

UNESCO-NIGERIA TECHNICAL &
VOCATIONAL EDUCATION

REVITALISATION PROJECT-PHASE II

YEAR I SEMESTER II

THEORY
Version 1: December,2008

NATIONAL DIPLOMA IN

COMPUTER TECHNOLOGY

OOBASIC/VISUAL BASIC PROGRAMMING

COURSE CODE: COM 211

 2

Table Of Contents

Concept of programming .. 4

How windows work .. 5
The Visual Basic environment .. 5

Starting Visual Basic .. 7
Stopping Visual Basic .. 8
Getting online help ... 8
Opening Application.. 12
Creating Simple application (Wizard) ... 12
Running your application .. 18
Creating Executable File ... 19
Saving your application .. 20
VB Character set .. 22
Relational Operators ... 22
Arithmetic Operators ... 22
Blank character ... 22
Data Types ... 22

Declaring Variables .. 26
Assigning Values to Variables .. 28
Mathematical Expressions .. 30
Conditional Operators ... 33

Properties of the Form .. 34
Intrinsic Controls .. 37
Label control .. 38
Text Box .. 40
Focus In on Controls .. 42
The Command Button .. 42
The PictureBox Control .. 44
The Image Control .. 46

Creating non-wizard applications .. 47
Adding Controls to applications .. 47
Managing Controls .. 48
Change the control properties ... 48
Handling Control Event .. 57
Writing Code ... 63

If...Then...Else Statement .. 65
Select Case Statement ... 67

CheckBox Control .. 72
Frame Control .. 78

For...Next Statement ... 81
Sub Statement... 84

Supplied Numeric Functions (Math Functions) .. 88
Abs Function .. 88
Int Functions .. 88
Rnd Function .. 89
Sqr Function ... 90
Supplied String Function .. 90
Len Function .. 90

Systems Development Cycle .. 4

Do...Loop Statement ... 80

WEEK 1

WEEK 2

WEEK 3

WEEK 4

WEEK 5

OptionButton Control ... 69

WEEK 6

WEEK 7

WEEK 8

 3

LCase and Functions .. 91
UCase Function 91
Asc Function 92
Chr Function 92
Supplied Time And Date Functions 93
Now Function .. . 93
Date Function .. . 93
Time Function 93

Non-Arrays data values .. 94
Arrays data values .. 94
Declaring Fixed-Size Arrays .. . 95
Multidimensional Arrays .. 97

List Boxes Controls That Work Like Arrays ... 99
List Boxes: Controls That Work Like Arrays .. 109

Combo Boxes ... 117
The Timer Control .. 122
Scrolling the Scroll Bars ... 124

MsgBox Function ... 128
InputBox Function .. 131

The Basic Elements of a Database .. 133
Using Data Control ... 134

Data Access Objects (DAO) ... 136
Visual Basic Wizard ... 137
Data Form Wizard .. 140

Menu Basics ... 147
Menu Control ... 148
Menu Editor Command (Tools Menu) .. 148
Menu Editor Dialog Box... 148
Creating Menus with the Menu Editor .. 151
Writing Code for Menu Controls .. 155
MsgBox Function ... 156
InputBox Function .. 158

WEEK 9

WEEK 10

WEEK 11

WEEK 12

WEEK 13
WEEK 14

WEEK 15

 4

WEEK 1:

INTRODUCTION

During this week you will learn:

• Concept of programming
• Systems Development Cycle
• How windows work
• The Visual Basic environment
• Starting Visual Basic
• Stopping Visual Basic
• Getting online help
• Opening Application
• Creating Simple application (Wizard)
• Running your application
• Creating Executable File
• Saving your application

Concept of programming

A program is a set of detailed instructions that tells the computer what to do.

VISUAL BASIC is a high level programming language evolved from the earlier DOS
version called BASIC. BASIC means Beginners' All purpose Symbolic Instruction Code. It
is a fairly easy programming language to learn. The codes look a bit like English Language.
Visual Basic falls into a category of programming referred to as event-driven programming.
Event-driven programs respond to events from the computer, such as the mouse button being
pressed. The designer uses ready-made objects such as CommandButtons and TextBoxes, to
build user interfaces that make up the application. This approach to programming drastically
reduces the amount of code required to develop a Windows application.

Systems Development Cycle

Most IT projects work in cycles. First, the needs of the computer users must be analyzed.
This task is often performed by a professional Systems Analysts who will ask the users
exactly what they would like the system to do, and then draw up plans on how this can be
implemented on a real computer based system.

The programmer will take the specifications from the Systems Analyst and then convert the
broad brushstrokes into actual computer programs. Ideally at this point there should be
testing and input from the users so that what is produced by the programmers is actually
what they asked for.

Finally, there is the implementation process during which all users are introduced to the new
systems, which often involves an element of training.

Once the users start using the new system, they will often suggest new improvements and the
whole process is started all over again.

 5

These are methodologies for defining a systems development cycle and often you will see
four key stages, as listed below.

• Feasibility Study
• Design
• Programming
• Implementation

How windows work

Windows is an GUI operating system. With GUI it easily recognized graphic icons be
selected using the mouse and commands chosen from menus, This is much easier for the user
than typing in the specific lines of code that were required by MS-Dos in order to perform
basic operations.
In GUI operating system, more than one application can be open at the same time. Processor
time is shared between computing tasks and this called multitasking.

The Visual Basic environment

The Visual Basic environment is made up of several windows. The initial appearance of the
windows on your screen will depend on the way your environment has been set up.

The tool bar The Visual Basic tool bar functions like the tool bar in any other Microsoft
application. It provides shortcuts for many of the common operating commands. It also
shows you the dimensions and location of the form currently being designed.

 6

The tool box The tool box gives you access to the controls that you use on a form.

A control is an object such as a button, label or grid.
Controls are used on forms to display output or get input.
Each control appears as a button in the tool box. If the control you are
looking for is not in the toolbox, select Components from the Project menu.
If the tool box is not displayed on your screen, or if at any time during the
exercises you close it, choose Toolbox from the View menu.

The form designer window
This window is where you design the forms that make up your user interface.

If the form designer window is not displayed on your screen, or if at any time during the
exercises you close it, choose Object from the View menu.

 The properties window :
A form, and each control on it, has a set of properties which control its characteristics such
as size, position and color.

The properties window lists all the properties a control has and their value. The default value
of a property can be changed by setting the property value using the properties window when
you design your application or changed by assigning a new value in code while your
application is running.
If the properties window is not displayed on your screen, or if at any time during the
exercises you close it, choose Properties Window from the View menu.

 7

The project explorer window
A project is a collection of the forms and code that make up an application. Each form in
your application is represented by a file in the project explorer window.

A form file contains both the description of the screen layout for the form and the program
code associated with it. If the project explorer window is not displayed on your screen, or if
at any time during the exercises you close it, choose Project Explorer from the View menu.

 The form layout window
Move the form in the screen in this window to set the position of your form when your
application is running.

You may wish to close the form layout window to allow more space
for the properties window. To open the window again, select Form
Layout Window from the View menu.

Starting Visual Basic

• From the Windows Start menu, choose Programs, Microsoft Visual Studio 6.0,
and then Microsoft Visual Basic 6.0.

• Visual Basic 6.0 will display the following dialog box as shown in this figure

 8

Stopping Visual Basic

• From the File menu, choose Exit and then Microsoft Visual Basic 6.0. ask you to
• save changes in your project.

Getting online help

If you've used online help before, you may not think you need to read this section. Although
you might be able to figure out Visual Basic's online help yourself, the help is fairly
advanced and varies from most other online help you may be used to. This topic section
describes some of the help tools available from within Visual Basic.

The content-sensitive nature of Visual Basic's help system extends to almost every menu
option, screen element, control, window, and language command. When you want help and
aren't sure exactly where to turn first, press F1 and let Visual Basic give it a try. For
example, if you think you need to use the Picture Box control but want to read a description
first to make sure that you have the right control, click the Toolbox's Picture Box control and
then press F1. Visual Basic sees that you've clicked the Picture Box and returns with the help
screen shown in this figure

 9

Click any screen element and press F1 for help

Throughout the help screens, Microsoft has scattered numerous links to related topics. When
you click any underlined word or phrase inside a help window, Visual Basic responds with a
pop-up definition or an additional help screen. Often, so may related topics appear
throughout the help system that when you click a link, Visual Basic displays a scrolling
Topics Found list, from which you can choose the description that most closely matches the
topic you need.

 10

Help links often provide several alternatives.

When you click an Example hypertext link, Visual Basic displays a window similar to the
one shown in Figure. Although the help might look ambiguous at this point, you'll grow to
appreciate the helpful suggestion when you begin learn the Visual Basic language. The
Example help link shows you real Visual Basic language code that uses the item you've
requested help for. As a programmer, you'll therefore see how to implement the item inside
your own Visual Basic code by looking at the sample Visual Basic provides.

Visual Basic shows you sample code that uses the property or control.

 11

The Help Menu

When you choose the first topic on the Help menu, Microsoft Visual Basic Topics, Visual
Basic displays a help dialog box . This dialog box contains the usual Windows-like help
tools. You can open and close the book icons on the Contents page to read about different
Visual Basic topics. You can search for a particular topic in the index by clicking the Index
tab. To locate every occurrence of a particular help reference word or phrase, you can click
the Find tab to build a comprehensive help database that returns multiple occurrences of
topics.

Example :

Get an instant definition for help links with a dotted underline.

Pop-up definition, Hyperlinks

Close the help window by clicking the window's Close button.

 12

Opening Application

To open a project, you can do one of two things:

• Click File menu , Open project…

• Click the tool and specify the project you want to open.

Then select Hello project and press Open.

 The project window will display the file “Hello.frm” from your project.

Creating Simple application (Wizard)

You start the application wizard from the New Project dialog box or by choosing New
Project from the File menu. Click the VB Application Wizard icon to start the wizard. This
Figure shows the application wizard's opening screen.

 13

Example

Assuming that you started the application wizard in the previous section, follow these steps
to build your first application:

1- Click the Next button to display the Interface Type dialog box. The wizard can
generate one of three types of user interfaces for the application you're generating:

− MDI (Multiple Document Interface) lets you create a program window that
contains embedded windows called child windows.

− SDI (Single Document Interface) lets you create a program with one or more
windows that exist at the same level (not windows within windows).

− Explorer Style lets you create programs that somewhat take on the Books
Online appearance, with a summary of topics or windows in a left pane and
the matching program details in the right pane.

2- The MDI option should already be selected. If not, click the MDI option.

 14

3- Click Next to display the menu selection dialog box. You can select certain menu
options that will appear on your application's menu bar. By using the dialog box's
options, you can help ensure that your application retains the standard Windows
program look and feel. (You can add your own menu options after the wizard
generates the program's initial shell.) For now, leave these options selected: File,
Edit, Window, and Help.

 15

4- Click Next to display the wizard's Resources dialog box. A resource might be a
menu, a text string, a control, a mouse cursor, or just about any item that appears in a
program.

5- Click Next, you'll bypass the Internet connectivity dialog box because you don't need
to add such connectivity to your first application shell.

 16

6- Determines which forms appear in your application:

• A splash form is an opening title form that your users see when they first run
your application.

• A login form requests the user's ID and password, in case you want to add
security features to your application.

• The options dialog box gives users the ability to modify certain application
traits.

• The About box is accessed from most Windows Help menus and provides your
program description and version.

 17

8. Check the About Box but leave the other options unchecked.
9. Click the Next button twice to display the final application wizard dialog box. (You'll

bypass the database access dialog box because you won't be retrieving database data
in this first application.)

10. Click the Finish button. The wizard generates the application before your eyes. You'll
see the wizard generating forms and titles; without the wizard, you would have to
perform these steps yourself. When finished, the application wizard displays a dialog
box to tell you that the application is completed.

 18

11. Click OK to close the final application wizard dialog box. A summary report appears,
to describe the generated program.

Running your application

Now that the form is complete you can see it in action by running it by simply pressing F5
key. Or click on run button on the standard tool bar

When you have written code for the buttons, running the application will allow you to
activate the code. For now your buttons will not do anything.

 19

Your form will appear like a window from any other Microsoft application.

Creating Executable File

- Click File, Then Make Project1.exe…

- Specify the location and the name of the project, then click OK.

 20

Saving your application

The last step in this chapter is to save your application so that you can use it for the exercises
later in the book To do this Click on file , Click save project as .

Visual Basic first asks you to save the form and then the project file. Remember that each
represents a separate file.

Specify the filename for the form as hello.frm. The file extension “frm” indicates that the file
is a form file.

 21

Always take care to ensure that you save all the files that make up a project.

 22

WEEK 2 :

VISUAL BASIC CHARACRER SETS AND DATA TYPES

During this week you will learn :

• Basic character sets
• Data Types

VB Character set

Visual Basic Character set refers to those characters acceptable or allowed in VB
programming eg GB is unknown in English likewise X is unknown in Yoruba language.

The Microsoft Visual basic character sets consists of the following:

Alphabet A/ a – Z/z (Both Upper and Lower Case)

Numeric Digits 0 – 9

Decimal point (.)

Grouping Characters (eg. Comma, colons, Semicolons, single and double apostrophe,

 parenthesis)

Relational Operators (eg. =, <>,>,< etc)

Arithmetic Operators (eg. +, -, /, =. etc)

Blank character

Data Types

The Visual Basic language works with all kinds of data. Before you learn how to manipulate
data, you will learn how to distinguish among the various data types, that Visual Basic
supports. Some data falls into more than one category. For example, a dollar amount can be
considered both a currency data type and a single data type. When you write a program, you
need to decide which data type best fits your program's data values.

 23

Visual Basic data types.

Type Stores Memory
Requirement

Range of Values

Integer Whole numbers 2 bytes -32,768 to 32,767

Long Whole numbers 4 bytes Approximately +/- 2.1E9

Single Decimal numbers 4 bytes -3.402823E38 to -1.401298E-45 for
negative values and 1.401298E-45 to
3.402823E38 for positive values

Double Decimal numbers
(double-precision
floating-point)

8 bytes -1.79769313486232E308 to -
4.94065645841247E-324 for negative
values and 4.94065645841247E-324 to
1.79769313486232E308 for positive
values

Currency Numbers with up to
15 digits left of the
decimal and 4 digits
right of the decimal

8 bytes 922,337,203,685,477.5808 to
922,337,203,685,477.5807

String Text information 1 byte per
character

Up to 65,000 characters for fixed-length
strings and up to 2 billion characters for
dynamic strings

Byte Whole numbers 1 byte 0 to 255

Boolean Logical values 2 bytes True or False

Date Date and time
information

8 bytes Jan 1st 100 to December 31st 9999

The following data values can take on the integer data type:

21

0

-9455

32766

You can also store these integer data types as long data types, although doing so wastes
storage and time unless you plan to change the values later to extremely large or small
integer numbers that require the long data type.

