelationship/Maintain Child Verb
function block is a boolean flag to indicate whettinee child objects are participating in a
composite relationship. Make sure you pass a w@treie as the last argument to
maintainChildVerb() because this child object mapttes in a composite, not a simple
identity relationship. Make sure you call maintami@Verb() before the code that calls

the submap.
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3. To maintain this composite key for the parent sewlgject, customize the mapping rule
to use the General/APIs/Identity Relationship/MaimiComposite Relationship function
block.

4. To maintain the relationship tables in the casere/lagparent object has an Update verb
caused by child objects being deleted, customigertapping rule to use the
General/APlIs/Identity Relationship/Update My Chddrfunction block.

Tip: Make sure the transformation rule that contaiespdate My Children function
block has an execution order after the transfoiwnatille that contains the Maintain

Composite Relationship function block.

Example of customizing the map for a Composite | dentity Relationship

The following example describes how the map caaustomized for a Composite Identity

Relationship.

1. In the main map, define a Custom transformatioa bd@tween the child business object's
verbs. Use the General/APIs/Identity Relationshigifiain Child Verb function block in
the customized activity to maintain the verb fag tiild business objects.

The goal of this custom activity is to use the rt@mChildVerb() API to set the child
business object verb based on the map executidexdand the verb of the parent

business objecEigure3.2shows this custom activity.
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e
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Figure 3.2. Using the Maintain Child Verb function block
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2. If necessary, define a Submap transformation retevéen the child business object to
perform any mapping necessary in the child level.

3. Define a Custom transformation rule between thddwgpl business objects. Use the
General/APlIs/Identity Relationship/Maintain CompedRelationship function block in
the customized activity to maintain the composintity relationship for this map.

The goal of this custom activity is to use the nt@mComposite Relationship() API to
maintain a composite identity relationship withive tmap Figure 3.3shows this custom

activity.
o |='-i /} e
Crecdr] v this
e
map e (g -
SAFCaln =
L partic partDeiMame o
appSpecificBusOb e
genedcBusObiLisl el
- ‘-'-'-3"\." Maintan Compasie Relationshig
ObjSAP_Ordar
L3 “ v
business object sp e value
DbjQrdar aittribute s E

Gel Business Object Amay

Figure 3.3. Using the Maintain Composite Relationship function block

4. Define a Custom transformation rule mapping fromgburce top-level business object
to the destination child business object attribUtge the General/APIs/Identity
Relationship/Update My Children function block retcustomized activity to maintain
the child instances in the relationship.

The goal of this custom activity is to use the upti&yChildren() API to add or delete

child instances in the specified parent/child retaghip of the identity relationship.
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Figure 3.4shows this custom activity.
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Figure 3.4. Using the Update My Children function block

Example of coding the child attribute

Here is a sample of how the code in the childlaite of the parent map might look. This code
fragment would exist in the Order Line Item atttdof an SAP Order business object. It uses
maintainChildVerb() to set the child object verthgen calls a submap
(Sub_SaOrderLieltem_to_CwOrderLineltem) in a faddo handle mapping of the Order line
items child object:

{
BusObjArray srcCollection_For_ObjSAP_Order_SAP_Qkdesltem =

ObjSAP_Order.getBusObjArray("SAP_OrderLineltem™)

I
// LOOP ONLY ON NON-EMPTY ARRAYS

I
/I Perform the loop only if the source array is +gnpty.
I

if ((srcCollection_For_ODbjSAP_Order_SAP_OrderLieeft = null) &&
(srcCollection_For_ObjSAP_Order_SAP_Orderltem@.size() > 0))

{

38



int currentBusObjindex_For_ObjSAP_Order_SAP_@roeeltem;
int lastinputindex_For_ObjSAP_Order_SAP_Ordeelliem =
srcCollection_For_ObjSAP_Order_SAP_OrderLinelgatiastindex();

I ----
IdentityRelationshipnaintainChildVer b(
"OrdrLine",
"SAPOrIn",
"CWOrlIn",
ObjSAP_Order,
"SAP_OrderLineltem",
ObjOrder,
"OrderLineltem",
cwExecCitx,
true,
true);

I ----
for (currentBusObjindex_For_ObjSAP_Order_SAP_
OrderLineltem = 0;
currentBusObjindex_For_ObjSAP_Order_SARIddrineltem <=
lastinputindex_For_ObjSAP_Order_SAP_éiheltem;
currentBusObjindex_For_ObjSAP_Order_SARIdgdrineltem++)
{
BusObj currentBusObj_For_ObjSAP_Order_SAP e@ruheltem =
(BusOhbj) (srcCollection_For_ObjSAP_Order_SAP_ Ordeeltem.elementAt(
currentBusObjindex_For_ObjSAP_Order_S@RJerLineltem));

Il

/I INVOKE MAP ON VALID OBJECTS

I -

1

/Il Invoke the map only on those children otge¢hat meet

/I certain criteria.

/l

if (currentBusObj_For_ObjSAP_Order_SAP_Ordeeltem != null)
{
BusObj[] _cw_inObjs = new BusObj[2];
_cw_inObjs[0] =

currentBusObj_For_ObjSAP_Order_SARId€fLineltem;
_cw_inObjs[1] = ObjSAP_Order;
loginfo ("*** Inside SAPCW header, verh I5+
(_cw_inObjs[0].getVerb()));

try
{
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BusObj[] _cw_outObjs = DtpMapServiaemM ap(
Sub_SaOrderLineltem_to CwOrderLineltem”,
"CwMap",

_cw_inObjs,
cwExecCtx);

_cw_outObjs[0].setVerb(_cw_inObjs[01\gerb());

ObjOrder.setWithCreate("OrderLineltemtw _outObjs[0]);

}

catch (MapNotFoundException me)
{
logError(5502,
" Sub_SaOrderLineltem_to CwOrder i@ ");
throw new MapFailureException ("Subnmap found");

}
}
}

// Start of the child relationship code
BusObjArray temp = (BusObjArray)ObjOrder.get(t@rLineltem™);

try

{
IdentityRelationshipaintainCompositeRelationship(

"OrdrLine",
"SAPOrin",
ObjSAP_Order,
temp,
cwExecCtx);

}

catch RelationshipRuntimeException re

{
logError(re.toString());

}

Il This call to updateMyChildren() assumes tkistence of the
[/l OrdrOrln parent/child relationship betweea $AP_Order
Il (parent) and SAP_Orderltem (child)
IdentityRelationshipypdateM yChildren(

"OrdrOrin",

"SAOrders",

ObjSAP_Order,

"SAOrdrLn",

"Lineltem",

"OrdrLine",

"SAPOrIn",
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cwExecCtx);

/I End of the child relationship code

}
}

Customizing the submap

In the map for the child business object (the syi)madd the mapping code to the the key
attribute of the child object. The only code yoedé¢o add is a call to theetVerb()method to
set the child object's verb to the parent objeetb.

Note:

When the child object primary key requires the r@imCompositeRelationship()
method, make the call in the parent map, rightr dffte end of the for loop for calling the
submap. In the submap, the code for the destinatiject's primary key should contain
the following line:

/I maintainCompositeRelationship()
is called in the parent map.
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WEEK 4 :

SETS

This week Learning outcomes:

+ Define sets.

- Define set operations.

« Define the elements of set, subsets, super sets, universal sets and null set.
« Explain Storage set representation.

Thetype SET

The objects of study of Set Theory aets. As sets are fundamental objects that can betosed
define all other concepts in mathematics, theynatalefined in terms of more fundamental
concepts. Rather, sets are introduced either irdthyrrand are understood as something self-
evident, or, as is now standard in modern mathesyaxiomatically, and their properties are

postulated by the appropriate formal axioms.

The language of set theory is based on a singldafmental relation, callesiembership. We say
thatA is a member oB (in symbolsA € B), or that the seB containsA as its element. The
understanding is that a set is determined by @sehts; in other words, two sets are deemed
equal if they have exactly the same elements.dntfme, one considers sets of numbers, sets of
points, sets of functions, sets of some othera®dsso on. In theory, it is not necessary to
distinguish between objects that are members ajettsithat contain members -- the only
objects one needs for the theory are sets. Seifpement

The type SET denotes sets whose elements areligteghe range 0 to a small number,
typically 31 or 63.

Given, for example, variables

VAR T, s, t: SET

possible assignments are

r={5ss={y..zht:={

Here, the value assigned to r is the singletoc@esisting of the single element 5; to tis
assigned the

empty set, and to s the elements x, y, y+1, ...,,z-1
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Set Operations

A relation is a set. It is a set of ordered pdirsis a binary relation, and it is a set of orelen-
tuples if it is am-ary relation. Thus all the set operations applsetations such as!J, M, and
complementing.

For example, the union of the "less than" and "8tyllaelations on the set of integers is the
"less than or equal to" relation on the set ofgets. The intersection of the "less than" and "less
than or equal to" relations on the set of integethe "less than" relation on the same set. The
complement of the "less than" relation on the $@ttegers is the "greater than or equal to"
relation on the same set.

Therefore, the following are the elementary opesasre defined on variables of type SET:

* set intersection

+ set union

- set difference

/ symmetric set difference

IN set membership

Constructing the intersection or the union of twitsss often called set multiplication or set
addition, respectively; the priorities of the spemators are defined accordingly, with the
intersection operator having priority over the umand difference operators, which in turn have
priority over the membership operator, which isslfed as a relational operator. Following are
examples of set expressions and their fully plesized equivalents:

r*s+t=(r*s) +t

r-s*t=r-(s*)

r-s+t=(r-s) +t

THIS IS A TEXT

18

r+s/t=r+(slht)

XINs+t=xIN (s+t)

Sets, Elements, and Subsets

One dictionary has, among the many definitions for set, the following: a number of things naturally
connected by location, formation, or order in time.

Althoughset holds the record for words with the most dictignaefinitions, there are terms
mathematicians choose to leave undefined, or dgtuifined by usage. Set, element, member,
and subset are four such terms which will be disedsn today's lesson. Today's activity will

also explore the concept.
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Each item inside a set is termed an element.

The brace symbols { and } are used to encloseldraaents in a set.
Eachelement is amember of the set (or belongs to the set).

The symbol for membership‘=. It can be read "is an element of" and looks osiitalar to the
Greek letter epsilort).

A subset is a portion of a set.

The symbol for subset C. Some books will allow and use it reversed—we wiit.

A superset is a set that includes other sets.

For example: If £ B, then A is a subset of B and B is a supersét of
A subset might have no members, in which casetérimed theaull set or empty set.

The empty set is denoted either by {} orflya Norwegian letter. The null set is a subset of

every set.

Note: a common mistake is to udf{o denote the null set. This is actually a sethvaine
element and that element is the null set. Sinceegoeople slash their zeroes, it is safest when

handwriting toalways use the notation {} to denote the empty or null set.

A singleton is a set with only one element.

A subset might contain every member of the original set.
In this case it is termed an improper subset.
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A proper subset does not contain every member of the original set.

Sets may béinite, {1, 2, 3,..., 10}, oiinfinite, {1, 2, 3,...}. Thecardinality of a set An(A), is
how many elements are in the set. The symbolllectelipses means to continue in the
indicated pattern. There aréubsets of any set, wharés the set's cardinality—check it out for

n=3!

The power set of a set is the complete set of subsets of the set.

In this class we will consider only safe sets, thaany set we consider shouldvee |-defined.
There should be no ambiguity as to whether or nalement belongs to a set. That is why we
will avoid things like thevillage barbemwho shaves everyone in the village that does maies
himself. This results in a contradiction as to Wileetor not he shaves himself. Also consider
Russell's Parado¥orm the set of sets that are not members of thles It is both true and

false that this set must contain itself. Thesesasmples ofll-defined sets.

Sometimes, instead of listing elements in a setyseset builder notation: {| x is a letter in the
word "mathematics"}. The symbol | can be read astighat." Sometimes the symiCils
reserved to mean proper subset and the sySisalised to allow the inclusion of the improper
subset. Compare this with the use of < <tdexclude or include an endpoitt/e will make no
such distinction. A set may contain the same elésn@nanother set. Such setseapgal or
identical sets— element order is unimportant. A = B where fin,o,r,e} and B = {r,o,m,e}, in
general A=B if A_ B and E_ A. Sets may be termesfjuivalent if they have the same
cardinality. If they are equivalent,oae-to-one correspondence can be established between

their elements.