The following data values must be stored in a long data type:

32768

-95445

 24

492848559

The following data values can take on the single data type:

0.01

565.32

-192.3424

9543.5645

6.5440E-24

Of course, you can store these data values in double storage locations as well. Use double
data types only when you need to store extra large or small values.

The following data values take on the double data type:

-5968.5765934211133

4.532112E+92

928374.344838273567899990

What's that E Doing in the Numbers?: The E stands for exponent. Years ago, mathematicians
grew weary of writing long numbers. They developed a shortcut notation called scientific
notation. Visual Basic supports scientific notation. You can use scientific notation for single
and double numeric data values. When you use scientific notation, you don't have to write—
or type, in the case of program writing—extremely long numbers.
When a single or double numeric value contains the letter E, followed by a number, that
number is written in scientific notation. To convert a number written in scientific notation to
its non-abbreviated form, multiply the number to the left of E by 10 raised to the power
indicated by the number to the right of E. Therefore, 2.9876E+17 means to multiply 2.9876
by 10 raised to the 17th power, or 1017. 1017 is a very large number—it is 10 followed by 16
zeroes. The bottom line is that 2.9876E+17 means the same as 29876 followed by 13 zeros.
If a number uses a negative exponent, you multiply the number to left of E by 10 raised to
negative power. Therefore, 2.9876E-17 means the same as 2.9876 multiplied by 10-17—or
2.9876 divided by 1017—which turns out to be a small number indeed.

The following data values can take on the currency data type:

123.45

0.69

63456.75

-1924.57

 25

The currency data type can accept and track numeric values to four decimal places.
However, you typically store dollar and cent values in the currency storage locations, and
these kinds of values require only two decimal places.

Never use a currency data value along with a dollar sign. In other words, the following
cannot be a currency value even though it looks like one:

$5,234.56

Visual Basic does not want you to use a dollar sign or commas in numeric data of any kind—
unless, of course, your country uses the comma for the fractional portion of numbers. If your
data contains anything other than numbers, a plus sign, a minus sign, or an exponent, Visual
Basic cannot treat the data as if it were numeric; therefore, it cannot perform mathematical
calculations with the data. Instead, Visual Basic treats the data as string data.

The following data values take on the string data type:

"London Bridge"

"1932 Sycamore Street"

"^%#@#$%3939$%^&^&"

Notice the quotation marks around the three string values. string values require the quotation
marks, which tell Visual Basic where the string begins and ends. If you wanted to embed
spaces at the beginning or end of a string, you indicate those spaces by including them inside
the quotation marks. For example, here are three different strings, each with a different set of
embedded spaces: " house", "house ", " house ". You cannot embed quotation marks directly
inside a string; Visual Basic thinks the string ends as soon as it comes to the second
quotation mark, even if it is not the actual end of the string.

The following data values can take on the variant data type:

"^%#@#$%3939$%^&^&"

123.45

4.532112E+92

21

03-Mar-1996

Do these values look familiar? The variant data type can hold data of any other data type.
Think about the kind of data stored in label controls. You often want to display numbers,
dollar amounts, times, and dates in labels on a form. You can always store variant data in
these controls. The data that comes from these controls is also variant.

The following data values must be stored in a Boolean data type:

 True

 26

 False

WEEK 3:

 VARIABLE DECLARATION IN VISUAL BASIC/STORING AND
RETRIVING DATA IN A VARIABLE

During this week you will learn :

• Declaring Variables
• Assigning Values to Variables
• Mathematical Expressions
• Conditional Operators

Declaring Variables

Definition: To define a variable means to create and name a variable.

A program can have as many variables as you need it to have. Before you can use a variable,
you must request that Visual Basic create the variable by defining the variable first. When
you define a variable, you tell Visual Basic these two things:

• The name of the variable

• The data type of the variable

Once you define a variable, that variable always retains its original data type. Therefore, a
single-precision variable can hold only single-precision values. If you stored an integer in a
single-precision variable, Visual Basic would convert the integer to a single-precision
number before it stored the number in the variable. Such conversions are common, and they
typically do not cause many problems.

The Dim statement defines variables. Using Dim, you tell Visual Basic

• that you need a variable

• what to name the variable

 27

• what kind of variable you want

Dim—short for dimension—is a Visual Basic statement that you write in an application’s
Code window. Whenever you learn a new statement, you need to learn the format for that
statement. Here is the format of the Dim statement:

Dim VarName AS DataType

VarName is a name that you supply. When Visual Basic executes the Dim statement at
runtime, it creates a variable in memory and assigns it the name you give in the VarName
location of the statement. DataType is one of the seven Visual Basic data types that you
learned .

Variable names must follow the naming rules

• Names can be as short as one character or as long as 40 characters.

• Names must begin with a letter of the alphabet and can be in either uppercase or
lowercase letters.

• After the initial letter, names can contain letters, numbers, or underscores in names.
• Names cannot be a reserved word.
• Never define two variables with the same name

Always use a Dim statement to define variables before you use variables. If the Options
Environment Require Variable Definition option is set to Yes—as it is by default—Visual
Basic will issue an error message whenever you use a variable that you have not defined.
This option prevents you from inadvertently misspelling variable names and helps you avoid
errors in your program.

Suppose that you give a partial program to another Visual Basic programmer to work on. If
you want to require that all variables be defined but are unsure of the other programmer's
Options Environment Require Variable Definition setting, select (general) from the Code
window's Object dropdown list and add the following special statement:

Option Explicit

No matter how the Options Environment setting is set, the programmer cannot slip variables
into your program without defining them properly in Dim statements. Again, requiring
variable definitions helps eliminate bugs down the road, so you are wise to get in the habit of
putting Option Explicit in the (general) section of every program’s Code window.

The following statement defines a variable named ProductTotal:

Dim ProductTotal As Currency

From the Dim statement, you know that the variable holds currency data and that its name is
ProductTotal. All Visual Basic commands and built-in routines require an initial capital
letter. Although you don't have to name your variables with an initial capital letter, most
Visual Basic programmers do for the sake of consistency. Additional caps help distinguish

 28

individual words inside a name. (Remember that you cannot use spaces in the name of
variable.)

The following statements define integer, single-precision, and double-precision variables:

Dim Length As Integer

Dim Price As Single

Dim Structure As Double

If you want to write a program that stores the user's text box entry for the first name, you
would define a string like this:

Dim
FirstName As String

You can get fancy when you define strings. This FirstName string can hold any string from 0
to 65,500 characters long. You will learn in the next section how to store data in a string.
FirstName can hold data of virtually any size. You could store a small string in FirstName—
such as "Joe"—and then store a longer string in FirstName—such as "Mercedes". FirstName
is a variable-length string.

Sometimes you want to limit the amount of text that a string holds. For example, you might
need to define a string variable to hold a name that you read from the disk file. Later, you
will display the contents of the string in a label on the form. The form's label has a fixed
length, however—assuming that the AutoSize property is set to True. Therefore, you want to
keep the string variable to a reasonable length. The following Dim statement demonstrates
how you can add the * StringLength option when you want to define fixed-length strings:

Dim Title As String * 20

Assigning Values to Variables

Definition: A null string is a zero-length empty string that is often represented as "".

When you first define variables, Visual Basic stores zeroes in the numeric variables and null
strings in the string variables. Use the assignment statement when you want to put other data
values into variables. Variables hold data of specific data types, and many lines inside a
Visual Basic program's Code window consist of assignment statements that assign data to
variables. Here is the format of the assignment statement:

VarName = Expression

 29

The Let command name is optional; it is rarely used these days. The VarName is a variable
name that you have defined using the Dim statement. Expression can be a constant, another
variable, or a mathematical expression.

Suppose that you need to store a minimum age value of 18 in an integer variable named
MinAge. The following assignment statements do that:

MinAge = 18

To store a temperature in a single-precision variable named TodayTemp, you could do this:

TodayTemp = 42.1

The data type of Expression must match the data type of the variable to which you are
assigning. In other words, the following statement is invalid. It would produce an error in
Visual Basic programs if you tried to use it.

TodayTemp = "Forty-Two point One"

If TodayTemp were a single-precision variable, you could not assign a string to it. However,
Visual Basic often makes a quick conversion for you when the conversion is trivial. For
example, it is possible to perform the following assignment even if you have defined
Measure to be a double-precision variable:

measurement
= 921.23

At first glance, it appears that 921.23 is a single-precision number because of its size. 921.23
is actually a variant data value. Recall that Visual Basic assumes all data constants are
variant unless you explicitly add a suffix character to the constant to make the constant a
different data type. Visual Basic can easily and safely convert the variant value to double-
precision. That's just what Visual Basic does, so the assignment works fine.

In addition to constants, you can assign other variables to variables. Consider the following
code:

Dim Sales As Single, NewSales As Single

Sales = 3945.42

NewSales = Sales

When the third statement finishes, both Sales and NewSales have the value 3945.42.

Feel free to assign variables to controls and controls to variables. Suppose, for example, that
the user types the value 18.34 in a text box's Text property. If the text box's Name property is
txtFactor, the following statement stores the value of the text box in a variable named
FactorVal:

FactorVal = txtFactor.Text

 30

Suppose that you defined Title to be a string variable with a fixed length of 10, but a user
types Mondays Always Feel Blue in a text box's Text property that you want to assign to
Title. Visual Basic stores only the first ten characters of the control to Title and truncates the
rest of the title. Therefore, Title holds only the string "Mondays Al".

This is the first of several program code reviews that you will find throughout the rest of the
book.

Sub cmdJoke_Click ()

 cmdJoke.Caption = "Bird Dogs Fly"

End Sub

If you have a variable that will contain simple true/false, yes/no, or on/off information, you
can declare it to be of type Boolean. The default value of Boolean is False. In the following
example, blnRunning is a Boolean variable which stores a simple yes/no setting.

Dim blnRunning As Boolean

 ' Check to see if the tape is running.

 If Recorder.Direction = 1 Then
 blnRunning = True

End if

Mathematical Expressions

Data values and controls are not the only kinds of assignments that you can make. With the
Visual Basic math operators, you can calculate and assign expression results to variables
when you code assignment statements that contain expressions.

Definition: An operator is a word or symbol that does math and data manipulation.

It is easy to make Visual Basic do your math. This table describes Visual Basic's primary
math operators. There are other operators, but the ones in Table will suffice for most of the
programs that you write. Look over the operators. You are already familiar with most of
them because they look and act just like their real-world counterparts.

The primary math operators.

Operator Example Description

+ Net + Disc Adds two values

- Price - 4.00 Subtracts one value from another value

* Total * Fact Multiplies two values

/ Tax / Adjust Divides one value by another value

^ Adjust ^ 3 Raises a value to a power

& or + Name1 & Name2 Concatenates two strings

 31

Suppose that you wanted to store the difference between the annual sales (stored in a
variable named AnnualSales) and cost of sales (stored in a variable named CostOfSales) in a
variable named NetSales. Assuming that all three variables have been defined and initialized,
the following assignment statement computes the correct value for NetSales:

NetSales = AnnualSales - CostOfSales

This assignment tells Visual Basic to compute the value of the expression and to store the
result in the variable named NetSales. Of course, you can store the results of this expression
in Caption or Text properties, too.

If you want to raise a value by a power—which means to multiply the value by itself a
certain number of times—you can do so. The following code assigns 10000 to Value because
ten raised to the fourth power—10x10x10x10—is 10,000:

Years = 4

Value = 10 ^ Years

No matter how complex the expression is, Visual Basic computes the entire result before it
stores that result in the variable at the left of the equals sign. The following assignment
statement, for example, is rather lengthy, but Visual Basic computes the result and stores the
value in the variable named Ans:

Ans = 8 * Factor - Pi + 12 * MonthlyAmts

Combining expressions often produces unintended results because Visual Basic computes
mathematical results in a predetermined order. Visual Basic always calculates exponentiation
first if one or more ^ operators appear in the expression. Visual Basic then computes all
multiplication and division before any addition and subtraction.

Visual Basic assigns 13 to Result in the following assignment:

Result = 3 + 5 * 2

At first, you might think that Visual Basic would assign 16 to Result because 3 + 5 is 8 and 8
* 2 is 16. However, the rules state that Visual Basic always computes multiplication—and
division if division exists in the expression—before addition. Therefore, Visual Basic first
computes the value of 5 * 2, or 10, and next adds 3 to 10 to get 13. Only then does it assign
the 13 to Result.

If both multiplication and division appear in the same expression, Visual Basic calculates the
intermediate results from left to right. For example, Visual Basic assigns 20 to the following
expression:

Result = 8
/ 2 + 4 + 3 * 4

Visual Basic computes the division first because the division appears to the left of the
multiplication. If the multiplication appeared to the left of the division, Visual Basic would

 32

have multiplied first. After Visual Basic calculates the intermediate answers for the division
and the multiplication, it performs the addition and stores the final answer of 20 in Result.

Note: The order of computation has many names. Programmers usually use one of these
terms: order of operators, operator precedence, or math hierarchy.

It is possible to override the operator precedence by using parentheses. Visual Basic always
computes the values inside any pair of parentheses before anything else in the expression,
even if it means ignoring operator precedence. The following assignment statement stores 16
in Result because the parentheses force Visual Basic to compute the addition before the
multiplication:

Result = (3 + 5) * 2

The following expression stores the fifth root of 125 in the variable named root5:

root5 = 125 ^ (1/5)

As you can see from this expression, Visual Basic supports fractional exponents.

Definition: Concatenation means the joining together of two or more strings.

One of Visual Basic's primary operators has nothing to do with math. The concatenation
operator joins one string to the end of another. Suppose that the user entered his first name in
a label control named lblFirst and his last name in a label control named lblLast. The
following concatenation expression stores the full name in the string variable named
FullName:

FullName = lblFirst & lblLast

There is a problem here, though, that might not be readily apparent—there is no space
between the two names. The & operator does not automatically insert a space because you
don’t always want spaces inserted when you concatenate two strings. Therefore, you might
have to concatenate a third string between the other two, as in

FullName = lblFirst & " " & lblLast

Visual Basic actually supports a synonym operator, the plus sign, for concatenation. In other
words, the following assignment statement is identical to the previous one:

FullName = lblFirst + " " + lblLast

Even Microsoft, the maker of Visual Basic, recommends that you use & for string
concatenation and reserve + for mathematical numeric additions. Using the same operator for
two different kinds of operations can lead to confusion.

 33

Review: The math operators enable you to perform all kinds of calculations and
assignments. Visual Basic means never having to use a calculator again! When you use
expressions, however, remember operator precedence. When in doubt, use parentheses to
indicate exactly which operations in an expression you want Visual Basic to calculate first.

Conditional Operators

You can combine or modify search conditions using the standard logical operators listed in
the following table. The operators are listed in the order that they are evaluated.

Operator Meaning Example

NOT Logical opposite of
condition

NOT True = False
NOT False = True

AND Both conditions must
apply (True)

True AND True = True
True AND False = False
False AND True = False

OR Either condition can
apply (True)

True OR True = True
True OR False = True
False OR True = True
False OR False = False

 34

WEEK 4 :

BASIC CONTROLS

During this week you will learn :

• Properties of the Form
• Intrinsic Controls
• Label control
• Text Box
• Focus In on Controls
• The Command Button
• The PictureBox Control
• The Image Control

Properties of the Form

The form is yet another Visual Basic object. As such, it has property settings that you can set
and change while you design the application and during the program's execution. This
section explains all the form's property settings in detail.

This table describes the property settings of the form that appear in the Properties window
when you click the Form window and press F4. The form has more properties than the
command button, label, and text box controls, whose properties you saw in the previous unit.
As with all control property values, you never need to worry about all these properties at
once. Most of the time, the default values are satisfactory for your applications.

Properties of the form.

Property Description

AutoRedraw If True, Visual Basic automatically redraws graphic images that reside on
the form when another window hides the image or when the user resizes the
object. If False (the default), Visual Basic does not automatically redraw.

BackColor The background color of the form. You can enter a hexadecimal Windows
color value or select from the color palette.

BorderStyle Set to 0 for no border or border elements such as a control menu or
minimize and maximize buttons, 1 for a fixed-size border, 2 (the default)
for a sizable border, or 3 for a fixed-size border that includes a double-size
edge.

Caption The text that appears in the form's title bar. The default Caption is the Name
of the form.

Enabled If True (the default), the form can respond to events. Otherwise, Visual
Basic halts event processing for the form.

FillColor The color value used to fill shapes drawn on the form.

FillStyle Contains eight styles that determine the appearance of the interior patterns

 35

of shapes drawn on the form.

FontBold Has no effect on the form's Caption property, but does affect text that you
eventually display on the form if you use the Print command.

FontItalic Has no effect on the form's Caption property, but does affect text that you
eventually display on the form if you use the Print command.

FontName Has no effect on the form's Caption property, but does affect text that you
eventually display on the form if you use the Print command.

FontSize Has no effect on the form's Caption property, but does affect text that you
eventually display on the form if you use the Print command.

FontStrikethru Has no effect on the form's Caption property, but does affect text that you
eventually display on the form if you use the Print command.

FontTransparent Has no effect on the form's Caption property, but does affect text that you
eventually display on the form if you use the Print command.

FontUnderline Has no effect on the form's Caption property, but does affect text that you
eventually display on the form if you use the Print command.

ForeColor The color of foreground text that you display on the form if you use the
Print command.

Height The form’s height in twips.

HelpContextID Provides the identifying number for the help text if you add advanced
context-sensitive help to your application.

Icon The picture icon that the user sees after minimizing the form.

KeyPreview If False (the default), the control with the focus receives these events:
KeyDown, KeyUp, and KeyPress before the form does . If True, the form
receives the events before the focused control.

Left The number of twips from the left edge of the screen to the left edge of the
form.

MaxButton If True (the default), the maximize button appears on the form at runtime.
If False, the user cannot maximize the form window.

MinButton If True (the default), the minimize button appears on the form at runtime.
If False, the user cannot minimize the form window.

MousePointer The shape to which the mouse cursor changes if the user moves the mouse
cursor over the form. The possible values range from 0 to 12 and represent
the different shapes the mouse cursor can take on.

Name The name of the form. By default, Visual Basic generates the name
Form1.

Picture A picture file that displays on the form's background.

ScaleMode Enables you to determine how to measure coordinates on the form. You
can choose from eight values. The default unit of measurement is twips,
indicated by 1. The other Scale... properties measure use twips.

Top The number of twips from the top edge of the screen to the top of the
form.

Visible True or False, indicating whether the user can see and, therefore, use the
form.

 36

Width The width of the form in twips.

WindowState Describes the startup state of the form when the user runs the program. If
set to 0 (the default), the form first appears the same size as you designed
it. If set to 1, the form first appears minimized. If set to 2, the form first
appears maximized.

ScaleMode enables you to determine how to measure coordinates on the form. You can
choose from eight values. The default unit of measurement is twips. This table describes the
possible units of measurement.

 37

The ScaleMode property values.

Value Description

0 Customized values

1 Twips (the default)

2 Points

3 Pixels

4 A standard character that is 120 twips wide and 240 twips high

5 Inches

6 Millimeters

7 Centimeters

Intrinsic Controls

In Microsoft Visual Basic jargon, intrinsic controls (or built-in controls) are those controls
visible in the Toolbox window when you launch the environment. This important group
includes controls, such as Label, TFextbox, and CommandButton controls, that are used in
nearly every application. As you know, Visual Basic can be extended using additional
Microsoft ActiveX Controls (formerly known as OCX controls, or OLE custom controls)
either provided in the Visual Basic package or available as commercial, shareware, or even
freeware third-party products. Even if such external controls are often more powerful than
built-in controls, intrinsic controls have a few advantages that you should always take into
account:

• Support for intrinsic controls is included in the MSVBVM60.DLL, the runtime file
that's distributed with every Visual Basic application. This means that if a program
exclusively uses intrinsic controls, you don't need to distribute any additional OCX
files, which greatly simplifies the installation process and reduces disk requirements.

• In general, Visual Basic can create and display intrinsic controls faster than it can
external ActiveX controls because the code for their management is already in the
Visual Basic runtime module and doesn't have to be loaded when a form references
an intrinsic control for the first time. Also, applications based on intrinsic controls
usually perform faster on machines with less memory; no extra memory is needed by
additional OCX modules.

• Because programs based exclusively on intrinsic controls require fewer ancillary
files, they can be downloaded faster through the Internet. Moreover, if end users
previously installed any other Visual Basic application, Visual Basic runtime files are
already installed on the target machine, which reduces download times to the
minimum.

For all these reasons, it's important to learn how to make the best of intrinsic controls. In this
chapter, I focus on their most important properties, methods, and events, and I also show
how to address some common programming issues using intrinsic controls exclusively.

 38

 Label control

The label holds text on the form. Although there are several ways to display text, the label
control enables you to post messages on the form that you can change by means of Visual
Basic code. The user, however, cannot change the value of a text control.

Label controls are vital to Visual Basic applications because you are always putting text on
the form for the user to read. Here are some of the uses for the label control:

Titles (boxed and unboxed)

Data descriptions

Color warning messages

Graphic descriptions

Instructions

Labels are extremely easy to place and initialize. If you don't want a message to appear in a
label when the user first starts the application, be sure to delete all the text from the label's
Caption property. This table lists the properties available for labels within the Properties
window.

label properties.

Property Description

Alignment Set to 0 for left-justification (the default), 1 for right-justification, or 2 for
centering the Caption within the label. Putting a border around the label or
shading the label a color often makes the justification stand out.

AutoSize If True, the control automatically adjusts its own size to shrinkwrap around
the contents of its caption. If False (the default), the control clips off the right

 39

of the text if the label is not large enough to hold the entire caption.

BackColor The background color of the label. It is a hexadecimal number that represents
one of thousands of possible Windows color values. You can select from a
palette of colors displayed by Visual Basic when you are ready to set the
BackColor property. The default background color is the same as the form's
default background color.

BackStyle If set to 0, meaning transparent, the form’s background color comes through
the label’s background. If set to 1 (the default), the label's background color
hides the form behind the label.

BorderStyle Either 0 (the default) for no border or 1 for a fixed single-line border.

Caption The text that appears on a label.

Enabled If True (the default), the label control can respond to events. Otherwise,
Visual Basic halts event processing for that particular control.

FontBold If True (the default), the Caption displays in boldfaced characters.

FontItalic If True (the default), the caption displays in italicized character.

FontName The name of the label control’s style. You typically use the name of a
Windows True Type font.

FontSize The size, in points, of the font used for the label control's caption.

FontStrikethru If True (the default), the caption displays in strikethrough letters. In other
words, the characters have a line drawn through them.

FontUnderline If True (the default), the caption displays in underlined letters.

ForeColor The color of the text inside the caption.

Height The height of the label control in twips.

Index If the label control is part of a control array, the Index property provides the
numeric subscript for each particular label control.

Left The number of twips from the left edge of the Form window to the left edge
of the label control.

MousePointer

The shape to which the mouse cursor changes if the user moves the mouse
cursor over the label control. The possible values range from 0 to 12 and
represent the different shapes that the mouse cursor can take on.

Name The name of the control. By default, Visual Basic generates the names
Label1, Label2, and so on, as you add subsequent label controls to the form.

TabIndex The focus tab order begins at 0 and increments every time you add a new
control. You can change the focus order by changing value of the TabIndex
of the control. No two controls on the same form can have the same
TabIndex value.

Top The number of twips from the top edge of a label control to the top of the
form.

Visible True or False, indicating whether the user can see and, therefore, use the
label control.

Width The width of the label control in twips.

WordWrap If True, the text wraps to hold the entire caption. If False (the default), the

 40

text does not wrap but is truncated to fit the caption.

Text Box

A TextBox control, sometimes called an edit field or edit control, displays information

Text box controls display default values and accept user input. Text box controls enable you
to determine how the user enters data and responds to questions and controls that you
display.

When you display a text box on a form, you give the user a chance to accept a default
value—the text box's initial Text property—or to change it to something else. The user can
enter text of any data type—numbers, letters, and special characters. He can scroll left and
right by using the arrow keys, and he can use the Ins and Del keys to insert and delete text
within the text box control.

Most of the text box's properties work like the label control's properties. Unlike the label,
however, the text box properties describe data-entry properties so that the control can deal
with user input instead of simple text display. This table describes the property values for the
text box control.

Text box properties.

Property Description

Alignment Set to 0 for left-justification (the default), 1 for right-justification, or 2 for
centering the Caption within the text box. If MultiLine contains False,
Visual Basic ignores the Alignment setting.

BackColor The background color of the text box. It is a hexadecimal number that
represents one of thousands of possible Windows color values. You can
select from a palette of colors displayed by Visual Basic when you are
ready to set the BackColor property. The default background color is the
same as the form's default background color.

BorderStyle Either 0 (the default) for no border or 1 for a fixed single-line border.

Enabled If True (the default), the text box can respond to events. Otherwise, Visual
Basic halts event processing for that particular control.

FontBold If True (the default), the Text displays in boldfaced characters.

FontItalic If True (the default), the Text displays in italicized characters.

FontName The name of the text box's style. You typically use the name of a Windows
True Type font.

FontSize The size, in points, of the font used for the text box control's Text value.

FontStrikethru If True (the default), the text value displays in strikethrough letters. In
other words, the characters have a line drawn through them.

FontUnderline If True (the default), the text value displays in underlined letters.

ForeColor The color of the text inside the Text property.

 41

Height The height of the text box in twips.

HelpContextID If you add advanced context-sensitive help to your application, the
HelpContextID provides the identifying number for the help text.

HideSelection Keeps text highlighted even when the text box loses its focus.

Index If the text box is part of a control array, the Index property provides the
numeric subscript for each particular text box.

Left The number of twips from the left edge of the Form window to the left
edge of the text box.

MaxLength If set to 0 (the default), the limit of the Text value can be as great as
approximately 32,000 characters. Otherwise, the MaxLength specifies how
many characters the user can enter in the text box.

MousePointer The shape to which the mouse cursor changes if the user moves the mouse
cursor over the text box. The possible values range from 0 to 12 and
represent the different shapes that the mouse cursor can take on.

MultiLine If True, the text box can display more than one line of text. If False (the
default), the text box contains a single, and often long, line of text. The text
can contain a carriage return.

Name The name of the control. By default, Visual Basic generates the names
Text1, Text2, and so on, as you add subsequent text boxes to the form.

PasswordChar If you enter a character, such as an asterisk (*) for the PasswordChar,
Visual Basic does not display the user's text but instead displays the
PasswordChar as the user types the text. Use text boxes with a
PasswordChar set when the user needs to enter a password and you don't
want others looking over his shoulder to peek at the password.

ScrollBars Set to 0 (the default) for no scroll bars, 1 for a horizontal scroll bar, 2 for a
vertical scroll bar, or 3 for both kinds of scroll bars.

TabIndex The focus tab order begins at 0 and increments every time you add a new
control. You can change the focus order by changing the value of the
TabIndex of the control. No two controls on the same form can have the
same TabIndex value.

TabStop If True, the user can press Tab to move the focus to this label control. If
False, the label control cannot receive the focus.

Text The initial value that the user sees in the text box. The default value is the
name of the control. The value continues to update as the user enters new
text at runtime.

Top The number of twips from the top edge of a text box to the top of the form.

Visible True or False, indicating whether the user can see and, therefore, use the
text box.

Width The width of the text box in twips.

 42

Focus In on Controls

As you learn about controls, you often hear the term focus. Learning about focus now saves
you a lot of trouble later.

Definition: Focus refers to the control that is currently highlighted.

The control with the focus is the next control that will accept the user's response. Most
Windows users instinctively understand focus even though very few have thought much
about focus. The control with the focus is always the control that is highlighted. The focus
often moves from control to control as the user works. The focus determines where the next
action will take place.

Only one control can have the focus at any one time, and not every control can get the focus.

Definition: The focus order determines the control next in line for the focus.