The universal set is chosen arbitrarily, but must be large enough to include all elements of all sets under
discussion.

Complementary set, A', is a set that contains all the elements of the universal set that are not included
in A. The symbol ' can be read "prime."
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For example: if U={0, 1, 2, 3, 4, 5, 6,...} and A3{2, 4, 6, ...}, then A'={1, 3, 5, ...}.

Such paradoxes as those mentioned above, pariigutaolving infinities (discussed in the

next lesson), were well known by the ancient GreBksing the 18 century, mathematicians
were able to tame such paradoxes and about thettine 28" century Whitehead and Russell
started an ambitious project to carefully codifytheanatics. Set theory was developed about this
time and serves to unify the many branches of nmadities. Although in 1931 Kurt Godel

showed this approach to be fatally flawed, it it gtgood way to explore areas of mathematics

such as: arithmetic, number theory, [abstract]l@igegeometry, probabilitgtc.

Geometry has a long history of such systematicystlide ancient Greek Euclid similarily
codified the mathematics of his time into 13 boo#ked The Elements. Although these books
were not limited to Geometry, that is what theyla@st known for. In fact, up until about my
grandfather's dayhe Elements was the textbook of choice for the study of Geagidihe
Elements carefully separated the assumptions and defirgtioom what was to be proved. The
concept of proof dates back another couple hungieads to the ancient Greek Pythagoras and

his school, the Pythagorean School.

I nter section and Union

Once we have created the concept of a set, we aaipualate sets in useful ways ternsetl
operations. Consider the following sets: animals, birds, aite things. Some animals are
white: polar bears, mountain goats, big horn shisegxample. Some birds are white: dove,
stork, sea gulls. Some white things are not birdsnamal (but birds are animals!): snow, milk,

wedding gowns (usually).

The intersection of sets are those elements which belong to all intersected sets.

Although we usually intersect only two sets, thérdigon above is general. The symbol for

intersection ig 1.

The union of sets are those elements which belong to any set in the union.
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Again, although we usually form the union of onlyotsets, the definition above is general. The

symbol for union id_l.

For the example given above, we can see that:
{white things} {birds} = white birds

{white animals]_{birds} = white animals and all birds
{white birds}_{white animals_{animals}

Another name for intersectiongsnjuction. This comes from the fact that an element must be
member of set And set B to be a member of AB. Another name for union @isunction.

This comes from the fact that an element must toember of set Ar set B to be a member of
AL_B. Conjunction and disjunction are grammar ternts @ate back to when Latin was widely

used.

| should note the very mathematical use of the word or in the sentence above. Common usage now of
the word or means one or the other, but not both (excludes both). Mathematicians and computer
scientists on the other hand mean one or the other, possibly both (including both). This ambiguity can
cause all kinds of problems! Mathematicians term the former exclusive or (EOR or XOR) and the latter
inclusive or. We will see ands & ors again in numbers lesson 6 on truth tables.

Representation of Sets

A setsis conveniently represented in a computer storgshgharacteristic function C(s). This is
an array of logical values whose ith componentthasneaning “i is present in s”. As an
example, the set of small

integers s ={2, 3, 5, 7, 11, 13} is representedhgysequence of bits, by a bitstring:

C(s) = (... 0010100010101100)

The representation of sets by their characteffigtiction has the advantage that the operations of
computing the union, intersection, and differentevm sets may be implemented as elementary
logical operations. The following equivalences, ethihold for all elements i of the base type of
the sets x and vy, relate logical operations witbrapons on sets:

i IN (x+y) = (i INX) OR (i IN y)

i IN(x*y)=(INX) & (i INY)

IIN (X-y) =( INX)&~(IINYy)

These logical operations are available on all digibmputers, and moreover they operate
concurrently on

all corresponding elements (bits) of a word. Iréfere appears that in order to be able to
implement the

basic set operations in an efficient manner, setst toe represented in a small, fixed number of
words upon

which not only the basic logical operations, bsbahose of shifting are available. Testing for
membership
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is then implemented by a single shift and a subseiisign) bit test operation. As a
consequence, a test of

the form x IN {c1, c2, ..., cn} can be implemeni=zhsiderably more efficiently than the
equivalent

Boolean expression

(x=cl)OR (x=¢c2) OR ... OR (x =cn)

A corollary is that the set structure should bedusely for small integers as elements, the largest
one being

the wordlength of the underlying computer (minus 1)
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WEEK 5:

String structure.

This week Learning outcomes :
« Define Define string .
«.Explain basic operations of strings.

String Processing
A finite sequence S of zero or more charactergalled a string. The number of character
ina string is called its length. The stringith zero character is called the emglying
or the null string. The following are stringé length 9,18, 14 and O respectively:

l.) “ND1 CLASS”

Il.) “COMPUTER DEPARTMENT"”

l.) “CAMPUS SHUTTLE” ,and

v.,) **
Note that the blank is regarded as a dbaraonly when it appears swith other
characters .

Concatenation of Strings

Let S1 and S2 be strings, the string congistinthe characters of S1 followed by the
characters of Slis called concatenation o8d S1.

This is donated by S1//S2. E.g. “STARLETSTDEFEAT"/I’"EA..GLET”

Astring Y is called a substring of a stridgif there exist strings X and Z such that

S=XI/IYIIZ.

If X is an empty string, then Y is @l an intial substing of S, and if Z is ampgy
string then Y is called a terminal substriofy S.

E.g’BE OR NOT is a substring of ‘TO BE OROT TO BE'.

‘THE’ is an initial substring of ‘THE END’.

Length
The general form is LENGTH(string) and thisll return the number of character(s)in a
giving string.

i.) LENGTH('student’)=7

ii.) LENGTH(' )=0

Insertion

Suppose we want to insert a strings in a giegh T so that S starts in position K. We
denote this operation as INSERT(text, posjtgiring)

E.g. INSERT(‘ABCDEFG’, 3,’XYZ)="ABXYZCDEFG’

The INSERT function can be implemented byngisthe string operation as follows:
INSERT(T,K,S)=SUBSTRING(T,1,K-1)//S//SUBSTRING(T KENGTH(T)-K+1).
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That is, the initial substring of T befotee position K, which has length K-1, is
concatenated with the string, and the resultoncatenated with the remaining part of T,
which begins in position K and has lengthN&IH(T)-(K-1)=LENGTH(T)-K+1.

Deletion

The general formis DELETE(text,position,length)

E.g. DELETE(ABCDEFG’,4,2)="ABCFG’

We assume that nothing is deleted if pmsiK=0.

Thus DELETE(‘ABCDEFG’,0,2)="ABCDEFG’

The DELETE function can be implemented usirige string operations given as follows:

DELETE(T,K,L)=SUBSTRING(T,1,K-1)//SUBSTRING(T,K+L,ENTGH(T)-K-L+1)

That is the initial substring of T before pimsm K is concatenated with the terminal
substring of T beginning in position K+L, atlde length of the terminal substring is :
LENGTH(T)-(K+L-1)=LENGTH(T)-K-L+1

When K=0, we assume that DELETE(T,K,L)=T
Suppose that text T and pattern P are given iansl required to delete from T the ffirs
occurrence of the pattern P. We can usefdhewing DELETE function

DELETE(T,INDEX(T,P),LENGTH(P))

E.g. = ‘ABCDEFG’, P="CD’, then
DELETE(T,INDEX(T,P),LENGTH(P))=DELETE(‘ABCDEFG’,INIEX(‘ABCDEFG’,'CD’)
,2)="ABEFG’

Suppose that we want to delete every oeooe of the pattern P in the text T, then we
can do this by repeatedly applying DELETHE{DEX(T,P),LENGTH(P))

Until INDEX(T,P)=0 thatis, until P does nappear in T.

The following algorithm is used to accompligis:

Algorithm:
A text T and a pattern P are in computegmory. This algorithm deletes every
occurrence of PinT.
i.) Find index of P in T. Set K=INDEX(T,P)
ii.) Repeat while K not equal to O
a. [Delete P from T.]
Set T:= DELETE(T,INDEX(T,P),LENGTH(P))

b. [Update index]
Set K:= INDEX(T,P)
[End of loop]
iii.) Write: T.
iv.) Exit.

REPLACEMENT
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Suppose ina given Twe want to repldee first occurrence of a patter P1 by a

pattern P2, we will denote this operation WFRACE(test,patternl,pattern2)

E.g. REPLACE(‘XABYABZ,'AB’,'C')="XCYABZ’
REPLACE('XABYABZ,'BA’,'C")="XABYABZ'

In the second case, the pattern BA does ootur, and hence thereis no change.

Suppose a text Tand patterns P and Q arth@dnmemory of a computer. Suppose we

want to replace every occurrence of the pat®ern T by the Pattern Q. This might be

accomplished by repeatedly applying REPLACE(T)PUNTIL(T,P)=0

This could be done using the following alton:

1. [Find index of P] Set K :=INDEX(T,P)
2. Repeat while K>0:
a.) [Replace P by Q] Set T:=REPLACE(T,P,Q)
b.) [Updarte] Set K:= INDEX(T,P)
[Eend loop]
3. Write: T
4. Exit.
Exercise
a.) T=XABYABZ
P=AB
Q=C
REPLACE(T,P,Q)

b.) If T=XAB
P=A
Q=AB
REPLACE(T,P,Q)
Use the algorithm above to solve the problems.
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WEEK 6:

Queues and Stacks.

This week learning outcomes:
« Queue data structure .
- Stack data structure..

Queues

Queues are dynamic collections which have someegtrof order. This can be either based on
order of entry into the queue - giving us FirstAinst-Out (FIFO) or Last-In-First-Out (LIFO)
gueues. Both of these can be built with linkedsligte simplest "add-to-head" implementation of
a linked list gives LIFO behaviour. A minor mod#iton - adding a tail pointer and adjusting the

addition method implementation - will produce a Glgueue.

Representation of queues:

Two pointer variable namely FRONT and REA#&Re used in quiues, FRONT contains
the location of the front element of the weieand REAR contains the location of the
rear element of the queue. The conditiorORR=NULL will indicate that the queue is
empty.

Whenever an item is deleted from the quthee value of FRONT is increased by 1 ,
that is, FRONT=FRONT + 1.

Whenever, an item is added to the queueytiee of REAR is increased by 1 that is,
REAR=REAR +1.

A B C oD N-1 N

FRONT=1 ,and REAR =4

Suppose that we want to insert an eleni€&M into a queue at the time the queue
does occupy the last part of the arragt is, when REAR=N and the queue is not

yet filled. To do this, we can assume th& queue is circular, that is, that QUEUE(1

comes after QUEUE(N) in the array. With thassumption, insert ITEM into the queue

by assigning ITEM to QUEUE(1). Instead of remsing REAR to N+1, we reset REAR=1
and then assign QUEUE[REAR]=ITEM.

Similarly, if FRONT=N and element of queus deleted, we reset FRONT=1 instead of
increasing FRONT to N+1.

If the queue is empty, we assigh FRONT=RENREL.

EXAMPLE
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The following example shows how a queuey niz@ maintained by a circular array
QUEUE with N=5 memory locations
a.) Initially empty:FRONT=0

1 2 3 4 5
REAR=0

b.) A and B and C inserted: FRONT=1

A B C
1 2 3 4 5
REAR=3

c.) A deleted FRONT =2

REAR=3

Another way of storing data is in a stack. A staik a linear structure in which items may
be added or removed only at one endefample, a stack of dishes, stack of pennies
Only two (2) operations can be carriedt on a stack. A stack is generally implemented
with only two principle operations (apart from anstructor and destructor methods):

Push ladds an item to a stack
Pop extracts the most recently pushed item from theksta

Other methods such as

Top returns the item at the tagithout removing it
isempty |determines whether the stack has anythingjin it
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are sometimes added.
[
PI.I.'Sh [
/":np
[

A common model of a stack is a plate or coin stadRtes
are "pushed" onto to the top and "popped" off tpe t

Stacks form Last-In-FirsBut (LIFO) queues and have me
applications from the parsing of algebraic exp@ssito ...