Every form has a focus order that determines the next control that will receive the focus.

When you see a dialog box such as a File Open dialog box, the OK button is almost always
the command button that has the focus. You can press Enter to select the OK command
button, click a different command button (such as a Cancel command button), or press Tab
until the command button that you want has the focus.

Through property settings, you can determine the focus order and whether a control can
receive the focus. Your form might have some controls that you don't want the user to be
able to highlight; therefore, you prevent them from getting the focus.

The Command Button

The command button is the cornerstone of most Windows applications. With the command
button, your user can respond to events, signal when something is ready for printing, and tell
the program when to terminate. Although all command buttons work in the same
fundamental way—they visually depress when the user clicks them, and they trigger events
such as Click events—numerous properties for command buttons uniquely define each one
and its behavior.

You are already familiar with several command button properties. You have seen that
command buttons vary in size and location. You might want to open a new project, add a
command button to the Form window by double-clicking the command button on the
toolbox, and press F4 to scroll through the Properties window.

Several of the property settings can accept a limited range of numeric values. Most of these
values are named in CONSTANT.TXT, and they are mentioned in this book as well. Some
property settings accept either True or False values, indicating a yes or no condition. For
example, if the Cancel property is set to True, that command button is the cancel command
button and all other command buttons must contain a False Cancel property because only
one command button on a form can have a True Cancel property.

 43

Command button properties.

Property Description

BackColor The command button is one of the few controls for which the background
color property means very little. When you change the background color,
only the dotted line around the command button's caption changes color.

Cancel If True, Visual Basic automatically clicks this command button when the
user presses Esc. Only one command button can have a True Cancel
property value at a time. All command buttons initially have their Cancel
property set to False.

Caption The text that appears on the command button. If you precede any character
in the text with an ampersand (&),it acts as the access key. Therefore, the
access key for a command button with a Caption property set to E&xit is
Alt+X. The default Caption value is the command button's Name value.

Default The command button with the initial focus when the form first activates has
a Default property setting of True. All command buttons initially have False
Default property values until you change one of them.

Definition: An icon is a picture on the screen.

DragIcon The icon that appears when the user drags the command button around on

the form.

Because you only rarely enable the to user move a command button, you won’t use the
Drag... property settings very much.

Enabled If True (the default), the command button can respond to events. Otherwise,

Visual Basic halts event processing for that particular control.

FontBold If True (the default), the Caption displays in boldfaced characters.

FontItalic If True (the default), the caption displays in italicized characters.

FontName The name of the style of the command button caption. You typically use the
name of a Windows True Type font.

(margin)Definition: A point is 1/72 of one inch.

FontSize The size, in points, of the font used for the command button's caption.

FontStrikethru If True (the default), the caption displays in strikethrough letters. In other
words, characters have a line drawn through them.

FontUnderline If True (the default), the caption displays in underlined letters.

Height The height of the command button in twips.

HelpContextID If you add advanced context-sensitive help to your application, the

 44

HelpContextID provides the identifying number for the help text.

Index If the command button is part of a control array, the Index property provides
the numeric subscript for each particular command button.

Left The number of twips from the left edge of the Form window to the left edge
of the command button.

MousePointer The shape to which the mouse cursor changes if the user moves the mouse
cursor over the command button. The possible values range from 0 to 12
and represent the different shapes that the mouse cursor can take on.

Name The name of the control. By default, Visual Basic generates the names
Command1, Command2, and so on, as you add subsequent command
buttons to the form.

TabIndex The focus tab order begins at 0 and increments every time you add a new
control. You can change the focus order by changing the TabIndex values of
the controls. No two controls on the same form can have the same TabIndex
value.

TabStop If True, the user can press Tab to move the focus to this command button. If
False, the command button cannot receive the focus.

Tag Not used by Visual Basic. The programmer can use it for an identifying
comments applied to the command button.

Top The number of twips from the top edge of a command button to the top of
the form.

Visible True or False, indicating whether the user can see and, therefore, use the
command button.

Width The width of the command button in twips.

The PictureBox Control

PictureBox controls are among the most powerful and complex items in the Visual Basic
Toolbox window. In a sense, these controls are more similar to forms than to other controls.
For example, PictureBox controls support all the properties related to graphic output,
including AutoRedraw, ClipControls, HasDC, FontTransparent, CurrentX, CurrentY, and all
the Drawxxxx, Fillxxxx, and Scalexxxx properties. PictureBox controls also support all
graphic methods, such as Cls, PSet, Point, Line, and Circle and conversion methods, such as
ScaleX, ScaleY, TextWidth, and TextHeight. In other words, all the techniques that I
described for forms can also be used for PictureBox controls (and therefore won't be covered
again in this section).

Loading images

Once you place a PictureBox on a form, you might want to load an image in it, which you do
by setting the Picture property in the Properties window. You can load images in many
different graphic formats, including bitmaps (BMP), device independent bitmaps (DIB),
metafiles (WMF), enhanced metafiles (EMF), GIF and JPEG compressed files, and icons
(ICO and CUR). You can decide whether a control should display a border, resetting the
BorderStyle to 0-None if necessary. Another property that comes handy in this phase is

 45

AutoSize: Set it to True and let the control automatically resize itself to fit the assigned
image.

You might want to set the Align property of a PictureBox control to something other than the
0-None value. By doing that, you attach the control to one of the four form borders and have
Visual Basic automatically move and resize the PictureBox control when the form is resized.
PictureBox controls expose a Resize event, so you can trap it if you need to move and resize
its child controls too.

You can do more interesting things at run time. To begin with, you can programmatically
load any image in the control using the LoadPicture function:

Picture1.Picture = LoadPicture("c:\windows\setup.bm p")

and you can clear the current image using either one of the following statements:

' These are equivalent.
Picture1.Picture = LoadPicture("")
Set Picture1.Picture = Nothing

The LoadPicture function has been extended in Visual Basic 6 to support icon files
containing multiple icons. The new syntax is the following:

LoadPicture(filename, [size], [colordepth], [x], [y])

where values in square brackets are optional. If filename is an icon file, you can select a
particular icon using the size or colordepth arguments. Valid sizes are 0-vbLPSmall, 1-
vbLPLarge (system icons whose sizes depend on the video driver), 2-vbLPSmallShell, 3-
vbLPLargeShell (shell icons whose dimensions are affected by the Caption Button property
as set in the Appearance tab in the screen's Properties dialog box), and 4-vbLPCustom (size
is determined by x and y). Valid color depths are 0-vbLPDefault (the icon in the file that best
matches current screen settings), 1-vbLPMonochrome, 2-vbLPVGAColor (16 colors), and 3-
vbLPColor (256 colors).

You can copy an image from one PictureBox control to another by assigning the target
control's Picture property:

Picture2.Picture = Picture1.Picture

 46

The PaintPicture demonstration program shows several graphic effects.

The Image Control

Image controls are far less complex than PictureBox controls. They don't support graphical
methods or the AutoRedraw and the ClipControls properties, and they can't work as
containers, just to hint at their biggest limitations. Nevertheless, you should always strive to
use Image controls instead of PictureBox controls because they load faster and consume less
memory and system resources. Remember that Image controls are windowless objects that
are actually managed by Visual Basic without creating a Windows object. Image controls
can load bitmaps and JPEG and GIF images.

When you're working with an Image control, you typically load a bitmap into its Picture
property either at design time or at run time using the LoadPicture function. Image controls
don't expose the AutoSize property because by default they resize to display the contained
image (as it happens with PictureBox controls set at AutoSize = True). On the other hand,
Image controls support a Stretch property that, if True, resizes the image (distorting it if
necessary) to fit the control. In a sense, the Stretch property somewhat remedies the lack of
the PaintPicture method for this control. In fact, you can zoom in to or reduce an image by
loading it in an Image control and then setting its Stretch property to True to change its width
and height:

' Load a bitmap.
Image1.Stretch = False
Image1.Picture = LoadPicture("c:\windows\setup.bmp")
' Reduce it by a factor of two.
Image1.Stretch = True
Image1.Move 0, 0, Image1.Width / 2, Image1.Width / 2

Image controls support all the usual mouse events. For this reason, many Visual Basic
developers have used Image controls to simulate graphical buttons and toolbars. Now that
Visual Basic natively supports these controls, you'd probably better use Image controls only
for what they were originally intended.

 47

WEEK 5:

ADDING AND ACTIVATING VB CONTROLS IN A PROGRAM

During this week you will learn :

• Creating non-wizard applications
• Adding Controls to applications
• Managing Controls
• Change the control properties
• Common Properties
• Handling Control Event
• Common Events
• Writing Code

Creating non-wizard applications

You can create a single project .

1. On the File menu, click Create Project to display the Create Project dialog box.

2. In the New Project box, Click Standard.EXE and then Click OK.

Adding Controls to applications

To place a control on the form, you can do one of two things:

• Double-click the Toolbox control. Visual Basic places and centers the control on
your form. You then have to move and size the control to your preferences.

• Click the control and move the mouse pointer to the Form window. Drag to draw the
control's outline on your form in the placement and size you need.

 48

Managing Controls

Moving controls

Controls can be moved around a form by dragging them with the mouse.

Deleting Controls

First selected the control you want to delete, then you can use many ways

- Press Delete Key
- Right Click then select Delete.
- From Edit menu Select Delete

Resizing controls

Before a control can be resized it must be selected. When a control is selected it will be
surrounded by black dots or handles. Clicking and dragging one of these handles will adjust
the size of the control.

Change the control properties

The properties window lists all the properties a control has and their value. The default value
of a property can be changed. Just select the property first then change its value.

 49

Common Properties

At first glance, it might seem that Visual Basic 6 supports countless properties for various
objects. Fortunately, there's a set of properties many objects of different classes share. In this
section, we'll examine these common properties.

The Left, Top, Width, and Height Properties

All visible objects—forms and controls—expose these properties, which affect the object's
position and size. These values are always relative to the object's container—that is, the
screen for a form and the parent form for a control. A control can also be contained in
another control, which is said to be its container: In this case, Top and Left properties are
relative to such a container control. By default, these properties are measured in twips, a unit
that lets you create resolution-independent user interfaces, but you can switch to another
unit, for example, pixels or inches, by setting the container's ScaleMode property. But you
can't change the unit used for forms because they have no container: Left, Top, Width, and
Height properties for forms are always measured in twips.

While you can enter numeric values for these properties right in the Properties window at
design time, you often set them in a visual manner by moving and resizing the control on its
parent form. Keep in mind that Visual Basic also offers many interactive commands in the
Format menu that let you resize, align, and space multiple controls in one operation. You can
also access and modify these properties through code to move or resize objects at run time:

' Double a form's width, and move it to the
' upper left corner of the screen.
Form1.Width = Form1.Width * 2
Form1.Left = 0
Form1.Top = 0

Note that while all controls—even invisible ones—expose these four properties at design
time in the Properties window, controls that are inherently invisible—Timer controls, for
example—don't support these properties at run time, and you can't therefore read or modify
them through code.

CAUTION
Controls don't necessarily have to support all four properties in a uniform manner. For
example, ComboBox controls' Height property can be read but not written to, both at design
time and run time. As far as I know, this is the only example of a property that appears in the
Properties window but can't be modified at design time. This happens because the height of a
ComboBox control depends on the control's Font attributes. Remember this exception when
writing code that modifies the Height property for all the controls in a form.

The ForeColor and BackColor Properties

Most visible objects expose ForeColor and BackColor properties, which affect the color of
the text and the color of the background, respectively. The colors of a few controls—scroll
bars, for example—are dictated by Microsoft Windows, however, and you won't find
ForeColor and BackColor entries in the Properties window. In other cases, the effect of these
properties depends on other properties: for example, setting the BackColor property of a
Label control has no effect if you set the BackStyle property of that Label to 0-Transparent.

 50

CommandButton controls are peculiar in that they expose a BackColor property but not a
ForeColor property, and the background color is active only if you also set the Style property
to 1-Graphical. (Because the default value for the Style property is 0-Standard, it might take
you a while until you understand why the BackColor property doesn't affect the background
color in the usual manner.)

When you're setting one of these two properties in the Properties window, you can select
either a standard Windows color or a custom color using the System tab in the first case and
the Palette tab in the second, as you can see in Figure. My first suggestion is always use a
standard color value unless you have a very good reason to use a custom color. System
colors display well on any Windows machine, are likely to conform to your customers'
tastes, and contribute to making your application look well integrated in the system. My
second suggestion is if you want to use custom colors, develop a consistent color scheme and
use it throughout your application. I also have a third suggestion: Never mix standard and
custom colors on the same form, and don't use a standard color for the ForeColor property
and a custom color for the BackColor property of the same control (or vice versa), because
the user might change the system palette in a way that makes the control completely
unreadable.

You can choose from several ways to assign a color in code. Visual Basic provides a set of
symbolic constants that correspond to all the colors that appear in the System tab in the
Properties window at design time:

' Make Label1 appear in a selected state.
Label1.ForeColor = vbHighlightText
Label1.BackColor = vbHighlight

All the symbolic constants are shown in the following table.

Constant Hex Value Description

vb3DDKShadow &H80000015 Darkest shadow

vb3Dface &H8000000F Dark shadow color for 3-D display elements

vb3Dhighlight &H80000014 Highlight color for 3-D display elements

vb3Dlight &H80000016 Second lightest of the 3-D colors after
vb3Dhighlight

vb3Dshadow &H80000010 Color of automatic window shadows

vbActiveBorder &H8000000A Active window border color

vbActiveTitleBar &H80000002 Active window caption color

vbActiveTitleBarText &H80000009 Text color in active caption, size box, scroll
bar arrow box

vbApplicationWorkspace &H8000000C Background color of multiple-document
interface (MDI) applications

vbButtonFace &H8000000F Face shading on command buttons

vbButtonShadow &H80000010 Edge shading on command buttons

 51

vbButtonText &H80000012 Text color on push buttons

vbDesktop &H80000001 Desktop color

vbGrayText &H80000011 Grayed (disabled) text

vbHighlight &H8000000D Background color of items selected in a
control

vbHighlightText &H8000000E Text color of items selected in a control

vbInactiveBorder &H8000000B Inactive window border color

vbInactiveCaptionText &H80000013 Color of text in an inactive caption

vbInactiveTitleBar &H80000003 Inactive window caption color

vbInactiveTitleBarText &H80000013 Text color in inactive window caption, size
box, scroll bar arrow box

vbInfoBackground &H80000018 Background color of ToolTips

vbInfoText &H80000017 Color of text in ToolTips

vbMenuBar &H80000004 Menu background color

vbMenuText &H80000007 Text color in menus

vbScrollBars &H80000000 Scroll bar gray area color

vbTitleBarText &H80000009 Text color in active caption, size box, scroll
bar arrow box

vbWindowBackground &H80000005 Window background color

vbWindowFrame &H80000006 Window frame color

vbWindowText &H80000008 Text color in windows

You can also browse them in the Object Browser window, after clicking the
SystemColorConstants item in the leftmost list box. (If you don't see it, first select <All
libraries> or VBRUN in the top ComboBox control). Note that all the values of these
constants are negative.

 52

When you're assigning a custom color, you can use one of the symbolic constants that Visual
Basic defines for the most common colors (vbBlack, vbBlue, vbCyan, vbGreen, vbMagenta,
vbRed, vbWhite, and vbYellow), or you can use a numeric decimal or hexadecimal constant:

' These statements are equivalent.
Text1.BackColor = vbCyan
Text1.BackColor = 16776960
Text1.BackColor = &HFFFF00

You can also use an RGB function to build a color value composed of its red, green, and blue
components. Finally, to ease the porting of existing QuickBasic applications, Visual Basic
supports the QBColor function:

' These statements are equivalent to the ones above .
Text1.BackColor = RGB(0, 255, 255) ' red, green, blue values
Text1.BackColor = QBColor(11)

The Font Property

Forms and those controls that can display strings of characters expose the Font property. At
design time, you set font attributes using a common dialog box, which you can see in Figure.
Dealing with fonts at run time, however, is less simple because you must account for the fact
that Font is a compound object, and you must assign its properties separately. Font objects
expose the Name, Size, Bold, Italic, Underline, and Strikethrough properties.

Text1.Font.Name = "Tahoma"
Text1.Font.Size = 12
Text1.Font.Bold = True

 53

Text1.Font.Underline = True

 At design time the Font dialog box lets you modify all font attributes at once and preview
the result.

It should be made clear, however, that the preceding code actually assigns the same Font
objects to both controls. This means that if you later change Text1's font attributes, the
appearance of Text2 will also be affected. This behavior is perfectly consistent with the Font
object's nature, even though the reasons for. You can take advantage of this approach—for
example, if all the controls in your form always use the same font—but you should
absolutely avoid it when the controls in question are supposed to have independent font
attributes.

Visual Basic 6 still supports old-style Font properties such as FontName, FontSize,
FontBold, FontItalic, FontUnderline, and FontStrikethru, but you can modify them only
through code because they don't appear in the Properties window at design time. You can use
the syntax that you like most because the two forms are perfectly interchangeable. In this
book, however, I mostly follow the newer object-oriented syntax.

The Font.Size property (or the equivalent FontSize property) is peculiar because in general
you can't be sure that Visual Basic is able to create a font of that particular size, especially if
you aren't working with a TrueType font. The short code snippet below proves this.

Text1.Font.Name = "Courier"
Text1.Font.Size = 22
Print Text1.Font.Size ' Prints 19.5

 54

The Caption and Text Properties

The Caption property is a string of characters that appears inside a control (or in the title bar
of a form) and that the user can't directly modify. Conversely, the Text property corresponds
to the "contents" of a control and is usually editable by the end user. No intrinsic control
exposes both a Caption and a Text property, so in practice a look at the Properties window
can resolve your doubts as to what you're working with. Label, CommandButton, CheckBox,
OptionButton, Data, and Frame controls expose the Caption property, whereas TextBox,
ListBox, and ComboBox controls expose the Text property.

The Caption property is special in that it can include an ampersand (&) character to associate
a hot key with the control. The Text property, when present, is always the default property
for the control, which means that it can be omitted in code:

' These statements are equivalent.
Text2.Text = Text1.Text
Text2 = Text1

The Parent and Container Properties

The Parent property is a run time_only property (that is, you don't see it in the Properties
window), which returns a reference to the form that hosts the control. The Container property
is also a run time_only property, which returns a reference to the container of the control.
These two properties are correlated, in that they return the same object—the parent form—
when a control is placed directly on the form surface.

While you can't move a control from one form to another using the Parent property (which is
read-only), you can move a control to another container by assigning a different value to its
Container property (which is a read-write property). Because you're assigning objects and
not plain values, you must use the Set keyword:

' Move Text1 into the Picture1 container.
Set Text1.Container = Picture1
' Move it back on the form's surface.
Set Text1.Container = Form1

The Enabled and Visible Properties

By default, all controls and forms are both visible and enabled at run time. For a number of
reasons, however, you might want to hide them or show them in a disabled state. For
example, you might use a hidden DriveListBox control simply to enumerate all the drives in
the system. In this case, you set the Visible property of the DriveListBox control to False in
the Properties window at design time. More frequently, however, you change these
properties at run time:

' Enable or disable the Text1 control when
' the user clicks on the Check1 CheckBox control.
Private Sub Check1_Click()
 Text1.Enabled = (Check1.Value = vbChecked)
End Sub

 55

Disabled controls don't react to user's actions, but otherwise they're fully functional and can
be manipulated through code. Invisible controls are automatically disabled, so you never
need to set both these properties to False. All mouse events for disabled or invisible controls
are passed to the underlying container or to the form itself.

If an object works as a container for other objects—for instance, a Form is a container for its
controls and a Frame control can be a container for a group of OptionButton controls—
setting its Visible or Enabled properties indirectly affects the state of its contained objects.
This feature can often be exploited to reduce the amount of code you write to enable or
disable a group of related controls.

The TabStop and TabIndex Properties

If a control is able to receive the input focus, it exposes the TabStop property. Most intrinsic
controls support this property, including TextBox, OptionButton, CheckBox,
CommandButton, OLE, ComboBox, both types of scroll bars, the ListBox control, and all its
variations. In general, intrinsic lightweight controls don't support this property because they
can never receive the input focus. The default value for this property is True, but you can set
it to False either at design time or run time.

If a control supports the TabStop property, it also supports the TabIndex property, which
affects the Tab order sequence—that is, the sequence in which the controls are visited when
the user presses the Tab key repeatedly. The TabIndex property is also supported by Label
and Frame controls, but since these two controls don't support the TabStop property, the
resulting effect is that when the user clicks on a Label or a Frame control (or presses the hot
key specified in the Label or Frame Caption property), the input focus goes to the control
that follows in the Tab order sequence. You can exploit this feature to use Label and Frame
controls to provide hot keys to other controls:

' Let the user press the Alt+N hot key
' to move the input focus on the Text1 control.
Label1.Caption = "&Name"
Text1.TabIndex = Label1.TabIndex + 1

The MousePointer and MouseIcon Properties

These properties affect the shape of the mouse cursor when it hovers over a control.
Windows permits a very flexible mouse cursor management in that each form and each
control can display a different cursor, and you can also set an application-wide mouse cursor
using the Screen global object. Nevertheless, the rules that affect the actual cursor used aren't
straightforward:

• If the Screen.MousePointer property is set to a value different from 0-vbDefault, the
mouse cursor reflects this value and no other properties are considered. But when the
mouse floats over a different application (or the desktop), the cursor appearance
depends on that application's current state, not yours.

• If Screen.MousePointer is 0 and the mouse cursor is over a control, Visual Basic
checks that control's MousePointer property; if this value is different from 0-
vbDefault, the mouse cursor is set to this value.

• If Screen.MousePointer is 0 and the mouse is over a form's surface or it's over a
control whose MousePointer property is 0, Visual Basic uses the value stored in the
form's MousePointer property.

 56

If you want to show an hourglass cursor, wherever the user moves the mouse, use this code:

' A lengthy routine
Screen.MousePointer = vbHourglass
...
' Do your stuff here
...
' but remember to restore default pointer.
Screen.MousePointer = vbDefault

Here's another example:

' Show a crosshair cursor when the mouse is over th e Picture1
' control and an hourglass elsewhere on the parent form.
Picture1.MousePointer = vbCrosshair
MousePointer = vbHourglass

The MouseIcon property is used to display a custom, user-defined mouse cursor. In this case,
you must set the MousePointer to the special value 99-vbCustom and then assign an icon to
the MouseIcon property:

' Display a red Stop sign mouse cursor. The actual path may differ,
' depending on the main directory where you install ed Visual Basic.
MousePointer = vbCustom
MouseIcon = LoadPicture("d:\vb6\graphics\icons\comp uter\msgbox01.ico")

You don't need to load a custom mouse cursor at run time using the LoadPicture command.
For example, you can assign it to the MouseIcon property at design time in the Properties
window, as you can see in Figure, and activate it only when needed by setting the
MousePointer property to 99-vbCustom. If you need to alternate among multiple cursors for
the same control but don't want to distribute additional files, you can load additional ICO
files in hidden Image controls and switch among them at run time.

 57

The Tag Property

All controls support the Tag property, without exception. This is true even for ActiveX
controls, including any third-party controls. How can I be so certain that all controls support
this property? The reason is that the property is provided by Visual Basic itself, not by the
control. Tag isn't the only property provided by Visual Basic to any control: Index, Visible,
TabStop, TabIndex, ToolTipText, HelpContextID, and WhatsThisHelpID properties all
belong to the same category. These properties are collectively known as extender properties.
Note that a few extender properties are available only under certain conditions. For example,
TabStop is present only if the control can actually receive the focus. The Tag property is
distinctive because it's guaranteed to be always available, and you can reference it in code
without any risk of raising a run-time error.

The Tag property has no particular meaning to Visual Basic: It's simply a container for any
data related to the control that you want to store. For example, you might use it to store the
initial value displayed in a control so that you can easily restore it if the user wants to undo
his or her changes.

Handling Control Event

Visual Basic applications work by executing code written in the Visual Basic programming
language. Code is associated with events.

 58

Each Visual Basic object has a set of events. Events are actions which Visual Basic can
detect and respond to. For example, a user clicking on a command button on a form will
generate a click event for that button.

When an event is generated Visual Basic will run any code you have entered for that event.

Common Events

Visual Basic 6 forms and controls support common events. In this section, we'll describe
these events in some detail.

The Click and DblClick Events

A Click event occurs when the user left-clicks on a control, whereas the DblClick event
occurs—you guessed it—when he or she double-clicks on the control using the left mouse
button. But don't be fooled by this apparent simplicity because the Click event can occur
under different circumstances as well. For example, whenever a CheckBox or an
OptionButton control's Value property changes through code, Visual Basic fires a Click
event, exactly as if the user had clicked on it. This behavior is useful because it lets you deal
with the two different cases in a uniform way. ListBox and ComboBox controls also fire
Click events whenever their ListIndex properties change.

Click and DblClick events don't pass arguments to the program, and therefore you can't
count on these events to tell you where the mouse cursor is. To get this information, you
must trap the MouseDown event instead, about which I'll say more later in this chapter. Also
notice that when you double-click on a control, it receives both the Click and the DblClick
events. This makes it difficult to distinguish single clicks from double-clicks because when
Visual Basic calls your Click event procedure you don't know whether it will later call the
DblClick procedure. At any rate, you should avoid assigning different functions to click and
double-click actions on the same control because it tends to confuse the user.

The Change Event

The Change event is the simplest event offered by Visual Basic: Whenever the contents of a
control change, Visual Basic fires a Change event. Unfortunately, this simple scheme hasn't
been consistently followed in the Visual Basic architecture. As I explained in the previous
section, when you click on CheckBox and OptionButton controls, they fire a Click event
(rather than a Change event). Fortunately, this inconsistency isn't a serious one.

TextBox and ComboBox controls raise a Change event when the user types something in the
editable area of the control. (But be careful, the ComboBox control raises a Click event when
the user selects an item from the list portion rather than types in a box.) Both scroll bar
controls raise the Change event when the user clicks on either arrows or moves the scroll
boxes. The Change event is also supported by the PictureBox, DriveListBox, and DirListBox
controls.

The Change event also fires when the contents of the control are changed through code. This
behavior often leads to some inefficiencies in the program. For instance, many programmers
initialize the Text properties of all TextBox controls in the form's Load event, thus firing
many Change events that tend to slow down the loading process.

 59

The GotFocus and LostFocus Events

These events are conceptually very simple: GotFocus fires when a control receives the input
focus, and LostFocus fires when the input focus leaves it and passes to another control. At
first glance, these events seem ideal for implementing a sort of validation mechanism—that
is, a piece of code that checks the contents of a field and notifies the user if the input value
isn't correct as soon as he or she moves the focus to another control. In practice, the sequence
of these events is subject to several factors, including the presence of MsgBox and DoEvents
statements. Fortunately, Visual Basic 6 has introduced the new Validate event, which
elegantly solves the problem of field validation

Finally, note that forms support both GotFocus and LostFocus events, but these events are
raised only when the form doesn't contain any control that can receive the input focus, either
because all of the controls are invisible or the TabStop property for each of them is set to
False.

The KeyPress, KeyDown, and KeyUp Events

These events fire whenever the end user presses a key while a control has the input focus.
The exact sequence is as follows: KeyDown (the users presses the key), KeyPress (Visual
Basic translates the key into an ANSI numeric code), and KeyUp (the user releases the key).
Only keys that correspond to control keys (Ctrl+x, BackSpace, Enter, and Escape) and
printable characters activate the KeyPress event. For all other keys—including arrow keys,
function keys, Alt+x key combinations, and so on—this event doesn't fire and only the
KeyDown and KeyUp events are raised.

The KeyPress event is the simplest of the three. It's passed the ANSI code of the key that has
been pressed by the user, so you often need to convert it to a string using the Chr$() function:

Private Text1_KeyPress(KeyAscii As Integer)
 MsgBox "User pressed " & Chr$(KeyAscii)
End Sub

If you modify the KeyAscii parameter, your changes affect how the program interprets the
key. You can also "eat" a key by setting this parameter to 0, as shown in the code below.