A formal specification of a stack class would Idike:

typedef struct t_stack *stack;

stack ConsStack( int max_items, int item_size );
/* Construct a new stack
Pre-condition: (max_items > 0) && (item_size > 0 )
Post-condition: returns a pointer to an empty st ack
*/

void Push( stack s, void *item );
/* Push an item onto a stack

Pre-condition: (s is a stack created by a call t o ConsStack) &&
(existing item count < max_items) &&
(item != NULL)

Post-condition: item has been added to the top o fs

*/

void *Pop( stack s);
/* Pop an item of a stack
Pre-condition: (s is a stack created by a call t o]
ConsStack) &&
(existing item count >= 1)
Post-condition: top item has been removed from s
*/
Points to note:

a. A stack is simply another collection of data iteamsl thus it would be possible to use
exactly the same specification as the one useduogeneral collection. However,
collections with the LIFO semantics of stacks aréngportant in computer science that it
is appropriate to set up a limited specificatioprapriate to stacks only.

b. Although a linked list implementation of a staclpisssible (adding and deleting from the
head of a linked list produces exactly the LIFO agtits of a stack), the most common
applications for stacks have a space restrairftatousing an array implementation is a
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natural and efficient one (In most operating systeaiocation and de-allocation of
memory is a relatively expensive operation, thera penalty for the flexibility of linked
tlist implementations.).

Stack Frames

The data structure containing all the data (argusyéocal variables, return addrees) needed
each time a procedure or function is called.

Almost invariably, programs compiled from modergtlevel languages (even C!) make use of
a stack frame for the working memory of each pracedr function invocation. When any
procedure or function is called, a number of wortle stack frame - is pushed onto a program
stack. When the procedure or function returns,ftiaime of data is popped off the stack.

As a function calls another function, first its angents, then the return address and finally space
for local variables is pushed onto the stack. Semh function runs in its own "environment" or
context, it becomes possible for a function to call itsedftechnique known ascursion. This
capability is extremely useful and extensively usbdcause many problems are elegantly
specified or solved in a recursive way.

Program stack after executing a pair of mutually

x recursive functions:
Stack ¥ parameters function f(int x, int y) {
frame R _..oo----] turn address int a;
fort ¥ retdrna if (term_cond ) return ...
3 local variables a= ... ;
|z parameters return g(a);
Stack return address
frame f-----------1 . . _
forg =] lecalvariables  function g(int z) {
q int p,q;
- p:...;fq:...;
return ,Q);
Stack ¥ parameters } (P.a)
fﬁ_.Tf """"""""" returnaddress  Note how all of function andg's environment (their

o localvariables  parameters and local variables) are found in thekst
frame. Whern is called a second time frogm a new
frame for the second invocationfofs created.

push, pop
Generic terms for adding something to, or remogoigething from a stack
context
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The environment in which a function executes: ideiargument values, local variables

and global variables. All the context except thabgl variables is stored in a stack frame.
A number ofprogramming languagesestack-orientedmeaning they define most basic
operations (adding two numbers, printing a charaetetaking their arguments from the stack,
and placing any return values back on the stackekamplePostScripthas a return stack and

an operand stack, and also has a graphics stakeastd a dictionary stack.

Forthuses two stacks, one for argument passing anébosebroutingeturn addresse¥he use
of a return stack is extremely commonplace, bustimmewhat unusual use of an argument stack
for a human-readable programming language is tsoreForth is referred to astack-based

language.

Many virtual machinesre also stack-oriented, including fhheode machinand theJava virtual

machine.

Almost all computer runtime memory environments aspecial stack (thedll stack) to hold
information about procedure/function calling andtimg in order to switch to the context of the
called function and restore to the caller functidmen the calling finishes. They follow a runtime
protocol between caller and callee to save argusreemd return value on the stack. Stacks are an
important way of supporting nestedrecursivefunction calls. This type of stack is used
implicitly by the compiler to support CALL and RERN statements (or their equivalents) and

is not manipulated directly by the programmer.

Some programming languages use the stack to sttaelthat is local to a procedure. Space for
local data items is allocated from the stack whenprocedure is entered, and is deallocated
when the procedure exits. TBeprogramming languags typically implemented in this way.
Using the same lnomputer sciencaastack is anabstract data typanddata structuréased on
the principle ofLast In First Out (LIFO). Stacks are used extensively at every level obdam
computer system. For example, a modern PC usdssstaithearchitecture levelwhich are used
in the basic design of an operating system forring handling and operating system function
calls. Among other uses, stacks are used to dava Virtual Machineand thelavalanguage
itself has a class called "Stack", which can balusethe programmer. The stack is ubiquitous.
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As anabstract data type¢he stack is aontainerof nodesand has two basic operatiopssh and
pop. Push adds a given node to the top of the stack leapiegious nodes belowWPop removes
and returns the current top node of the stackeAuently used metaphor is the idea of a stack of
plates in a spring loaded cafeteria stack. In sustack, only the top plate is visible and
accessible to the user, all other plates remaidemdAs new plates are added, each new plate
becomes the top of the stack, hiding each pla@Mglushing the stack of plates down. As the
top plate is removed from the stack, they can leeluhe platepop back up, and the second
plate becomes the top of the stack. Two importantiples are illustrated by this metaphor: the
Last In First Ouprinciple is one; the second is that the contefitee stack are hidden. Only the
top plate is visible, so to see what is on thaltpiate, the first and second plates will havedo b
removed. This can also be written as FILO-Firdtdst Out, i.e. the record inserted first will be

popped out at last.
Operations

In modern computer languages, the stack is usimpjfemented with more operations than just
"push” and "pop". The length of a stack can oftendiurned as a parameter. Another helper
operationtop (also known apeek or peak) can return the current top element of the stack

without removing it from the stack.

This section givepseudocod#or adding or removing nodes from a stack, as aglhe length
and top functions. Throughout we will usell to refer to an end-of-list marker sentinel valug

which may be implemented in a number of ways upmigters

record Node {
data /I The data being stored in the node
next /I A reference to the next node; null for last node

}

record Stack {

Node stackPointer /I points to the 'top' node; null for an empty stac k
}
function push( Stack stack, Element element) { /I push element onto stack
new(newNode) /I Allocate memory to hold new node

newNode.data :=element
newNode.next := stack.stackPointer
stack.stackPointer := newNode

function pop( Stack stack){ I/l increase the stack pointer and return 'top’
node data
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/I You could check if stack.stackPointer is null he re.

/l'If so, you may wish to error, citing the stack u nderflow.
node := stack.stackPointer
stack.stackPointer := node.next
element := node.data

r et ur n element

functiontop( Stack stack){ / return 'top' node
r et ur n stack.stackPointer.data

functionlength( Stack stack) { /I return the amount of nodes in the stack
length := 0
node := stack.stackPointer
whi | e node not null {
length ;= length + 1
node := node.next

}
}

r et ur n length

As you can see, these functions pass the stacthardhta elements as parameters and return
values, not the data nodes that, in this implentiemainclude pointers. A stack may also be
implemented as a linear section of memory (i.earaay), in which case the function headers

would not change, just the internals of the funttio

| mplementation

A typical storage requirement for a stackhadlements i€(n). The typical time requirement of
O(1) operations is also easy to satisfy witthyaamic arrayr (singly)linked list

implementation.

C++'sStandard Template Libraprovides astack " templated class which is restricted to only
push/pop operations. Java's library contaissek class that is a specialization\afctor . This
could be considered a design flaw because theitatlaget() method frorrector ignores the

LIFO constraint of thestack .

Here is a simple example of a stack with the opmmatdescribed above (but no error checking)
in Python

Stack ( object
__init__ self
self .stack pointer = None

push (self ,element
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self .stack pointer = Node element, self .stack pointer

pop ( self
e= self .stack_pointer.element
self .stack pointer = self .stack pointer.next
e
peek ( self

self .stack_pointer.element

__len__ (self
i= 0
sp = self .stack_pointer
sp:
i+= 1
Sp = sp.next

Node ( object
_init__ self , element= None, next= None) :
self .element = element
self .next = next

__name__ == ' main__'
# small use example
s = Stack
s.push (i i xrange (10
s.pop i xrange (len (s

The above is admittedly redundant as Python supplogt'pop’ and ‘append’ functions to lists.

Applications

Stacks are ubiquitous in the computing world.

Expression evaluation and syntax parsing

Calculators employingeverse Polish notatiamse a stack structure to hold values. Expressions
can be represented in prefix, postfix or infix nmias. Conversion from one form of the
expression to another form needs a stack. Many gersse a stack for parsing the syntax of
expressions, program blocks etc. before translatitoglow level code. Most of the
programming languages arentext-free languageslowing them to be parsed with stack based

machines.

For example, The calculation: ((1 + 2) * 4) + 3 ¢c@nwritten down like this in postfix notation
with the advantage of no precedence rules and teses needed:
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12+4*3+

The expression is evaluated from the left to riggihg a stack:

e push when encountering an operand and
e pop two operands and evaluate the value when encountering an operation.
e push the result

Like the following way (theack is displayed afteDperation has taken place):

Input Operation Stack
1 Push operand 1

2 Push operand 1, 2
+ Add 3

4 Push operand 3, 4

* Multiply 12

3 Push operand 12, 3

+ Add 15

The final result, 15, lies on the top of the statkhe end of the calculation.

example : implementation in pascal. using markegisetial file as data archives.

{

programmer : clx321
file : stack.pas

unit : Pstack.tpu

}

pr ogr amTestStack;
{this program use ADT of Stack, i will assume that the unit of ADT of Stack
has already existed}

uses
PStack; {ADT of STACK}
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{dictionary}
const
mark = I
var
data : stack;
f: text;
cc: char;
ccint, ccl, cc2: i nteger;

{functions}
IsOperand cc: char) : bool ean; {JUST Prototype}

{return TRUE if cc is operand}
ChrTolnt cc: char) : integer; {JUST Prototype}
{change char to integer}
Operator ccl, cc2: i nteger) : integer; {JUST Prototype}

{operate two operands}

{algorithms}
begi n
assign f, cc ;
reset f);
read (f,cc ); {firstelmt}
i f (cc=mark t hen
begi n
writeln ('empty archives! :
end
el se
begi n
r epeat
i f (IsOperand cc t hen
begi n
ccint := ChrTolnt cc);
push ccint, data ;
end
el se
begi n
pop ccl, data ;
pop cc2, data ;
push data, Operator cc2, ccl ;
end;
read (f,cc ); {next elmt}
until (cc=mark );
end;
close f);
end.

Runtime stack for both data and procedure calisiaortant security implications (see below)
of which a programmer must be aware in order todawvdroducing serious security bugs into a

program.
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Security

Some computing environments use stacks in waysitagtmake them vulnerable to security
breaches and attacks. Programmers working in saahoeaments must take special care to

avoid the pitfalls of these implementations.

For example, some programming languages use a corstack to store both data local to a
called procedure and the linking information théavas the procedure to return to its caller. This
means that the program moves data into and oliecsdame stack that contains critical return
addresses for the procedure calls. If data is mtwélde wrong location on the stack, or an
oversized data item is moved to a stack locatiahignot large enough to contain it, return

information for procedure calls may be corrupteaysing the program to fail.

Malicious parties may attempt to take advantaghisftype of implementation by providing
oversized data input to a program that does natkctiee length of input. Such a program may
copy the data in its entirety to a location ongteck, and in so doing it may change the return
addresses for procedures that have called it. #ackar can experiment to find a specific type of
data that can be provided to such a program swthttb return address of the current procedure
is reset to point to an area within the stackfitgeid within the data provided by the attacker),

which in turn contains instructions that carry aoauthorized operations.

This type of attack is a variation on theffer overflowattack and is an extremely frequent
source of security breaches in software, mainlyabse some of the most popular programming
languages (such & use a shared stack for both data and procedlise aiad do not verify the
length of data items. Frequently programmers doamité code to verify the size of data items,
either, and when an oversized or undersized dataig copied to the stack, a security breach

may occur.
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WEEK 7:

Properties linear Array.