Private Sub Text1_KeyPress(KeyAscii As Integer)
 ' Convert all keys to uppercase, and reject bla nks.
 KeyAscii = Asc(UCase$(Chr$(KeyAscii)
 If KeyAscii = Asc(" ") Then KeyAscii = 0
End Sub

The KeyDown and KeyUp events receive two parameters, KeyCode and Shift. The former is
the code of the pressed key, the latter is an Integer value that reports the state of the Ctrl,
Shift, and Alt keys; because this value is bit-coded, you have to use the AND operator to
extract the relevant information:

Private Sub Text1_KeyDown(KeyCode As Integer, Shift As Integer)
 If Shift And vbShiftMask Then
 ' Shift key pressed
 End If
 If Shift And vbCtrlMask Then

 60

 ' Ctrl key pressed
 End If
 If Shift And vbAltMask Then
 ' Alt key pressed
 End If
 ' ...
End Sub

The KeyCode parameter tells which physical key has been pressed, and it's therefore
different from the KeyAscii parameter received by the KeyPress event. You usually test this
value using a symbolic constant, as in the following code:

Private Sub Text1_KeyDown(KeyCode As Integer, Shift As Integer)
 ' If user presses Ctrl+F2, replace the contents
 ' of the control with the current date.
 If KeyCode = vbKeyF2 And Shift = vbCtrlMask The n
 Text1.Text = Date$
 End If
End Sub

In contrast to what you can do with the KeyPress event, you can't alter the program's
behavior if you assign a different value to the KeyCode parameter.

You should note that KeyPress, KeyDown, and KeyUp events might pose special problems
during the debugging phase. In fact, if you place a breakpoint inside a KeyDown event
procedure, the target control will never receive a notification that a key has been pressed and
the KeyPress and KeyUp events will never fire. Similarly, if you enter break mode when
Visual Basic is executing the KeyPress event procedure, the target control will receive the
key but the KeyUp event will never fire.

The KeyDown, KeyPress, and KeyUp events are received only by the control that has the
input focus when the key is pressed. This circumstance, however, makes it difficult to create
form-level key handlers, that is, code routines that monitor keys pressed in any control on the
form. For example, suppose that you want to offer your users the ability to clear the current
field by pressing the F7 key. You don't want to write the same piece of code in the KeyDown
event procedure for each and every control on your form, and fortunately you don't have to.
In fact, you only have to set the form's KeyPreview property to True (either at design time or
at run time, in the Form_Load procedure, for example) and then write this code:

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)
 If KeyCode = vbKeyF7 Then
 ' An error handler is necessary because we can't be sure
 ' that the active control actually supports the Text
 ' property.
 On Error Resume Next
 ActiveControl.Text = ""
 End If
End Sub

If the form's KeyPreview property is set to True, the Form object receives all keyboard-
related events before they're sent to the control that currently has the input focus. Use the
form's ActiveControl property if you need to act on the control with the input focus, as in the
previous code snippet.

 61

The MouseDown, MouseUp, and MouseMove Events

These events fire when the mouse is clicked, released, or moved on a control, respectively.
All of them receive the same set of parameters: the state of mouse buttons, the state of
Shift/Ctrl/Alt keys, and the x- and y-coordinates of the mouse cursor. The coordinates are
always relative to the upper left corner of the control or the form. Following Figure is a code
sample that displays the status and position of the mouse on a Label control and creates a log
in the Immediate window. You can see the results of running this code in Figure

Monitor mouse state using the MouseDown, MouseMove, and MouseUp events. Note the
negative y value when the cursor is outside the form's client area.

Private Sub Form_MouseDown(Button As Integer, _
 Shift As Integer, X As Single, Y As Single)
 ShowMouseState Button, Shift, X, Y
End Sub

Private Sub Form_MouseMove(Button As Integer, _
 Shift As Integer, X As Single, Y As Single)
 ShowMouseState Button, Shift, X, Y
End Sub
Private Sub Form_MouseUp(Button As Integer, _
 Shift As Integer, X As Single, Y As Single)
 ShowMouseState Button, Shift, X, Y
End Sub

Private Sub ShowMouseState (Button As Integer, _
 Shift As Integer, X As Single, Y As Single)
 Dim descr As String

 62

 descr = Space$(20)
 If Button And vbLeftButton Then Mid$(descr, 1, 1) = "L"
 If Button And vbRightButton Then Mid$(descr, 3, 1) = "R"
 If Button And vbMiddleButton Then Mid$(descr, 2 , 1) = "M"
 If Shift And vbShiftMask Then Mid$(descr, 5, 5) = "Shift"
 If Shift And vbCtrlMask Then Mid$(descr, 11, 4) = "Ctrl"
 If Shift And vbAltMask Then Mid$(descr, 16, 3) = "Alt"
 descr = "(" & X & ", " & Y & ") " & descr
 Label1.Caption = descr
 Debug.Print descr
End Sub

While writing code for mouse events, you should be aware of a few implementation details
as well as some pitfalls in using these events. Keep in mind the following points:

• The x and y values are relative to the client area of the form or the control, not to its
external border; for a form object, the coordinates (0,0) correspond to the pixel in the
upper left corner below the title bar or the menu bar (if there is one). When you move
the mouse cursor outside the form area, the values of coordinates might become
negative or exceed the height and width of the client area.

• When you press a mouse button over a form or a control and then move the mouse
outside its client area while keeping the button pressed, the original control continues
to receive mouse events. In this case, the mouse is said to be captured by the control:
the capture state terminates only when you release the mouse button. All the
MouseMove and MouseUp events fired in the meantime might receive negative
values for the x and y parameters or values that exceed the object's width or height,
respectively.

• MouseDown and MouseUp events are raised any time the user presses or releases a
button. For example, if the user presses the left button and then the right button
(without releasing the left button), the control receives two MouseDown events and
eventually two MouseUp events.

• The Button parameter passed to MouseDown and MouseUp events reports which
button has just been pressed and released, respectively. Conversely, the MouseMove
event receives the current state of all (two or three) mouse buttons.

• When the user releases the only button being pressed, Visual Basic fires a MouseUp
event and then a MouseMove event, even if the mouse hasn't moved. This detail is
what makes the previous code example work correctly after a button release: The
current status is updated by the extra MouseMove event, not by the MouseUp event,
as you probably expected. Note, however, that this additional MouseMove event
doesn't fire when you press two buttons and then release only one of them.

It's interesting to see how MouseDown, MouseUp, and MouseMove events relate to Click
and DblClick events:

• A Click event occurs after a MouseDown … MouseUp sequence and before the extra
MouseMove event.

• When the user double-clicks on a control, the complete event sequence is as follows:
MouseDown, MouseUp, Click, MouseMove, DblClick, MouseUp, MouseMove.
Note that the second MouseDown event isn't generated.

• If the control is clicked and then the mouse is moved outside its client area, the Click
event is never raised. However, if you double-click a control and then you move the
mouse outside its client area, the complete event sequence occurs. This behavior
reflects how controls work under Windows and shouldn't be considered a bug.

 63

Writing Code

In this exercise you will write code to make your ‘Hello’ label visible and invisible to the
user when the On and Off buttons are clicked.

Each object has an associated set of events which it can respond to. To enter the code, you
must access the code window.

Double click on the ‘On’ button or click the right mouse button and select View Code from
the object menu.

The code window will appear as shown below.

Click on the Object menu and select Command1 from the list.

The code window has three main components.

1. The object menu allows you to change between controls. For example, you could use
this menu to look at the code for the Off button.

2. The event menu lists all of the available events for the selected control. This list will
change depending on the type of control selected.

3. The code for the event is shown in the main part of the window. Your code will
appear between the Private Sub and End Sub statements.

Position the cursor in the blank line between the Private Sub and End Sub statements.

 64

Visual Basic 6.0 uses the programming language Visual Basic for Applications, the same
language found in many Microsoft Office applications including Microsoft Excel, Microsoft
Access and Microsoft Project.

The statement you are going to type assigns a value to the Visible property for the label on
your form. This property is set to the value True by default at design time. Your Visual Basic
statement will change the value of the property when the command button is clicked.

The syntax to refer to a property in code is:

ObjectName.PropertyName

The syntax to assign a value is

ObjectName.PropertyName = Value

Press the tab key to indent the line of code and type Label1.Visible = True, and press the
Enter key.

Notice that the True has turned blue. This indicates that True is a special word or symbol that
Visual Basic understands. Such words are known as reserved words.

Close the code window.

You will now follow the same process to enter the code for the Off button to make the
‘Hello’ label invisible when this button is clicked.

Double click on the Off button to access the code window.

Position the cursor between the Private Sub and End Sub statements.

Press Tab and type Label1.Visible = False. Press the Enter key.

Close the code window.

 65

WEEK 6 :

USING LOGICAL EXPRESSION

During this week you will learn :

• If...Then...Else Statement
• Select Case Statement
• OptionButton Control
• CheckBox Control
• Frame Control

If...Then...Else Statement

Conditionally executes a group of statements, depending on the value of an expression.

Syntax

If condition Then [statements] [Else elsestatements]

Or, you can use the block form syntax:

If condition Then
[statements]

[ElseIf condition-n Then
[elseifstatements] ...

[Else
[elsestatements]]

End If

The If...Then...Else statement syntax has these parts:

Part Description

Condition Required. One or more of the following two types of expressions:

 A numeric expression or string expression that evaluates to True or
False. If condition is Null, condition is treated as False.

Statements Optional in block form; required in single-line form that has no Else
clause. One or more statements separated by colons; executed if
condition is True.

condition-n Optional. Same as condition.

elseifstatements Optional. One or more statements executed if associated condition-n
is True.

 66

Elsestatements Optional. One or more statements executed if no previous condition
or condition-n expression is True.

Remarks

You can use the single-line form (first syntax) for short, simple tests. However, the block
form (second syntax) provides more structure and flexibility than the single-line form and is
usually easier to read, maintain, and debug.

Note With the single-line form, it is possible to have multiple statements executed as the
result of an If...Then decision. All statements must be on the same line and separated by

colons, as in the following statement:
If A > 10 Then A = A + 1 : B = B + A : C = C + B

A block form If statement must be the first statement on a line. The Else, ElseIf, and End If
parts of the statement can have only a line number or line label preceding them. The block If
must end with an End If statement.

To determine whether or not a statement is a block If , examine what follows the Then
keyword. If anything other than a comment appears after Then on the same line, the
statement is treated as a single-line If statement.

The Else and ElseIf clauses are both optional. You can have as many ElseIf clauses as you
want in a block If , but none can appear after an Else clause. Block If statements can be
nested; that is, contained within one another.

When executing a block If (second syntax), condition is tested. If condition is True, the
statements following Then are executed. If condition is False, each ElseIf condition (if any)
is evaluated in turn. When a True condition is found, the statements immediately following
the associated Then are executed. If none of the ElseIf conditions are True (or if there are
no ElseIf clauses), the statements following Else are executed. After executing the
statements following Then or Else, execution continues with the statement following End If .

Example :

This example shows both the block and single-line forms of the If...Then...Else statement. It
also illustrates the use of If TypeOf...Then...Else.

Dim Number, Digits, MyString
Number = 53 ' Initialize variable.
If Number < 10 Then
 Digits = 1
ElseIf Number < 100 Then
' Condition evaluates to True so the next statement is executed.
 Digits = 2
Else
 Digits = 3
End If

' Assign a value using the single-line form of synt ax.
If Digits = 1 Then MyString = "One" Else MyString = "More than one"

 67

Select Case Statement

Executes one of several groups of statements, depending on the value of an expression.

Syntax

Select Case testexpression
[Case expressionlist-n
[statements-n]] ...
[Case Else
[elsestatements]]

End Select

The Select Case statement syntax has these parts:

Part Description

Testexpression Required. Any numeric expression or string expression.

expressionlist-n Required if a Case appears. Delimited list of one or more of the
following forms: expression, expression To expression, Is
comparisonoperator expression. The To keyword specifies a range of
values. If you use the To keyword, the smaller value must appear
before To. Use the Is keyword with comparison operators (except Is
and Like) to specify a range of values. If not supplied, the Is
keyword is automatically inserted.

statements-n Optional. One or more statements executed if testexpression matches
any part of expressionlist-n.

Elsestatements Optional. One or more statements executed if testexpression doesn't
match any of the Case clause.

Remarks

If testexpression matches any Case expressionlist expression, the statements following that
Case clause are executed up to the next Case clause, or, for the last clause, up to End Select.
Control then passes to the statement following End Select. If testexpression matches an
expressionlist expression in more than one Case clause, only the statements following the
first match are executed.

The Case Else clause is used to indicate the elsestatements to be executed if no match is
found between the testexpression and an expressionlist in any of the other Case selections.
Although not required, it is a good idea to have a Case Else statement in your Select Case
block to handle unforeseen testexpression values. If no Case expressionlist matches
testexpression and there is no Case Else statement, execution continues at the statement
following End Select.

You can use multiple expressions or ranges in each Case clause. For example, the following
line is valid:

 68

Case 1 To 4, 7 To 9, 11, 13, Is > MaxNumber

Note The Is comparison operator is not the same as the Is keyword used in the Select Case
statement.

You also can specify ranges and multiple expressions for character strings. In the following
example, Case matches strings that are exactly equal to everything , strings that fall
between nuts and soup in alphabetic order, and the current value of TestItem :

Case "everything", "nuts" To "soup", TestItem

Select Case statements can be nested. Each nested Select Case statement must have a
matching End Select statement.

Example

This example uses the Select Case statement to evaluate the value of a variable. The second
Case clause contains the value of the variable being evaluated, and therefore only the
statement associated with it is executed.

Dim Number
Dim strmsg as string
Number = 8 ' Initialize variable.
Select Case Number ' Evaluate Number.
Case 1 To 5 ' Number between 1 and 5, inclusive.
 strmsg "Between 1 and 5"
' The following is the only Case clause that evalua tes to True.
Case 6, 7, 8 ' Number between 6 and 8.
 strmsg "Between 6 and 8"
Case 9 To 10 ' Number is 9 or 10.
 strmsg "Greater than 8"
Case Else ' Other values.
 strmsg "Not between 1 and 10"
End Select

Example

Select Case CorrectAnswers%
`Make any answer greater than 11 an A++
 Case 11
 strGrade = "A+"
 Case 10
 strGrade = "A"
 Case 9
 strGrade = "A-"
 Case 8
 strGrade = "B"
 Case 7
 strGrade = "B-"
 Case 6
 strGrade = "C"
 Case 5
 strGrade = "C-"
 Case 4
 strGrade = "D"
 Case 3
 strGrade = "D-"
 Case Else
 strGrade = "F"

 69

End Select

OptionButton Control

An OptionButton control displays an option that can be turned on or off.