These weeks Learning outcomes :
-Define linear Array.
-Discuss various operations that can be pwdd on ordered list.

Linear Arrays

Data structures are classified as eithealiner nonlinear. It is said to be linghrits
elements form a sequence , thatis, a lihisrotherwise nonlinear for example, trees
and graphs, records .They are mainly usedepresent data containing a hierarchical
relationship between elements.. Strings, diséy, and queues are linear types of data
structure.The operations normally performed lioear lists include:

a.) Traversal: processing each element in the list.

b.) Search: finding the location of the elemeanth a given value or the record with

a given key.

c.) Insertion: adding a new element to the list.

d.) Deletion: removing an element from the list.

e.) Sorting: arranging the elements in some tgpeorder.

f.) Merging: combining two lists into a singlestli

Alinear array is a list of a finite numbe, of homogeneous data elements, where the
number n of elements is called the lengthsiae of the array. The elements array A ,
may be denoted as follws:

Al A2,........ An or A1), A(2),........ A(n) or A[1],A[2],......... A[n]

Where 1 is the the lower bound, LB of thewgrand n, the upperbound, UB of the array.

Example:
Let DATA be a 5-element linear array of irkegy such that DATA[1]=24,
DATA[2]=56. DATA[3]=405. DATA[4]=35, DATA[5]=87

The array DATA is fryquently pictured asheit of the following:

DATA
DATA[1] 24
DATA[2] 56

DATA[3] 405

DATA[4] 35
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DATA[5] 87

24 56 405 35 87
1 2 3 4 5

DATA
MULTIDIMENTIONAL ARRAYS

The linear arrays earlier discussed are alse-dimensional arrays, since each elementin
the array is referenced by a single susdMost programming languages allow 2-
dimentional and 3-dimentional arrays, some alliv@ number of dimensions for an array
to be as highas?7.

Two-dimensionnal arrays are called Matricesmathematics and tables in business
applications.

A 2-dimensional m*n array is a collection of.n data elements such that each
Element is specified by a pair of integesch as J,K), called subscripts, with the
property that :

K J< m,and1l< K< n
e.g. the element of A with first subscrippdd second subscript K will be denoted by
A(j.k) or A[j, k]

Example

Suppose each student ina class of 10 studergsgiven 3 tests. Assuming the students
are numbered according, the test scores beamssigned to a 10 *3 matrix array
SCORE. Thus, SCOREIK,L] contains the Kth studestsre on Lth test.

This can be represented as follows:

Student Testl Test2 Test3
1 56 46 90

2 78 90 98
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8

9

10 78 82 85
The Array Structure

The array is probably the most widely used datzcsire; in some languages it is even the only
one

available. An array consists of components whiehadirof the same type, called iiase type; it

is

therefore called homogeneous structure. The array israndom-access structure, because all
components

can be selected at random and are equally quicklgssible. In order to denote an individual
component,

the name of the entire structure is augmented éintiex selecting the component. This index is
to be an

integer between 0 and n-1, where n is the numbeleofients, thaize, of the array.

TYPE T =ARRAY n OF TO

Examples

TYPE Row = ARRAY 4 OF REAL

TYPE Card = ARRAY 80 OF CHAR

TYPE Name = ARRAY 32 OF CHAR

A patrticular value of a variable

VAR x: Row

with all components satisfying the equation xi & @&y be visualized as shown in Fig. 1.2.

Fig. 1.2 Array of type Row with xi = 2-i

An individual component of an array can be selebigdnindex. Given an array variable x, we
denote an array selector by the array name folldwetthe respective component's index i, and
we write xi or X][i].

Because of the first, conventional notation, a congmt of an array component is therefore also
called asubscripted variable.

The common way of operating with arrays, partidylaith large arrays, is to selectively update
single components rather than to construct entimely structured values. This is expressed by
considering an

array variable as an array of component variabtelsby permitting assignments to selected
components, such as for example x[i] := 0.125. édih selective updating causes only a single
component value to change, from a conceptual pdiview we must regard the entire
composite value as having changed too.

The fact that array indices, i.e., names of ar@y@onents, are integers, has a most important

65



consequence: indices may be computed. A generakiexpression may be substituted in place
of an index constant; this expression is to beuatal, and the result identifies the selected
component. This

generality not only provides a most significant gogverful programming facility, but at the
same time it also gives rise to one of the mosjueatly encountered programming mistakes:
The resulting value may be outside the intervatsieel as the range of indices of the array. We
will assume that decent computing systems providlaraing in the case of such a mistaken
access to a non-existent array component.

The cardinality of a structured type, i. e. the e@mof values belonging to this type, is the
product of the cardinality of its components. Siatecomponents of an array type T are of the
same base type TO, we obtain

card(T) = card(TO)n

x01.0

x1 0.5

x2 0.25

x3 0.125

19

Constituents of array types may themselves betsned. An array variable whose components
are again

arrays is called matrix. For example,

M: ARRAY 10 OF Row

is an array consisting of ten components (rows)h eanstisting of four components of type
REAL, and is

called a 10 x 4 matrix with real components. Selecinay be concatenated accordingly, such
that Mij and M([i][j] denote the j th component adw Mi, which is the i th component of M. This
is usually abbreviated as M[i, j] and in the samieitsthe declaration

M: ARRAY 10 OF ARRAY 4 OF REAL

can be written more concisely as M: ARRAY 10, 4 REAL.

If a certain operation has to be performed on@ihpgonents of an array or on adjacent
components of a section of the array, then thisrfay conveniently be emphasized by using the
FOR satement, as shown in the following examplesdmputing the sum and for finding the
maximal element of an array declared as

VAR a: ARRAY N OF INTEGER

sum := 0;

FORi:=0TO N-1 DO sum :=a[i] + sum END

k := 0; max := a[0];

FORi:=1TO N-1DO

IF max < a[i] THEN k :=1i; max := a[k] END

END.

In a further example, assume that a fraction é@esented in its decimal form with k-1 digits,
i.e., by an

array d such that

f=Si:0<i<k:di*10-ior
f=d0 + 10*d1 + 100*d2 + ... + dk-1*10k-1
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Now assume that we wish to divide f by 2. Thisaesel by repeating the familiar division
operation for all

k-1 digits di, starting with i=1. It consists ofuitling each digit by 2 taking into account a
possible carry

from the previous position, and of retaining a dadssemainder r for the next position:
r:=10*r +d[i]; d[i] :=r DIV 2; r :=r MOD 2

This algorithm is used to compute a table of neggbowers of 2. The repetition of halving to
compute 2-1,

2-2, ..., 2-N is again appropriately expressed IB¥OR statement, thus leading to a nesting of
two FOR

statements.

PROCEDURE Power(VAR W: Texts.Writer; N: INTEGER);

(*compute decimal representation of negative powé")

VAR i, k, r: INTEGER,;

d: ARRAY N OF INTEGER,;

BEGIN

FOR k:=0TO N-1DO

Texts.Write(W, "."); r := 0;

FORi:=0TO k-1 DO

r:=10*r + d[i]; d[i] :=r DIV 2; r :=r MOD 2;

Texts.Write(W, CHR(d[i] + ORD("0")))

END ;

d[k] := 5; Texts.Write(W, "5"); Texts.WriteLn(W)

END

END Power.

The resulting output text for N =10 is

20

5

.25

125

.0625

.03125

.015625

.0078125

.00390625

001953125

.0009765625

A representation of an array structure is a mappfrtge (abstract) array with components of
type T onto the store which is an array with conmgras of type BYTE. The array should be
mapped in such a way that the computation of addeesf array components is as simple (and
therefore as efficient) as possible. The addre$she j-th array component is computed by the
linear mapping function i =i0 + j*s

where i0 is the address of the first component,saisdthe number of words that a component
occupies.
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Assuming that the word is the smallest individuadgnsferable unit of store, it is evidently
highly desirable that s be a whole number, the Estgase being s = 1. If s is not a whole
number (and this is the normal case), then s iallystounded up to the next larger integer S.
Each array component then occupies

S words, whereby S-s words are left unused (see Ei§ and 1.6). Rounding up of the number
of words

needed to the next whole number is capladding. The storage utilization factor u is the
guotient of the

minimal amounts of storage needed to represemtietste and of the amount actually used:

u =s/ (s rounded up to nearest integer)
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WEEK 8 :

Linked list.

+ Define linked list .
« Define linked list and compare it with lindest.
« Discuss the advantages and disadvantages okedlitikt.

Linked list is an algorithm for storing a list aéms. It is made of any number of pieces of
memory (nodes) and each node contains whateverdatare storing along with a pointer (a
link) to another node. By locating the node refesehby that pointer and then doing the same
with the pointer in that new node and so on, yautcaverse the entire list.

Because a linked list stores a list of items, & Bame similarities to an array. But the two are
implemented quite differently. An array is a singlece of memory while a linked list contains
as many pieces of memory as there are items ihsthébviously, if your links get messed up,
you not only lose part of the list, but you ill @any reference to those items no longer included
in the list (unless you store another pointer tisehitems somewhere).

Some advantages that a linked list has over aly anathat you can quickly insert and delete
items in a linked list. Inserting and deleting i®m an array requires you to either make room
for new items or fill the "hole" left by deletinghatem. With a linked list, you imply rearrange

those pointers that are affected by the changkedirists also allow you to have different-sized
nodes in the list. Some disadvantages to linkdd lieclude that hey are quite difficult to sort.

Also, you cannot immediately locate, say, the hadtr element in a linked list the way you can
in an array. Instead, you must traverse the liit you've found the hundredth element.

Again, the array implementation of our collecticastone serious drawback: you must know the
maximum number of items in your collection when yweate it. This presents problems in
programs in which this maximum number cannot béipted accurately when the program

starts up. Fortunately, we can use a structurectalllinked list to overcome this limitation.
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Linked lists

The linked list is a very flexibldynamic data structurethat is structure which grows or
shrinks as the data they hold changes. Lssgsksandtreesare all dynamic structures.: items
may be added to it or deleted from it at will. ~ogrammer need not worry about how many
items a program will have to accommodate: thisvedlos to write robust programs which
require much less maintenance. A very common saxfrpeoblems in program maintenance is
the need to increase the capacity of a progranandle larger collections: even the most

generous allowance for growth tends to prove inadegjover time!

In a linked list, each item is allocated space &sadded to the list. A link is kept with eacént

to the next item in the list.

Each node of the list has two elements

1. the item being stored in the list and
item | next item | next item | next 2. apointer to the next item in the list
® ® ® | @
The last node in the list contains a NULL

pointer to indicate that it is the end or tail of
the list.

As items are added to a list, memory for a nodb/ramically allocated. Thus the number of

items that may be added to a list is limited onhtlire amount of memory available.

Handlefor thelist

The variable (or handle) which represents the list is simply a pointer to the node at the head of the list.

Addingtoalist

The simplest strategy for adding an item to a list is to:

allocate space for a new node,

copy the item into it,

make the new node's next pointer point to the current head of the list and
make the head of the list point to the newly allocated node.

oo oo
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This strategy is fast and efficient, but each item is added to the head of the list.

An alternative is to create a structure for thevikich contains both head and tail pointers:

struct fifo_list {
struct node *head;
struct node *tail;

¥
The code forddToCollection IS now trivially modified to make a list in whidhe item most

recently added to the list is the list's tail.

The specification remains identical to that usedlie array implementation: thex_item

parameter t@onsCollection is simply ignored .

Thus we only need to change the implementatiora 8snsequence, applications which use this
object will need no changes. The ramificationstf@ cost of software maintenance are
significant.

The data structure is changed, but since the ddthi attributes of the object or the elements of

the structure) are hidden from the user, ther® isnpact on the user's program.
Points to note:

a. This implementation of our collection can be substituted for the first one with no changes to a
client's program. With the exception of the added flexibility that any number of items may be
added to our collection, this implementation provides exactly the same high level behaviour as
the previous one.

b. The linked list implementation has exchanged flexibility for efficiency - on most systems, the
system call to allocate memory is relatively expensive. Pre-allocation in the array-based
implementation is generally more efficient. More examples of such trade-offs will be found
later.

The study of data structures and algorithms willlde you to make the implementation decision
which most closely matches your users' specifioatio
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Advantagesof Linked List over its array counterpart
Some advantages that a linked list has over an array are as follows:

i.) that you can quickly insert and delete items in a linked list.

ii.) Inserting and deleting items in an array requires you to either make room for new items
or fill the "hole" left by deleting an item.

iii.) With a linked list, you imply rearrange those pointers that are affected by the change.

iv.) linked lists also allow you to have different-sized nodes in the list.
Some disadvantages of linked lists include that :

i.) They are quite difficult to sort.
ii.) Also, you cannot immediately locate, say, the hundredth element in a linked list the
way you can in an array. Instead, you must traverse the list until you've found the

hundredth element.
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WEEK 9:

Properties of linked list.

This week learning outcomes:
- Explain types of linked list.

«Applications of linked lists.

« Implementation of different operations of linkéidts.

Types of linked lists

Linearly linked list
Singly-linked list

The simplest kind of linked list issangly-linked list (or dlist for short), which has one link per
node. This link points to the next node in the lstto anull value or empty list if it is the final

node.

A singly-linked list containing two values: the value of the current node and a link to the next node

A singly linked list's node is divided into two p&rThe first part holds or points to information
about the node, and second part holds the addireexionode. A singly linked list travels one

way.

Doubly-linked list

A more sophisticated kind of linked list iglaubly-linked list or two-way linked list. Each
node has two links: one points to the previous nodeoints to awull value or empty list if it is
the first node; and one points to the next, or {sdio anull value or empty list if it is the final

node.A doubly-linked list containing three integer values: the value, the link forward to the next node, and the link

backward to the previous node
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In some very low level languagesOR-linking offers a way to implement doubly-linked lists

using a single word for both links, although the o$this technique is usually discouraged.

Circularly-linked list

In acircularly-linked list, the first and final nodes are linked togetherisTdan be done for both
singly and doubly linked lists. To traverse a ciacuinked list, you begin at any node and follow
the list in either direction until you return tcetbriginal node. Viewed another way, circularly-
linked lists can be seen as having no beginnirgndr This type of list is most useful for
managing buffers for data ingest, and in casesewaun have one object in a list and wish to

iterate through all other objects in the list inpaoticular order.

The pointer pointing to the whole list may be cdltee access pointarcircularly-linked list

containing three integer values

Sentinel nodes

Linked lists sometimes have a spediaimy or sentinel nodat the beginning and/or at the end
of the list, which is not used to store data. ligpose is to simplify or speed up some operations,
by ensuring that every data node always has aquswand/or next node, and that every list
(even one that contains no data elements) alwaya Hérst" and "last" nodd.isp has such a
design - the special value nil is used to marketie of a ‘proper’ singly-linked list, or chain of
cons cellsas they are called. A list does not have to emdljrbut a list that did not would be

termed 'improper'.

Applications of linked lists

Linked lists are used as a building block for mather data structures, suchsagcks queues

and their variations.

The "data" field of a node can be another linket By this device, one can construct many
linked data structures with lists; this practicegorated in theLisp programming language
where linked lists are a primary (though by no nscidwe only) data structure, and is now a

common feature of the functional programming style.
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Sometimes, linked lists are used to implens#ociative arraysnd are in this context called
association lists. There is very little good to be said about ttge of linked lists; they are easily
outperformed by other data structures suckedfsbalancing binary search tremgen on small
data sets (see the discussiomassociative arrgyHowever, sometimes a linked list is
dynamically created out of a subset of nodes i suitee, and used to more efficiently traverse
that set.

Linked listsvs. arrays

Array | Linked list

Indexing 0(1) O(n)

Inserting / Deleting at end O(1) 0O(1)or O(n)2

Inserting / Deleting in middle (with iterator) | O(n) |O(1)

Persistent No |Singly yes

Locality Great Bad

Linked lists have several advantages areays Elements can be inserted into linked lists
indefinitely, while an array will eventually eith&l up or need to be resized, an expensive
operation that may not even be possible if mem®fyaigmented. Similarly, an array from which

many elements are removed may become wastefullyyeonmeed to be made smaller.

Further memory savings can be achieved, in cecases, by sharing the same "tail" of elements
among two or more lists — that is, the lists enthmsame sequence of elements. In this way,
one can add new elements to the front of the lislenkeeping a reference to both the new and

the old versions — a simple example gfeasistent data structure
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On the other hand, arrays alloandom accessvhile linked lists allow onlgequential accede
elements. Singly-linked lists, in fact, can onlytkeversed in one direction. This makes linked
lists unsuitable for applications where it's uséfulook up an element by its index quickly, such
asheapsortSequential access on arrays is also faster thdinled lists on many machines due

to locality of referencend data caches. Linked lists receive almost nefiisrom the cache.

Another disadvantage of linked lists is the extoaegge needed for references, which often
makes them impractical for lists of small data sesnch asharacter®r boolean valuedt can
also be slow, and with a naive allocator, wastefugllocate memory separately for each new

element, a problem generally solved usimgmory pools

A number of linked list variants exist that aimaimeliorate some of the above problems.
Unrolled linked listsstore several elements in each list node, inargasache performance while
decreasing memory overhead for referen€&R codingdoes both these as well, by replacing
references with the actual data referenced, whitdnés off the end of the referencing record.

A good example that highlights the pros and conssofg arrays vs. linked lists is by
implementing a program that resolves dlesephus problenThe Josephus problem is an
election method that works by having a group ofgbestand in a circle. Starting at a
predetermined person, you count around the cirtiemes. Once you reach thih person, take
them out of the circle and have the members cleseitcle. Then count around the circle the
samen times and repeat the process, until only one pessteft. That person wins the election.
This shows the strengths and weaknesses of a lirgtad. an array, because if you view the
people as connected nodes in a circular linkedHesx it shows how easily the linked list is able
to delete nodes (as it only has to rearrange ks lio the different nodes). However, the linked
list will be poor at finding the next person to e and will need to recurse through the list
until it finds that person. An array, on the othand, will be poor at deleting nodes (or elements)
as it cannot remove one node without individuatifteng all the elements up the list by one.
However, it is exceptionally easy to find thik person in the circle by directly referencingrthe

by their position in the array.
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Thelist rankingproblem concerns the efficient conversion of &duhlist representation into an
array. Although trivial for a conventional compuytsolving this problem by parallel algorithm

is complicated and has been the subject of mudares.

Doubly-linked vs. singly-linked

Double-linked lists require more space per nodée@sone usesor-linking), and their

elementary operations are more expensive; butdhepften easier to manipulate because they
allow sequential access to the list in both digewi In particular, one can insert or delete a node
in a constant number of operations given only tizate's address. Comparing with singly-linked
lists, it requires therevious node's address in order to correctly insert cetdelSome

algorithms require access in both directions. @natier hand, they do not allow tail-sharing,
and cannot be used as persistent data structures.

Circularly-linked vs. linearly-linked

Circular linked lists are most useful for descrgpmaturally circular structures, and have the
advantage of regular structure and being ableateetse the list starting at any point. They also
allow quick access to the first and last recordsiubh a single pointer (the address of the last

element). Their main disadvantage is the compledityeration, which has subtle special cases.

Sentinel nodes (header nodes)

Doubly linked lists can be structured without usanfyont and NULL pointer to the ends of the
list. Instead, a node of object type T set withcdiped default values is used to indicate the
"beginning"” of the list. This node is known as atfel node and is commonly referred to as a
"header" node. Common searching and sorting algostare made less complicated through the
use of a header node, as every element now poimtsather element, and never to NULL. The
header node, like any other, contains a "next"teoithat points to what is considered by the
linked list to be the first element. It also contaa "previous” pointer which points to the last
element in the linked list. In this way, a doulihked list structured around a Sentinel Node is

circular.
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The Sentinel node is defined as another node oualy linked list would be, but the allocation
of a front pointer is unnecessary as the next aediqus pointers of the Sentinel node will point

to itself. This is defined in the default constarodf the list.
next == this; prev == this;

If the previous and next pointers point to the Behinode, the list is considered empty.
Otherwise, if one or more elements is added, bothters will point to another node, and the list

will contain those element€!

Sentinel node may simplify certain list operatidmg ensuring that the next and/or previous
nodes exist for every element. However sentineksagse up extra space (especially in
applications that use many short lists), and thay oomplicate other operations. To avoid the
extra space requirement the sentinel nodes can béieeused as references to the first and/or
last node of the list.

The Sentinel node eliminates the need to keep thakpointer to the beginning of the list, and
also eliminates any errors that could result indélketion of the first pointer, or any accidental

relocation.

Linked list operations

When manipulating linked lists in-place, care mustaken to not use values that you have
invalidated in previous assignments. This makesralgns for inserting or deleting linked list
nodes somewhat subtle. This section gpssudocodéor adding or removing nodes from
singly, doubly, and circularly linked lists in-plcThroughout we will useull to refer to an

end-of-list marker osentine] which may be implemented in a number of ways.
Linearly-linked lists
Singly-linked lists

Our node data structure will have two fields. Wsodteep a variablierstNode which always
points to the first node in the list, ornall for an empty list.
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record Node {
data /I The data being stored in the node
next /I A reference to the next node, null for last node

record List {
Node firstNode /I points to first node of list; null for empty lis t
}

Traversal of a singly-linked list is simple, begmgat the first node and following eanéxt

link until we come to the end:

node := list.firstNode
whi | e node not null {
(do something with node.data)
node := node.next

}

The following code inserts a node after an existinde in a singly linked list. The diagram
shows how it works. Inserting a node before antijsone cannot be done; instead, you have to

locate it while keeping track of the previous node.

functi on insertAfter( Node node, Node newNode) { // insert newNode after node
newNode.next := node.next
node.next :=newNode

}

Inserting at the beginning of the list requiregpaate function. This requires updating
firstNode.

functi on insertBeginning( List list, Node newNode) {  // insert node before
current first node
newNode.next := list.firstNode
list.firstNode := newNode

}

Similarly, we have functions for removing the nadfer a given node, and for removing a node
from the beginning of the list. The diagram demmatst the former. To find and remove a
particular node, one must again keep track of teegipus element.

functi on removeAfter(  node node) { /I remove node past this one
obsoleteNode := node.next
node.next := node.next.next
destroy obsoleteNode

}

funct i on removeBeginning( List list) { /l remove first node
obsoleteNode := list.firstNode
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list.firstNode := list.firstNode.next /I point past deleted
node

destroy obsoleteNode
}

Notice that removeBeginning() seist.firstNode to null when removing the last node in the list.

Since we can't iterate backwards, efficient "irBefore" or "removeBefore" operations are not

possible.

Appending one linked list to another can be ingffit unless a reference to the tail is kept as
part of the List structure, because we must travtrs entire first list in order to find the tahd
then append the second list to this. Thus, if twedrly-linked lists are each of lengthlist
appending haasymptotic time complexitgf O(n). In the Lisp family of languages, list

appending is provided by thepend procedure.

Many of the special cases of linked list operatioas be eliminated by including a dummy
element at the front of the list. This ensures thate are no special cases for the beginning of
the list and renders both insertBeginning() andaesBeginning() unnecessary. In this case, the
first useful data in the list will be found at IfststNode.next.

Doubly-linked lists

With doubly-linked lists there are even more paisiti® update, but also less information is
needed, since we can use backwards pointers toveseceding elements in the list. This
enables new operations, and eliminates specialfaasdons. We will add arev field to our
nodes, pointing to the previous element, atakdNode field to our list structure which always

points to the last node in the list. Boi#t.firstNode andlist.lastNode arenull for an empty list.

record Node {
data /I The data being stored in the node
next /I A reference to the next node; null for last node
prev /I A reference to the previous node; null for first node
}
record List {
Node firstNode /I points to first node of list; null for empty lis t
Node lastNode /I points to last node of list; null for empty list
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Iterating through a doubly linked list can be dameither direction. In fact, direction can change

many times, if desired.