Syntax

OptionButton

Remarks

Usually, OptionButton controls are used in an option group to display options from which
the user selects only one. You group OptionButton controls by drawing them inside a
container such as a Frame control, a PictureBox control, or a form. To group
OptionButton controls in a Frame or PictureBox, draw the Frame or PictureBox first, and
then draw the OptionButton controls inside. All OptionButton controls within the same
container act as a single group.

While OptionButton controls and CheckBox controls may appear to function similarly,
there is an important difference: When a user selects an OptionButton , the other
OptionButton controls in the same group are automatically unavailable. In contrast, any
number of CheckBox controls can be selected.

Example :

You will now use a set of option buttons on your form to represent three font type choices
for the text box.

Double click on the option button control in the tool box.

Move the option button to an appropriate location.

Repeat the steps above to add two more option buttons to your form.

 70

Change the Name and Caption properties of the option buttons as given below.

Name Caption
OptMSSansSerif MS Sans Serif

optTimesNewRoman Times New Roman
OptArial Arial

You may need to resize the option controls so that the caption fits on one line.

 You will set the initial value of the MS Sans Serif option button to True because this is the
default font type for the text box.

To do this you set the Value property. The possible values are True or False. True indicates
that the option button is selected.

Click on the MS Sans Serif option button on your form to select it.

Click on the Value property in the properties window.

Use the pull down menu in the editing panel to change the value to True as shown below.

The code for the option buttons sets the FontName property for the text box accordingly.

Double click on the MS Sans Serif option button in your form.

The code window will appear.

 71

Enter the code shown below. Remember that the Private Sub and End Sub statements are
automatically included by Visual Basic.

Private Sub optMSSansSerif_Click ()
 txtInput.FontName = "MS Sans Serif"
End Sub

Repeat this process to enter the code shown below for the Times New Roman button.

Private Sub optTimesNewRoman_Click ()
 txtInput.FontName = "Times New Roman"
End Sub

Repeat the process again to enter the code shown below for the Arial button.

Private Sub optArial_Click ()
 txtInput.FontName = "Arial"
End Sub

Run the application to see the result.

 Type some text in the text box.

Click on the Times New Roman option button to select it.

The text in the text box will be displayed in Times New Roman.

Try the Arial and MS Sans Serif buttons.

Click on the Stop button on the tool bar to return to Visual Basic.

The final task is to change the background colour of the text box when the font changes.
Visual Basic provides names for colour values, for example, vbRed for red, vbGreen for
green and vbBlue for blue.

You need to add a line of code, which assigns a value to the BackColor property of the text
box, to the option button code.

Double click on the MS Sans Serif option button and insert the line shown:

Private Sub optMSSansSerif_Click ()
 txtInput.FontName = "MS Sans Serif"
 txtInput.BackColor = vbGreen
End Sub

Add code to the Times New Roman button to change the text box colour to Red and code to
the Arial button to change the text box colour to Blue.
Try out your application.

To tidy up the form you will add a title to it and change the size.

Click anywhere on the form to select it. Be careful not to click on a control.

Change the Caption property of the form to read Text Formats.

 72

Resize the form to a more appropriate size.

The completed form will appear as shown below.

Run the application to test the changes.

Save the project. Remember to save both the project file and the form.

CheckBox Control

A CheckBox control displays an X when selected; the X disappears when the CheckBox is
cleared. Use this control to give the user a True/False or Yes/No option. You can use
CheckBox controls in groups to display multiple choices from which the user can select one
or more. You can also set the value of a CheckBox programmatically with the Value
property.

Syntax

CheckBox

Remarks

CheckBox and OptionButton controls function similarly but with an important difference:
Any number of CheckBox controls on a form can be selected at the same time. In contrast,
only one OptionButton in a group can be selected at any given time.

To display text next to the CheckBox, set the Caption property. Use the Value property to
determine the state of the control—selected, cleared, or unavailable.

Using the Check Box Control

The check box control displays a check mark when it is selected. It is commonly used to
present a Yes/No or True/False selection to the user. You can use check box controls in
groups to display multiple choices from which the user can select one or more.

 73

The check box control is similar to the option button control in that each is used to indicate a
selection that is made by the user. They differ in that only one option button in a group can
be selected at a time. With the check box control, however, any number of check boxes may
be selected.

For More Information See "Selecting Individual Options with Check Boxes" in "Forms,
Controls, and Menus" for a simple demonstration of the check box control.

The Value Property

The Value property of the check box control indicates whether the check box is checked,
unchecked, or unavailable (dimmed). When selected, the value is set to 1. For example:

The following table lists the values and equivalent Visual Basic constants that are used to set
the Value property.

Setting Value Constant

Unchecked 0 vbUnchecked

Checked 1 vbChecked

Unavailable 2 vbGrayed

The user clicks the check box control to indicate a checked or unchecked state. You can then
test for the state of the control and program your application to perform some action based
on this information.

By default, the check box control is set to vbUnchecked. If you want to preselect several
check boxes in a series of check boxes, you can do so by setting the Value property to
vbChecked in the Form_Load or Form_Initialize procedures.

You can also set the Value property to vbGrayed to disable the check box. For example, you
may want to disable a check box until a certain condition is met.

The Click Event

Whenever the user clicks on the check box control, the Click event is triggered. You can then
program your application to perform some action depending upon the state of the check box.
In the following example, the check box control's Caption property changes each time the
control is clicked, indicating a checked or unchecked state.

Private Sub Check1_Click()
 If Check1.Value = vbChecked Then

 74

 Check1.Caption = "Checked"
 ElseIf Check1.Value = vbUnchecked Then
 Check1.Caption = "Unchecked"
 End If
End Sub

Note If the user attempts to double-click the check box control, each click will be processed
separately; that is, the check box control does not support the double-click event.

Responding to the Mouse and Keyboard

The Click event of the check box control is also triggered when the focus is shifted to the
control with the keyboard by using the TAB key and then by pressing the SPACEBAR.

You can toggle selection of the check box control by adding an ampersand character before a
letter in the Caption property to create a keyboard shortcut. For example:

In this example, pressing the ALT+C key combination toggles between the checked and
unchecked states.

Example :

The next step is to add check boxes to the form. These will allow the user to change the
format of the text in the text box to bold or italics.

Check boxes are used to represent on/off values. They can either be checked or unchecked.
When they are checked a tick will appear in the box.

Double click on the check box control in the tool box.

Move the check box to an appropriate location.

Repeat the last two steps to add a second check box below the first.

Your form will appear like this.

As with the text box you should now change the names of the check boxes to something
more meaningful.

 75

Click on the Check1 check box in your form.

Change the Name property to chkBold.

You will also need to change the caption of the check box. Remember that this is what
appears on the form.

Change the Caption property to Bold.

Repeat the steps above to change the name of the second check box to chkItalic and the
caption to Italic .

The Value property of a check box determines whether the check box is checked, unchecked
or greyed.

Click on the Bold check box on your form to select it.

Click on the Value property in the properties window.

Use the pull down menu to see the possible values for this property.

For now, leave the value property as 0 – Unchecked. You are going to write code so that if
this property has the value one (i.e. the user has checked the box), the font will be bold,
otherwise it will not be bold.

 76

At this stage the check boxes on the form will not perform any action. To make the
appearance of the text in the text box change when the check boxes are checked and
unchecked you need to write code.

Double click on the Bold check box on your form.

The code window will appear.

Enter the code shown below. Remember that the Private Sub and End Sub statements are
automatically included by Visual Basic

Private Sub chkBold_Click ()
 If chkBold.Value = 1 Then
 txtInput.FontBold = True
 Else
 txtInput.FontBold = False
 End If
End Sub

This is shown below.

This is an example of the Visual Basic If statement. The If statement in code allows a choice
of actions. The general structure is:

If expression Then
 statements1
Else
 statements2
End If

The first line of the If statement in your example tests the current value of the check box. If
the value of the property Value is equal to 1, then the check box is checked.

If the bold checkbox is checked, set the FontBold property of the txtInput control to True.

Otherwise, if the check box value is not 1 (unchecked or inactive), set the FontBold property
of the txtInput control to False.

 77

Run the application to see the result.

Click on the play button on the tool bar.

Type some text in the text box.

Click on the Bold check box to check it.

The text in the text box should be displayed as bold.

Click on the Bold check box to uncheck it.

The text in the text box should be displayed as normal.

Click on the stop button on the tool bar to return to Visual Basic.

The code for the Italic check box is similar to the Bold check box but changes the FontItalic
property.

Double click on the Italic check box.

The code window will appear.

Enter the code shown below. Remember that the Private Sub and End Sub statements are
automatically included by Visual Basic.

Private Sub chkItalic_Click ()
 If chkItalic.Value = 1 Then
 txtInput.FontItalic = True
 Else
 txtInput.FontItalic = False
 End If
End Sub

Run the application to see the result.

Click on the play button on the tool bar.

Type some text in the text box.

Click on the Italic check box to check it.

The text in the text box should be displayed as italic.

Click on the stop button on the tool bar to return to Visual Basic.

 78

Frame Control

A Frame control provides an identifiable grouping for controls. You can also use a Frame
to subdivide a form functionally—for example, to separate groups of OptionButton
controls.

Syntax

Frame

Remarks

To group controls, first draw the Frame control, and then draw the controls inside the
Frame. This enables you to move the Frame and the controls it contains together. If you
draw a control outside the Frame and then try to move it inside, the control will be on top of
the Frame and you'll have to move the Frame and controls separately.

To select multiple controls in a Frame, hold down the CTRL key while using the mouse to
draw a box around the controls.

Using the Frame Control

Frame controls are used to provide an identifiable grouping for other controls. For example,
you can use frame controls to subdivide a form functionally — to separate groups of option
button controls.

In most cases, you will use the frame control passively — to group other controls — and will
have no need to respond to its events. You will, however, most likely change its Name,
Caption, or Font properties.

For More Information See "Grouping Options with Option Buttons" in "Forms, Controls,
and Menus" for a simple demonstration of using the frame control to group option buttons.

Adding a Frame Control to a Form

When using the frame control to group other controls, first draw the frame control, and then
draw the controls inside of it. This enables you to move the frame and the controls it contains
together.

Drawing Controls Inside the Frame

To add other controls to the frame, draw them inside the frame. If you draw a control outside
the frame, or use the double-click method to add a control to a form, and then try to move it

 79

inside the frame control, the control will be on top of the frame and you'll have to move the
frame and controls separately.

Note If you have existing controls that you want to group in a frame, you can select all the
controls, cut them to the clipboard, select the frame control, and then paste them into the
frame control.

Selecting Multiple Controls in a Frame

To select multiple controls in a frame , hold down the CTRL key while using the mouse to
draw a box around the controls. When you release the mouse, the controls inside the frame
will be selected, as in Figure .

 80

WEEK 7:

LOOPING

During this week you will learn :

• Looping
• Do...Loop Statement
• For...Next Statement

Visual Basic allows a procedure to be repeated as many times as long as the processor could
support. This is generally called looping .

Do...Loop Statement

Repeats a block of statements while a condition is True or until a condition becomes True.

Syntax

Do [{ While | Until } condition]
[statements]
[Exit Do]
[statements]

Loop

Or, you can use this syntax:

Do
[statements]
[Exit Do]
[statements]

Loop [{ While | Until } condition]

The Do Loop statement syntax has these parts:

Part Description

Condition Optional. Numeric expression or string expression that is True or
False. If condition is Null, condition is treated as False.

Statements One or more statements that are repeated while, or until, condition is
True.

 81

Remarks

Any number of Exit Do statements may be placed anywhere in the Do…Loop as an
alternate way to exit a Do…Loop. Exit Do is often used after evaluating some condition, for
example, If…Then , in which case the Exit Do statement transfers control to the statement
immediately following the Loop.

When used within nested Do…Loop statements, Exit Do transfers control to the loop that is
one nested level above the loop where Exit Do occurs.

Example

This example shows how Do...Loop statements can be used. The inner Do...Loop statement
loops 10 times, sets the value of the flag to False, and exits prematurely using the Exit Do
statement. The outer loop exits immediately upon checking the value of the flag.

Dim Check, Counter
Check = True: Counter = 0 ' Initialize variables.
Do ' Outer loop.
 Do While Counter < 20 ' Inner loop.
 Counter = Counter + 1 ' Increment Counter.
 If Counter = 10 Then ' If condition is True .
 Check = False ' Set value of flag to Fal se.
 Exit Do ' Exit inner loop.
 End If
 Loop
Loop Until Check = False ' Exit outer loop immediately.

For...Next Statement

Repeats a group of statements a specified number of times.

Syntax

For counter = start To end [Step step]
[statements]
[Exit For]
[statements]

Next [counter]

The For…Next statement syntax has these parts:

Part Description

Counter Required. Numeric variable used as a loop counter. The variable
can't be a Boolean or an array element.

Start Required. Initial value of counter.

 82

End Required. Final value of counter.

Step Optional. Amount counter is changed each time through the loop. If
not specified, step defaults to one.

Statements Optional. One or more statements between For and Next that are
executed the specified number of times.

Remarks

The step argument can be either positive or negative. The value of the step argument
determines loop processing as follows:

Value Loop executes if

Positive or 0 counter <= end

Negative counter >= end

After all statements in the loop have executed, step is added to counter. At this point, either
the statements in the loop execute again (based on the same test that caused the loop to
execute initially), or the loop is exited and execution continues with the statement following
the Next statement.

Tip Changing the value of counter while inside a loop can make it more difficult to read
and debug your code.

Any number of Exit For statements may be placed anywhere in the loop as an alternate way
to exit. Exit For is often used after evaluating of some condition, for example If...Then, and
transfers control to the statement immediately following Next.

You can nest For...Next loops by placing one For...Next loop within another. Give each
loop a unique variable name as its counter. The following construction is correct:

For I = 1 To 10
 For J = 1 To 10
 For K = 1 To 10
 ...
 Next K
 Next J
Next I

Note If you omit counter in a Next statement, execution continues as if counter is included.
If a Next statement is encountered before its corresponding For statement, an error occurs.

Example

This example uses the For...Next statement to create a string that contains 10 instances of
the numbers 0 through 9, each string separated from the other by a single space. The outer
loop uses a loop counter variable that is decremented each time through the loop.