Forwards

node := list.firstNode

whi | e node # null
<do something with node.data>
node := node.next

Backwards

node := list.lastNode

whi | e node # nul |
<do something with node.data>
node := node.prev

These symmetric functions add a node either afteefore a given node, with the diagram
demonstrating after:
functi on insertAfter( List list, Node node, Node newNode)

newNode.prev := node
newNode.next := node.next

i f node.next = nul |
list.lastNode := newNode
el se

node.next.prev := newNode
node.next := newNode
functi on insertBefore( List list, Node node, Node newNode)
newNode.prev := node.prev
newNode.next := node
i f node.prev is null
list.firstNode := newNode

el se
node.prev.next := newNode
node.prev := newNode

We also need a function to insert a node at thenbag of a possibly-empty list:

functi on insertBeginning( List list, Node newNode)
i f list.firstNode = nul |
list.firstNode := newNode
list.lastNode := newNode
newNode.prev := null
newNode.next := null
el se
insertBefore(list, list.firstNode, newNode )

A symmetric function inserts at the end:
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functioninsertEnd(  List list, Node newNode)

i f list.lastNode = nul |
insertBeginning(list, newNode)
el se

insertAfter(list, list.lastNode, newNode)

Removing a node is easier, only requiring care widfirstNode andlastNode:

functionremove( List list, Node node)
i f node.prev = nul |
list.firstNode := node.next
i f node.next != nul |
node.next.prev := nul |
el se
node.prev.next := node.next
i f node.next = nul |
list.lastNode := node.prev
i f node.prev != nul |
node.prev.next ;= nul |
el se
node.next.prev := node.prev
destroy node

One subtle consequence of this procedure is thetimg the last element of a list sets both

firstNode andlastNode to null, and so it handles removing the last node fromeaelement list
correctly. Notice that we also don't need sepdrat@oveBefore" or "removeAfter" methods,
because in a doubly-linked list we can just usentree(node.prev)"” or "remove(node.next)"

where these are valid.

Circularly-linked list

Circularly-linked lists can be either singly or diyilinked. In a circularly linked list, all nodes

are linked in a continuous circle, without usmgl. For lists with a front and a back (such as a
gueue), one stores a reference to the last nathe ilist. Thenext node after the last node is the
first node. Elements can be added to the backeolishand removed from the front in constant

time.

Both types of circularly-linked lists benefit frotie ability to traverse the full list beginning at
any given node. This often allows us to avoid sipfirstNode andlastNode, although if the list
may be empty we need a special representatioiméoempty list, such aslastNode variable

which points to some node in the list onigl if it's empty; we use suchlastNode here. This
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representation significantly simplifies adding aethoving nodes with a non-empty list, but

empty lists are then a special case.

Doubly-circularly-linked lists

Assuming thasomeNode is some node in a non-empty list, this code iesrdhrough that list

starting withsomeNode (any node will do):

Forwards

node := someNode

do
do something with node.value
node := node.next

whi | e node # someNode

Backwards

node := someNode

do
do something with node.value
node := node.prev

whi | e node # someNode

Notice the postponing of the test to the end ofldlo@. This is important for the case where the

list contains only the single nodemeNode.

This simple function inserts a node into a doulotikéd circularly-linked list after a given

element:

functi on insertAfter( Node node, Node newNode)
newNode.next := node.next
newNode.prev := node
node.next.prev := newNode
node.next  :=newNode

To do an "insertBefore", we can simply "insertAfterde.prev, newNode)". Inserting an element

in a possibly empty list requires a special funttio

functioninsertEnd(  List list, Node node)
i f list.lastNode = nul |
node.prev := node
node.next := node
el se
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insertAfter(list.lastNode, node)
list.lastNode := node

To insert at the beginning we simply "insertAftest(lastNode, node)". Finally, removing a node

must deal with the case where the list empties:

functionremove( List list, Node node)
i f node.next = node
list.lastNode := nul |
el se

node.next.prev := node.prev
node.prev.next := node.next
i f node = list.lastNode
list.lastNode := node.prev;
destroy node

As in doubly-linked lists, "removeAfter" and "remeBefore” can be implemented with

"remove(list, node.prev)" and "remove(list, node&tjie

Doubly Linked Lists
node node node
item | prev | next item | prev | next item | prev | next Doubly Imkedhllsts have
a pointer to the
® @ * ® ’ * ® ’ @ preceding item as well

as one to the next.

They permit scanning or searching of the list in both directions. (To go backwards in a simple list, it is
necessary to go back to the start and scan forwards.) Many applications require searching backwards
and forwards through sections of a list: for example, searching for a common name like "Kim" in a
Korean telephone directory would probably need much scanning backwards and forwards through a
small region of the whole list, so the backward links become very useful. In this case, the node structure
is altered to have two links:

struct t_node {
void *item;
struct t_node *previous;
struct t_node *next;
} node;
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WEEK 10:

Non- Linear structures.

This week learning outcomes :

+ Define atree .

- State properties of tree.

« Describe different types of tree.( General {rdenary tree)
« Explain binary tree reprentation.

Tree Structures

Basic Concepts and Definitions

Srings, arrays, and queues are linear tygedata structure. However, tree is a nonlinear
data structure is mainly used to represena dantaining a hierarchical relationship
between elements . Examples of this featureidectecords, family tree and table of
contents.

Trees

void BST :: clearhelp (NodePtr *P)

{
if (P == NULL) return;
clearhelp (P = Left)
clearhelp (P = Right);
delete P;

}

&
o

O
balance O{left — right}
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Almost perfect [Jbalanced

In databases, you use this type of Array based implementation.
Height-balanced trees = AVL trees
To insert and maintain balance:

1. Travel down the appropriate branch and keep track of balance. Left deepest node balance
+1 or —1. This is called the pivot node.

2. From pivot-down, recompute all balance factors along insertion path.

3. Determine whether newly computed balance changes |1| = |2]

4. There was a change-manipulated pointers centered at pivot node to restore balance.
(AVL Rotation)

4 cases — — discussing unbalancing

* Insert into left subtree of a left child of pivot node.
e Insert into right tree of right child of pivot node.

* Insert into right subtree of left child.

* Insert into left subtree of right child.

AVL Trees:

Pivot Pivot Pivot

1
[E
os]
il

1l
N
o
il

I}

o

BF

BF=0

BF=-1 BF

1]
o

BF

1
o
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X = Node [Pivot].Left;

Y = Node [X].Right;

Node {Pivot}.Left = Node [Y].Right;
Node [X].Right = Node [Y].Left;
Node [Y].Left = X;

Node [Y].Right = Pivot;

Pivot =Y;

Subcase # 1

if Node [Pivot].BF = 0 then

{
Node [Node [Pivot].Left].BF =0
Node [Node [Pivot].Right].BF = 0
}
Subcase # 2

else if Node [Pivot].BF =1 then

{
Node [Pivot].BF =0
Node [Node [Pivot].Left].BF =1
Node [Node [Pivot].Right].BF = -1
}
Subcase # 3

else Node [Pivot].BF =0

{

87



Node [Pivot].BF =0

Node [Node [Pivot].Left].BF = +1
Node [Node [Pivot].Right].BF = 0

Priority Ques:
1. Linked List
Insert by priority order.
2. Array
Sort it and rearrange the elements.
3. Queue —Search
4. Heap Sort — Partial Ordered tree.
5. Array of Queues — Small & Priorities.

The priority of Node V is not greater than its children.

Trees that have lots of dependents (general trees)

10

— 3
- < 5 — - 9 — Divide & Conquer
6 89 10 O (log(n))

18
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Left pointer points to a list of children.

Right pointer points to a list of siblings.

Other way to implement this is Array of Pointers.
In-Order Traversal:

Traverse of first tree inorder.

e Visit root of first tree.

* Visit forest of remaining trees in order.
Algorithm:

void intra (Ptr K)

{
if (R==NULL ) then
return
else
{
intra (R = child );
R = Info >> cout;
intra (R 2 sib);
}
}
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WEEK 11:

Non- Linear structures.
This week learning outcomes :

» Describe binary tree.
« Analysis of a complete tree .

Binary Trees

The simplest form of tree is a binary tree. A binary tree consists of

a. anode (called the root node) and
b. left and right sub-trees.
Both the sub-trees are themselves binary trees.

You now have aecursively defined data structure. (It is also possible to define a list recursively

can you see how?

root
ltem - hodes
Hem Hem
left
sub-tree right
sub-trée
Hem Item Item
leaves

A binary tree

The nodes at the lowest levels of the tree (thes enh no sub-trees) are calleshves.

90



In anordered binary tree,

1. the keys of all the nodes in the left sub-tree are less than that of the root,
2. the keys of all the nodes in the right sub-tree are greater than that of the root,
3. the left and right sub-trees are themselves ordered binary trees.

Data Structure

The data structure for the tree implementation simply adds left and right pointers in place of the next
pointer of the linked list implementation. [Load the tree struct.]

TheAddToCollection ~ method is, naturally, recursivelLpad theaddToCollection ~ method]

Similarly, theFindinCollection method is recursive.load theFindinCollection method]

Analysis

Complete Trees
Before we look at more general cases, let's make the optimistic assumption that we've managed to fill
our tree neatly, ie that each leaf is the same 'distance' from the root.

t 1

height This forms a complete tree, whose
l 2 height is defined as the number of links
5 from the root to the deepest leaf.

A complete tree

First, we need to work out how many nodesywe have in such a tree of height,

Now,

n=1+2"+2%+...+2"
From which we have,
h+1 _ 1

n=2

and
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h =floor( log,n)

Examination of th&ind method shows that in the worst case] orceiling(logzn )
comparisons are needed to find an item. This is#éimee as for binary search.

However,Add also requireseiling( log,n ) comparisons to determine where to add an item.
Actually adding the item takes a constant numbeapefrations, so we say that a binary tree
requiresO(logn) operations foboth adding and finding an item - a considerable improent
over binary search fordynamic structure which often requires addition of nevmse

Deletion is also a®(logn) operation.

General binary trees
However, in general addition of items to an ordered tree will not produce a complete tree. The worst

case occurs if we add an ordered list of items to a tree.

What will happen? Think before you clitleré

This problem is readily overcome: we use a strieckimown as aeap However, before looking
at heaps, we should formalise our ideas aboutdgh®lexity of algorithms by defining carefully

whatO(f(n)) means.

Root Node

Node at the "top" of a tree - the one from which all operations on the tree commence. The root
node may not exist (a NULL tree with no nodes in it) or have 0, 1 or 2 children in a binary tree.

Leaf Node
Node at the "bottom" of a tree - farthest from the root. Leaf nodes have no children.
Complete Tree

Tree in which each leaf is at the same distance from the root. A more precise and formal
definition of a complete tree is set out later.

Height

Number of nodes which must be traversed from the root to reach a leaf of a tree.
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WEEK 12:

Non- Linear structures.

This week learning outcomes

« Binary tree structure revisited .

- State properties of tree.

» Basic Operationson Binary Trees.

Binary Tree
A binary tree T ,is defined as a finitet gk elements called nodes, such that

a.) T is empty (called the null tree or emptyejrer

b.) T contains a distinguished node R, called thet of T, and the remaining nodes

of T form an order pair of disjoint bigatrees T1 and T2.

If T contains a root R, then the two trédsand T2 are called respectively, the kmfid
right sub-tree of R, if T1 is nonempty, thesroot is called the left successor of R
similarly if T2 is nonempty, then its roat rcalled the right successor of R.

/\A\
VAN

A left-downward slanted line from a nodeindicates a left successor of N, and a
right-downward slanted line from N indicag right successor of N.Observe that:
I.) Bis a left successor and C isghtisuccessor of the node A.
Ii.) The left sub-tree of the otoA consists of the nodes B,D,E and F.
iii.) The right sub-tree of A consists of the e€,G,H,J,K ,,and L.



Any node N ina binary tree T has eithegt, @r 2 successors. The nodes A,B,C and H
have 2 successors, the nodes E and J hayeooel successor, and the nodes D,F,G,L,
and K have no successors. The nodes with gaccessors are called terminal nodes.

Terminology

Suppose Nis a node inT with left succesSd and right successor S2 then N is
called the parent (or father) of S1 and $halogously, S1 is called the left child
(orson)of Nand S2is called the right dtfor son). Furthermore, S1 and S2 are said to
be siblings (or brothers). Every node N ibiaary tree T, except the root has a wmiq
parent, called the predecessor of N.

The terms, descendant and ancestor have thsial meaning. That is , a node L is
called adescendant of node N (and N is calledancestor of L) if there is a succession
of children from N to L. In particular, L isalled a left or right descendant of N
according to whether L belongs to the leift right sub-tree of N.The line drawn
from a node Nof T to a successor iBedaan edge, and a sequence of consecutive
edges is called a path. A terminal noslecalled a leaf, and path ending in a lsaf
called a branch. Each node in a binaeg tT is assigned a level number as viaio

The root R of the tree T is assigned the llawember 0, and every other node is assigned
a level number which is1l more than tbeel number of its parent. Those nodes
with the same level are said to belomythe same generation .

The depth (or height) of a tree T is the mmam number of nodes ina branch of T. This
turns ont to be 1 more than the largesell number of T. Binary tree T and T1 aréd sa
to be similar if they have the same dtriee or in other words, if they have thame
shape . The trees are said to be copidsey are similar and if they have thensa
contents at corresponding nodes.

TRAVERSING BINARY TREES

Basic Operationson Binary Trees

There are many tasks that may have to be perfomediiee structure; a common one is that of
executing a given operation P on each elementeofrée. P is then understood to be a parameter
of the more general task of visting all nodes erit & usually called, of tree traversal. If we
consider the task as a single sequential prodess the individual nodes are visited in some
specific order and may be considered as beinglatidh a linear arrangement. In fact, the
description of many algorithms is considerably litatied if we can talk about processing the
next element in the tree based in an underlyingrorthere are three principal orderings that
emerge naturally from the structure of trees. lthk@treestructure itself, they are conveniently
expressed in recursive terms. Referring to therpitrae .

Let R denote the root and A and B denote thealedit right subtrees, the three orderings are

1. Preorder: R, A, B (visit root before the subsiee

2. Inorder: AR, B

3. Postorder: A, B, R (visit root after the subsee

In other words, there are three (3) standaays of travasing a binary tree T with root
R. These three algorithms are called preorderder, and postorder.
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Preorder:
a.) Process the root R.
b.) Traverse the left sub-tree of R in preorder.
c.) Traverse the right sub-tree of R in Preorder.

Inorder:
a.) Traverse the left sub-tree of R inorder.
b.) Process the root R
c.) Traverse the right sub-tree of R inorder .
Postorder:
a.) Traverse the left sub-tree of R in preorder.
b.) Traverse the right sub-tree of R in Postarder
c.) Process the root R.
Traverse the following binary tree using:
i.) Preorder algorithm

ii.) Inorder algorithm
iii.) Postorder algorithm.

8 9
Solution:
i.) Preorder algorithm: 12489510367
ii.) Inorder algorithm: 72

iii.) Postorder algorithm: ?
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WEEK 13:

Sorting

This week Learning outcomes :
« Define sorting.
- Explain various categories of sorting.

Sorting is one of the most important operationgquared by computers. In the days of magnetic
tape storage before modern data-bases, it was tat@idainly themost common operation
performed by computers as most "database" updat@isgdone by sorting transactions and
merging them with a master file. It's still importdor presentation of data extracted from
databases: most people prefer to get reports smtizdome relevant order before wading
through pages of data!

Sorting is generally understood to be the procéssasranging a given set of objects in a
specific order. The purpose of sorting is to féai® the later search for members of the sorted
set. As such it is an almost universally perfornfaddamental activity. Objects are sorted in
telephone books, in income tax files, in tablesaftents, in libraries, in dictionaries, in
warehouses, and almost everywhere that storedtslfjage to be searched and retrieved. Even
small children are taught to put their things "mder", and they are confronted with some sort of
sorting long before they learn anything about angkic.

Hence, sorting is a relevant and essential actipgyticularly in data processing. What else
would be easier to sort than data! Neverthelesspomnary interest in sorting is devoted to the
even more fundamental techniques used in the amtistin of algorithms. There are not many
techniques that do not occur somehere in connewatittnsorting algorithms. In particular,

sorting is an ideal subject to demonstrate a gheatsity of algorithms, all having the same
purpose, many of them being optimal in some searsgmost of them having advantages over
others. It is therefore an ideal subject to denratesthe necessity of

performance analysis of algorithms. The examplsodting is moreover well suited for showing
how a very significant gain in performance may beamed by the development of sophisticated
algorithms when obvious methods are readily avkalab

Different categoriesof sorting
The dependence of the choice of an algorithm omstiiueture of the data to be processed -- an
ubiquitous phenomenon -- is so profound in the cds®rting that sorting methods are generally
classified into two categories, namely:

i.) sorting of arrays, and

ii.) sorting of (sequential) files.

The two classes are often calleternal andexternal sorting because arrays are
stored in the fast, high-speed, random-accesstialtestore of computers and files
are appropriate on the slower, but more spacioxtetigal" stores based on
mechanically moving devices (disks and tapes).
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WEEK 14:

Different types of sorting techniques.

This week Learning outcomes :
+ Explain Sorting by insertion.
« Explain Sorting by insertion.
« Explain Sorting by exchange.

Different types of sorting techniques.

Sorting methods that sort items in situ can besdiasl into three principal categories according
to their underlying method:

Sorting by insertion

Sorting by selection

Sorting by exchange

These three pinciples will now be examined and amegh The procedures operate on a global
variablea whose components are to be sorted in situ, i.&onitrequiring additional, temporary
storage. The components are the keys themselvedidtard other data represented by the
record typdtem, thereby simplifying matters. In all algorithmshie developed in this chapter,
we will assume the presence of an aaaynd a constamt, the number of elements af

TYPE Item = INTEGER;
VAR a: ARRAY n OF Item

Sorting by Straight Insertion

This method is widely used by card players. Thexgtécards) are conceptually divided into a
destination sequence al ... ai-1 and a source seg/ae... an. In each step, starting with i = 2
and incrementing i by unity, the i th element & 8ource sequence is picked and transferred into
the destination sequence by inserting it at the@pate place.

47

Initial Keys: 44 55 12 42 94 18 06 67

i=1 44 55 12 42 94 18 06 67

i=2 12 44 55 42 94 18 06 67

i=3 12 42 44 55 94 18 06 67

i=4 12 42 44 55 94 18 06 67

i=512 18 42 44 55 94 06 67

iI=6 06 12 18 42 44 55 94 67

i=7 06 12 18 42 44 55 67 94

A Sample Process of Straight Insertion Sorting.

The process of sorting by insertion is shown iregample of eight numbers chosen at random .
The algorithm of straight insertion is as follows:

FORi:=1TOn-1DO
x = ali];
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insert x at the appropriate place in a0 ... ai
END

In the process of actually finding the approprialtece, it is convenient to alternate between
comparisons and moves, i.e., to let x sift dowrctapparing x with the next item aj, and either
inserting X or moving aj to the right and procegdio the left. We note that there are two distinct
conditions that may cause the termination of thengidown process:

1. An item aj is found with a key less than the kéx.

2. The left end of the destination sequence ishrec

PROCEDURE Straightinsertion;

VAR |, j: INTEGER,; x: Item;

BEGIN

FORi:=1TOn-1DO

x:=all; j:=1i;

WHILE (j > 0) & (x < a[j-1] DO a[j] := a[j-1]; DEC{) END :

afj] :=x

END

END Straightinsertion

Analysis of straight insertion. The number Ci of key comparisons in the i-th sfat most i-1, at
least 1, and-- assuming that all permutations efntlkeys are equally probable -- i/2 in the
average. The number Mi of moves (assignments wisifes Ci + 2 (including the sentinel).
Therefore, the total numbers of comparisons

and moves are

Cmin = n-1 Mmin = 3*(n-1)

Cave = (n2 + n - 2)/4 Mave = (n2 + 9n - 10)/4

Cmax = (n2 + n - 4)/4 Mmax = (n2 + 3n - 4)/2

The minimal numbers occur if the items are iniyiafl order; the worst case occurs if the items
are initially in reverse order. In this sense, isgrby insertion exhibits a truly natural behavilbr.
is plain that the given algorithm also describesable sorting process: it leaves the order of
items with equal keys unchanged.

The algorithm of straight insertion is easily imped by noting that the destination sequence
a0 ... ai-1, in which the new item has to be ireskris already ordered. Therefore, a faster
method of determining the insertion point can bedu3 he obvious choice is a binary search that
samples the destination sequence in the middleantihues bisecting until the insertion point is
found. The modified sorting algorithm is callleichary insertion.

PROCEDURE Binarylnsertion(VAR a: ARRAY OF Item;INTEGER);

VAR |, j, m, L, R: INTEGER; x: Item;

BEGIN

FORi:=1TOn-1DO

48

x:=ai;L:=1;R:=1i;

WHILE L <R DO

m := (L+R) DIV 2;

IF am] <=x THEN L := m+1 ELSE R :=m END

END ;

FOR j:=iTOR+1BY -1 DO a[j] := a[j-1] END ;
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a[R] :=x

END

END Binarylnsertion

Sorting by Straight Selection

This method is based on the following principle:

1. Select the item with the least key.

2. Exchange it with the first item a0.

3. Then repeat these operations with the remamihgtems, then with n-2 items, until only one
item -- the largest -- is left.

This method is shown on the same eight keys asgildeve.
Initial keys 44 55 12 42 94 18 06 67

06 55 12 42 94 18 44 67

06 12 5542 94 18 44 67

06 12 18 42 94 55 44 67

06 12 18 42 94 55 44 67
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06 12 18 42 44 55 94 67

06 12 18 42 44 55 94 67

06 12 18 42 44 55 67 94

A Sample Process of Straight Selection Sorting.

The algorithm is formulated as follows:

FORi:=0TOn-1DO

assign the index of the least item of ai ... an-K;t

exchange ai with ak

END

This method, calledraight selection, is in some sense the opposite of straight irserétraight
insertion

considers in each step only the one next itemetturce sequence and all items of the
destination array to

find the insertion point; straight selection coms&lall items of the source array to find the one
with the least

key and to be deposited as the one next item adek&nation sequence..

PROCEDURE StraightSelection;

VAR |, |, ki INTEGER,; x: Item;

BEGIN
FORi:=0TOn-2 DO
k:=1, x:=ali;

FOR j:=i+1 TO n-1 DO

IF afj] <x THEN k :=j; x := a[k] END
END ;

alk] := a[i]; a[i] :=x

END

END StraightSelection
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Sorting by Straight Exchange

The classification of a sorting method is seldonirely clear-cut. Both previously discussed
methods can also be viewed as exchange sortsisiadction, however, we present a method in
which the exchange of two items is the dominantattaristic of the process. The subsequent
algorithm of straight exchanging is based on theggle of comparing and exchanging pairs of
adjacent items until all items are sorted.

As in the previous methods of straight selectioa,make repeated passes over the array, each
time sifting the least item of the remaining settte left end of the array. If, for a change, we
view the array to be in a vertical instead of azumntal position, and -- with the help of some
imagination -- the items as bubbles in a watek taith weights according to their keys, then
each pass over the array results in the ascenken o

bubble to its appropriate level of weight (see €abklow). This method is widely known as the
Bubblesort.

1=12345678

44 06 06 06 06 06 06 06

5544 121212121212

1255441818 18 18 18

42 125544 42 42 42 42

94 42 1855 44 44 44 44

18 94 42 42 55 55 55 55

06 18 94 67 67 67 67 67

67 67 67 94 94 94 94 94

A Sample of Bubblesorting.

PROCEDURE BubbleSort;
VAR |, j: INTEGER; x: Item;
BEGIN
FORi:=1TOn-1DO
FORj:=n-1TOiBY -1 DO
IF afj-1] > a[j] THEN

x = a[J-1]; a[j-1] := a[j]; a[j] :=x
END

END

END

END BubbleSort

Insertion Sort by Diminishing I ncrement

A refinement of the straight insertion sort wasgmsed by D. L. Shell in 1959. The method is
explained and demonstrated on our standard exavhpight items. First, all items that are four
positions apart are grouped and sorted separdtely.process is called a 4-sort. In this example
of eight items, each group contains exactly twmgeAfter this first pass, the items are
regrouped into groups with items two positions apad then sorted anew. This process is called
a 2-sort. Finally, in a third pass, all items aveed in an ordinary sort or 1-sort.
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One may at first wonder if the necessity of seveoaling passes, each of which involves all
items, does not introduce more work than it saMesvever, each sorting step over a chain either
involves relatively few items or the items areealty quite well ordered and comparatively few
rearrangements are required.

It is obvious that the method results in an ordenedy, and it is fairly obvious that each pass
profits from previous passes (since each i-sortlinas two groups sorted in the preceding 2i-
sort). It is also obvious that any sequence ofeamants is acceptable, as long as the last one is
unity, because in the worst case the last passalbi® work. It is, however, much less obvious
that the method of diminishing increments yields

even better results with increments other than pewe2.

44 55 12 42 94 18 06 67

4-sort yields 44 18 06 42 94 55 12 67

2-sort yield 06 18 12 42 44 55 94 67

1-sort yields 06 12 18 42 44 55 67 94

Table 2.5 An Insertion Sort with Diminishing Incrents.

The procedure is therefore developed without reglyin a specific sequence of increments. The
T increments are denoted by hO, hl, ..., hT-1 #iéhconditions

ht-1 =1, hi+1 < hi

The algorithm is described by the proceddndlsort [2.11] for t = 4:
PROCEDURE ShellSort;

CONST T =4;
VAR, |, k, m, s: INTEGER;
X: ltem;

h: ARRAY T OF INTEGER;

BEGIN h[0] :=9; h[1] :=5; h[2] := 3; h[3] :=1;

FORmM:=0TO T-1 DO

k :=h[m],

FORi:=k+1 TOn-1 DO

x = ali]; j :=i-k;

WHILE (j >=k) & (x < a[j]) DO a[j+k] := a[j]; j :=j-k END ;

a[j+k] :=x

END

END

END ShellSort

Analysis of Shellsort. The analysis of this algorithm poses some veficdlt mathematical
problems, many of which have not yet been solwegalticular, it is not known which choice of
increments yields the best results. One surprisioly however, is that they should not be
multiples of each other. This will avoid the pherenon evident from the example given above
in which each sorting pass combines two chains that

before had no interaction whatsoever. It is indgesirable that interaction between various
chains takes place as often as possible, anaHtbging theorem holds: If a k-sorted sequence
is i-sorted, then it remains k-sorted. Knuth [dr&]icates evidence that a reasonable choice of
increments is the sequence (written in reverserprd

1, 4,13, 40, 121, ...
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where hk-1 = 3hk+1, ht =1, and t = kxlog3(n) HE also recommends the sequence
1,3,7,15, 31, ...

where hk-1 = 2hk+1, ht =1, and t = kxlog2(n) Fbr the latter choice, mathematical analysis
yields an effort proportional to n2 required fortsmy n items with the Shellsort algorithm.
Although this is a significant improvement over, a2 will not expound further on this method,
since even better algorithms are known.
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WEEK 15:

Different sorting and searching .
This week Learning outcomes :

« Explain various sorting techniques.
« Explain linear and binary search algorithm.

Different types of sorting revisited:
Bubble, Selection, Insertion Sorts
There are a large number of variations of one keisategy for sorting. It's the same strategy that

you use for sorting your bridge hand. You pick ugaed, start at the beginning of your hand and
find the place to insert the new card, insert @ arove all the others up one place.

/* Insertion sort for integers */

void insertion( int a[], int n) {

[* Pre-condition: a contains n items to be sorted * /
inti, j, v;
[* Initially, the first item is considered 'sor ted' */
/* i divides a into a sorted region, x<i, and a n

unsorted one, x >=i */
for(i=1;i<n;i++) {
I* Select the item at the beginning of the
as yet unsorted section */
v = ali];
I* Work backwards through the array, findin g where v
should go */
=5
/* If this element is greater than v,
move it up one */
while (afj-1] > v ) {
afj] = af-1]; j = j-1;
if (j<=0) break;

[* Stopped when a[j-1] <= v, so put v at po sition j */
afj] =v;
}

}

Bubble Sort

Another variant of this procedure, called bubblg,96 commonly taught:
/* Bubble sort for integers */
#define SWAP(a,b) {intt; t=a; a=b; b=t; }

void bubble(int a[], intn)
/* Pre-condition: a contains n items to be sorted * /
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o
inti, j;
[* Make n passes through the array */
for(i=0;i<n;i++)
{

/* From the first element to the end
of the unsorted section */
for(j=1;j<(n-i);j++)
{

/* If adjacent items are out of order, s wap them */
if( afj-1]>a[j] ) SWAP(a[i-1].a[i]);
}

Analysis

Each of these algorithms required passes: each pass places one item in its cptesd. (The
n" is then in the correct place also.) THeass makes eithesr n - i comparisons and moves.
So:

Tin) =14+2+3+...+(n—-1)

n-1

Fd
or O(n? - but we already know we can use heaps to g€(ariogn) algorithm. Thus these
algorithms are only suitable for small problems vehtheir simple code makes them faster than
the more complex code of tk¥n logn) algorithm. As a rule of thumb, expect to find@m
logn) algorithm faster fon>10 -but the exact value depends very much on individual machines!.

They can be used to squeeze a little bit more pedoce out of fast sort algorithms

Quicksort is a very efficient sorting algorithm ented by C.A.R. Hoare. It has two phases:

+ the partition phase and
- the sort phase.

As we will see, most of the work is done in thetpian phase - it works out where to divide the
work. The sort phase simply sorts the two smalteblems that are generated in the partition
phase.

This makes Quicksort a good example ofdhede and conquer strategy for solving problems.
(You've already seen an example of this approathehinary search procedujdn quicksort,

we divide the array of items to be sorted into paatitions and then call the quicksort procedure
recursively to sort the two partitionig, we divide the problem into two smaller ones asmhquer

by solving the smaller ones. Thus the conquergfdtie quicksort routine looks like this:
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quicksort( void *a, int low, int

hi{gh) < pivot > pivot
int pivot;
[* Termination condition! */ low phfﬂ't high
if ( high > low )

. . Initial Step - First Partition
pivot = partition( a, low,

high ); a
quicksort( a, low, pivot-1
);
quicksort( a, pivot+1, high

) .
} low pivol pivot high

<pivot| [>pivot > pivot

}
Sort Left Partition in the same way

For the strategy to be effective, thartition phase must ensure that all the items in one et (
lower part) and less than all those in the othppéu) part.

To do this, we choosepavot element and arrange that all the items in the iqpaet are less than
the pivot and all those in the upper part gredtanftt. In the most general case, we don't know
anything about the items to be sorted, so thaichoice of the pivot element will do - the first
element is a convenient one.

As an illustration of this idea, you can view taisimation, which shows a partition algorithm in
which items to be sorted are copied from the oabjaray to a new one: iterssiller than the
pivot are placed to the left of the new array aechsgreater than the pivot are placed on the
right. In the final step, the pivot is dropped itit@ remaining slot in the middle.

Computer systems are often used to store large mishotidata from which individual records
must be retrieved according to some search cnitefiibus the efficient storage of data to
facilitate fast searching is an important issuehla section, we shall investigate the
performance of some searching algorithms and tteesdauctures which they use.

Linear Search

The simplest type of search is linear search, where every item in the item in the table is
searched in sequence. If the the table is sorted on the field being searched (the key field)
then the search canbe be abandoned as soon as the search value exeeds the field.

105



The pseudocode for a procedure to search the table for a given course code is as follows:
Procedure SEACH_Table
Begin
Subscript=0
Code_found = false
Repeat
Subscript =subscript +1
If course[substript].cource_code=Item_sought
Then code_found = true
Endif
Until code_found=true or subscript=no_of_elements
Or courses[subscript].course_code > item_sought
End procedure

The procedure sets a boolean variable code_founf to true if the course code is found.

Binary Search
However, if we place our items in an array and sort them in either ascending or descending order on the
key first, then we can obtain much better performance with an algorithm called binary search.

Binary search is a technique for searching an ordered list in which we first check the middle item and -
based on that comparison - "discard" half the data. The same procedure is then applied to the remaining
half until a match is found or there are no more items left.

That is In binary search, we first compare the wéf the item in the middle position of the
array. If there's a match, we can return immedjatéthe key is less than the middle key, then
the item sought must lie in the lower half of tleay; if it's greater then the item sought must lie
in the upper half of the array. So we repeat tloegulure on the lower (or upper) half of the

array.
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Our FindInCollection function can now be implemented:

static void *bin_search( collection c, int low, int high, void *key ) {

int mid;

[* Termination check */

if (low > high) return NULL;

mid = (high+low)/2;

switch (memcmp(ltemKey(c->items[mid]),key,c->size) ) {
[* Match, return item found */
case 0O: return c->items[mid];
[* key is less than mid, search lower half */
case -1: return bin_search( ¢, low, mid-1, key);
[* key is greater than mid, search upper half */
case 1: return bin_search( ¢, mid+1, high, key );
default : return NULL;
}

void *FindInCollection( collection c, void *key ) {
/* Find an item in a collection

*/

}

Pre-condition:

c is a collection created by ConsCollection
c is sorted in ascending order of the key
key != NULL

Post-condition: returns an item identified by ke y if
one exists, otherwise returns NULL

int low, high;
low = 0; high = c->item_cnt-1;
return bin_search( c, low, high, key );

Points to note:

bin_search s recursive: it determines whether the search key lies in the lower or upper half of
the array, then calls itself on the appropriate half.
There is a termination condition (two of them in fact!)
i If low > high  then the partition to be searched has no elements in it and
ii. If there is a match with the element in the middle of the current partition, then we can
return immediately.
AddToCollection will need to be modified to ensure that each item added is placed in its
correct place in the array. The procedure is simple:
i Search the array until the correct spot to insert the new item is found,
ii. Move all the following items up one position and
iii. Insert the new item into the empty position thus created.
bin_search is declared static . Itis a local function and is not used outside this class: if it
were not declared static, it would be exported and be available to all parts of the program. The
static declaration also allows other classes to use the same name internally.
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static

reduces the visibility of a function an should be used wherever possible to control

access to functions!

Analysis
n items
B e
r
. low myd high
+ L
N ~n2 items b
e 2
low mad high®,
"' *
S -nditems s
1 low mid high
: .
[
: .
, log nsieps "
1
1
low high
mid
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Each step of the algorithm divides
the block of items being searched
in half. We can divide a set of n

items in half at most log, n times.

Thus the running time of a
binary search is proportional to
log n and we say this is@(log

n) algorithm.



Binary search requires a more complex program than
our original search and thus for small n it may run

slower than the simple linear search. However, for H
large n, fise)
lim Logn _
H—>= 02 #H

login)

Thus at large, log n is much smaller tham,

consequently a@(log n) algorithm ismuch faster

than anO(n) one.

Plotofnandlognvsn.

We will examine this behaviour more formally iheder sectionFirst, let's see what we can do

about the insertiom{dToCollection ) operation.
In the worst case, insertion may requireperations to insert into a sorted list.

1. We can find the place in the list where the new item belongs using binary search in Oflog n)
operations.

2. However, we have to shuffle all the following items up one place to make way for the new one.
In the worst case, the new item is the first in the list, requiring n move operations for the
shuffle!

A similar analysis will show that deletion is aBoO(n) operation.

If our collection is statide it doesn't change very often - if at all - thennvay not be
concerned with the time required to change itsexast we may be prepared for the
initial build of the collection and the occasiomraertion and deletion to take some time.
In return, we will be able to use a simple datadtrre (an array) which has little

memory overhead.
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However, if our collection is large and dynamgitems are being added and deleted
continually, then we can obtain considerably bgiformance using a data structure

called atree

Notethat Big Oh Isa notation formally describing the set of all functionswhich
are bounded above by a nominated function.
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