 83

Dim Words, Chars, MyString
For Words = 10 To 1 Step -1 ' Set up 10 repetitions.
 For Chars = 0 To 9 ' Set up 10 repetitions.
 MyString = MyString & Chars ' Append number to string.
 Next Chars ' Increment counter
 MyString = MyString & " " ' Append a space.
Next Words

Example

For counter=1 to 10

 display.Text=counter

 Next

Example

For counter=1 to 1000 step 10

 counter=counter+1

 Next

Example

For counter=1000 to 5 step -5

 counter=counter-10

 Next

 84

WEEK 8:

 PROCEDURE AND FUNCTIONS

During this week you will learn :

• Functions and procedures
• Scope of procedures
• Supplied Numeric Functions (Math Functions)
• Supplied String Function

Concept of procedure and function

A procedure is a group of sequential statements that have a name in
common and can be executed by calling the group (by name, of course)
from some other place in the program. VB. lets you use two distinct
types of procedures: Sub procedures and Function procedures. The difference
between the two is that a Function procedure returns a calculated
value, while a Sub procedure doesn’t return a value.
Sub procedures are used extensively to handle events such as
the Load event for a page or the Click event for a button. In addition, you
can create your own Sub or Function procedures. This often helps you simplify
your code by enabling you to break a long Sub procedure into several
shorter Sub or Function procedures.
Note that Sub procedures are often called subroutines, and both Sub and
Function procedures are often called methods. The only difference between
a Sub procedure and a Function procedure is that a Function procedure
returns a value, while a Sub procedure does not.

Using Sub Procedures

A Sub procedure begins with a Sub statement and ends with an End Sub statement.
The statements that make up the procedure go between the Sub and
End Sub statements. The Sub command supplies the name of the procedure
and any parameters that can be passed to the subroutine.

Sub Statement

Declares the name, arguments, and code that form the body of a Sub procedure.
Syntax
Sub name [(arglist)]

[statements]
[Exit Sub]
[statements]

End Sub

The Sub statement syntax has these parts:

 85

Part Description

Name Required. Name of the Sub; follows standard variable naming
conventions.

Arglist Optional. List of variables representing arguments that are passed to the
Sub procedure when it is called. Multiple variables are separated by
commas.

statements Optional. Any group of statements to be executed within the Sub
procedure.

Remarks
The Exit Sub keywords cause an immediate exit from a Sub procedure. Program execution
continues with the statement following the statement that called the Sub procedure. Any
number of Exit Sub statements can appear anywhere in a Sub procedure.

Example:

This example uses the Sub statement to define the name, arguments, and code that form the
body of a Sub procedure.

' Sub procedure definition.
' Sub procedure with two arguments.
Sub SubComputeArea(Length, TheWidth)
 Dim Area As Double ' Declare local variable.
 If Length = 0 Or TheWidth = 0 Then
 ' If either argument = 0.
 Exit Sub ' Exit Sub immediately.
 End If
 Area = Length * TheWidth ' Calculate area of r ectangle.
 Debug.Print Area ' Print Area to Debug window.
End Sub

For calling SubComputeArea use :
 SubComputeArea(10,20)

 Here’s another example:

Sub SayHello
Response.Write(“Hello, World!”)
End Sub
Sub SayWhatever(Message As String)
Response.Write(Message)
End Sub

In this example, the SayHello procedure writes the text “Hello, World!”
to the page. The SayWhatever message writes the text you pass via a parameter
to the page.

Notice that if the procedure uses parameters, you must provide both the
name and the type of the parameter (in parentheses) following the procedure

 86

name. For example, in the second procedure above, one parameter is
used. The name of the parameter is Message, and its type is String.
You can invoke a Sub procedure simply by listing the procedure’s name,
almost as if the procedure had become its own VB statement. Here’s a
simple example:

SayHello

If the Sub procedure uses parameters, you list the values you want to pass to
the parameters following the procedure name, like this:
SayWhatever(“Greetings, Planet!”)

Besides literal values, you can also pass variables or complex expressions.
For example, both of the following calls are allowed:

Dim Msg As String
Dim Part1 As String
Dim Part2 As String
Part1 = “Hello”
Part2 = “World!”
Msg = Part1 & “, “ & Part2
SayWhatever(Msg)
SayWhatever(Part1 & “, “ & Part2)
Here the Sub procedure SayWhatever is called twice. In both cases, the
same value is passed to the Message parameter: The first time, the value is

passed via a variable named Msg; the second time, the value is passed as an
expression.
If you want to be just a bit of a neatness freak, you can type the keyword
Call before the subroutine name when calling the subroutine — as in this
example:

Call SayWhatever(“Hello World!”)
Okay, the Call keyword is optional, but some VB programmers like to
use it to help distinguish user-written subroutines from built-in VB
commands.

Scope of a procedure

Sub procedures (as well as Function procedures, described in the next section)
can begin with an access modifier that specifies whether the procedure
is available to other classes in the application. The three most common
access modifiers are

✦ Public: The procedure is visible throughout the application.

✦ Private: The procedure is visible only within the current class, which
means it can’t be used from other classes.

✦ Protected: The procedure is hidden from other classes in the project,
with the exception of any classes derived from the current class

 87

 Working with Functions

A Function procedure is similar to a Sub procedure, with one crucial difference:
A Function procedure returns a value.

Declares the name, arguments, and code that form the body of a Function procedure.

Syntax
Function name [(arglist)] [As type] [statements]

[name = expression]
[Exit Function]
[statements]
[name = expression]

End Function

The Function statement syntax has these parts:

Part Description

Name Required. Name of the Function; follows standard variable naming
conventions.

Arglist Optional. List of variables representing arguments that are passed to the
Function procedure when it is called. Multiple variables are separated by
commas.

Type Optional. Data type of the value returned by the Function procedure; may
be Byte, Boolean, Integer, Long, Currency, Single, Double, Decimal (not
currently supported), Date, String, or (except fixed length).

Statements Optional. Any group of statements to be executed within the Function
procedure.

Expression Optional. Return value of the Function.

Remarks
To return a value from a function, assign the value to the function name. Any number of
such assignments can appear anywhere within the procedure. If no value is assigned to name,
the procedure returns a default value: a numeric function returns 0, a string function returns a
zero-length string (""), and a Variant function returns Empty.

Example:

This example uses the Function statement to declare the name, arguments, and code that
form the body of a Function procedure. The last example uses hard-typed, initialized
Optional arguments.

' The following user-defined function returns the s quare root of the
' argument passed to it.
Function CalculateSquareRoot (NumberArg As Double) As Double

 88

 If NumberArg < 0 Then ' Evaluate argument.
 Exit Function ' Exit to calling procedure.
 Else
 CalculateSquareRoot = Sqr(NumberArg) ' Retu rn square root.
 End If
End Function

For calling CalculateSquareRoot use :
 Square_root = CalculateSquareRoot (25)

Built in Library functions

This are functions that are provided by the VB compiler and can be called upon at any time
to perform specific operation in our program.

Supplied Numeric Functions (Math Functions)

Abs Function

Returns a value of the same type that is passed to it specifying the absolute value of a
number.

Syntax
Abs(number)

The required number argument can be any valid numeric expression. If number contains
Null, Null is returned; if it is an uninitialized variable, zero is returned.

Remarks

The absolute value of a number is its unsigned magnitude. For example, ABS(-1) and
ABS(1) both return 1.

Example :

This example uses the Abs function to compute the absolute value of a number.

Dim MyNumber
MyNumber = Abs(50.3) ' Returns 50.3.
MyNumber = Abs(-50.3) ' Returns 50.3.

Int Functions

Returns the integer portion of a number.

 89

Syntax
Int(number)

The required number argument is a Double or any valid numeric expression. If number
contains Null, Null is returned.

Example :

This example illustrates how the Int function return integer portions of numbers.

Dim MyNumber

MyNumber = Int(99.8) ' Returns 99.

MyNumber = Int(-99.8) ' Returns -100.

MyNumber = Int(-99.2) ' Returns -100.

Rnd Function

Returns a Single containing a random number.

Syntax
Rnd[(number)]

The optional number argument is a Single or any valid numeric expression.
Return Values

If number is Rnd generates

Less than zero The same number every time, using number as the seed.

Greater than zero The next random number in the sequence.

Equal to zero The most recently generated number.

Not supplied The next random number in the sequence.

Remarks
The Rnd function returns a value less than 1 but greater than or equal to zero.
The value of number determines how Rnd generates a random number:
For any given initial seed, the same number sequence is generated because each successive
call to the Rnd function uses the previous number as a seed for the next number in the
sequence.
Before calling Rnd, use the Randomize statement without an argument to initialize the
random-number generator with a seed based on the system timer.

 90

To produce random integers in a given range, use this formula:
Int((upperbound - lowerbound + 1) * Rnd + lowerboun d)

Example :

This example uses the Rnd function to generate a random integer value from 1 to 6.

Dim MyValue
MyValue = Int((6 * Rnd) + 1) ' Generate random value between 1 and 6.

Sqr Function

Returns a Double specifying the square root of a number.

Syntax
Sqr(number)
The required number argument is a Double or any valid numeric expression greater than or
equal to zero.

Example :

This example uses the Sqr function to calculate the square root of a number.

Dim MySqr
MySqr = Sqr(4) ' Returns 2.
MySqr = Sqr(23) ' Returns 4.79583152331272.
MySqr = Sqr(0) ' Returns 0.
MySqr = Sqr(-4) ' Generates a run-time error.

Supplied String Function

Len Function

Returns a Long containing the number of characters in a string or the number of bytes
required to store a variable.

Syntax
Len(string)
The Len function syntax has these parts:

Part Description

String Any valid string expression. If string contains Null, Null is returned.

 91

Example :
Dim MyString, MyLen
MyString = "Hello World" ' Initialize variable.
MyLen = Len(MyString) ' Returns 11.

LCase and Functions

Returns a String that has been converted to lowercase.

Syntax
LCase(string)
The required string argument is any valid string expression. If string contains Null, Null is
returned.

Remarks
Only uppercase letters are converted to lowercase; all lowercase letters and nonletter
characters remain unchanged.

Example :

This example uses the LCase function to return a lowercase version of a string.

Dim UpperCase, LowerCase
Uppercase = "Hello World 1234" ' String to conver t.
Lowercase = Lcase(UpperCase) ' Returns "hello world 1234".

UCase Function

Returns a Variant (String) containing the specified string, converted to uppercase.

Syntax
UCase(string)
The required string argument is any valid string expression. If string contains Null, Null is
returned.

Remarks
Only lowercase letters are converted to uppercase; all uppercase letters and nonletter
characters remain unchanged

Example :

This example uses the UCase function to return an uppercase version of a string.

Dim LowerCase, UpperCase

 92

LowerCase = "Hello World 1234" ' String to conver t.
UpperCase = UCase(LowerCase) ' Returns "HELLO WORLD 1234".

Asc Function

Returns an Integer representing the character code corresponding to the first letter in a string.

Syntax
Asc(string)
The required string argument is any valid string expression. If the string contains no
characters, a run-time error occurs.

Example :

This example uses the Asc function to return a character code corresponding to the first letter
in the string.

Dim MyNumber
MyNumber = Asc("A") ' Returns 65.
MyNumber = Asc("a") ' Returns 97.
MyNumber = Asc("Apple") ' Returns 65.

Chr Function

Returns a String containing the character associated with the specified character code.

Syntax
Chr(charcode)
The required charcode argument is a Long that identifies a character.

Example :
This example uses the Chr function to return the character associated with the specified
character code.
Dim MyChar
MyChar = Chr(65) ' Returns A.
MyChar = Chr(97) ' Returns a.
MyChar = Chr(62) ' Returns >.
MyChar = Chr(37) ' Returns %.

 93

Supplied Time And Date Functions

Now Function

Returns a Variant (Date) specifying the current date and time according your computer's
system date and time.

Syntax
Now

Example :

This example uses the Now function to return the current system date and time.

Dim Today
Today = Now ' Assign current system date and time.

Date Function

Returns a Variant (Date) containing the current system date.

Syntax
Date

Remarks
To set the system date, use the Date statement.

Example :

This example uses the Date function to return the current system date.

Dim MyDate
MyDate = Date ' MyDate contains the current system date.

Time Function

Returns a Variant (Date) indicating the current system time.

Syntax
Time

Remarks
To set the system time, use the Time statement.
Example :

This example uses the Time function to return the current system time.

Dim MyTime
MyTime = Time ' Return current system time.

 94

WEEK 9:

CONCEPT OF ARRAY

During this week you will learn :

• Non-Arrays data values
• Arrays data values
• Declaring Fixed-Size Arrays
• Multidimensional Arrays

Non-Arrays data values

The following list of four variables doesn't count as an array:

curSales sngbonus98 strFirstName intCtr

This list doesn't define an array because each variable has a different name. You may wonder
how more than one variable can have the same name; this convention seems to violate the
rules of variables. If two variables have the same name, how does Visual Basic know which
one you want when you use its name?

Arrays data values

An array is a list of more than one variable with the same name. Not every list of variables is
an array.
Arrays allow you to refer to a series of variables by the same name and to use a number (an
index) to tell them apart. This helps you create smaller and simpler code in many situations,
because you can set up loops that deal efficiently with any number of cases by using the
index number. Arrays have both upper and lower bounds, and the elements of the array are
contiguous within those bounds. Because Visual Basic allocates space for each index
number, avoid declaring an array larger than necessary.

All the elements in an array have the same data type. Of course, when the data type is
Variant, the individual elements may contain different kinds of data (objects, strings,
numbers, and so on). You can declare an array of any of the fundamental data types.

Example :

Suppose that you want to process 35 people's names and monthly dues from your local
neighborhood association. The dues are different for each person. All this data fits nicely in a
table of data, but suppose that you also want to hold, at one time, all the data in variables so

 95

that you can perform calculations and print various statistics about the members by using
Visual Basic.

Without arrays, you find yourself having to store each of the 35 names in 35 different
variables, and each of their dues in 35 different variables. But doing so makes for a complex
and lengthy program. To enter the data, you have to store the data in variables with names
such as the following:

strFamilyName1 curFamilyDues1

strFamilyName2 curFamilyDues2

strFamilyName3 curFamilyDues3

strFamilyName4 curFamilyDues4

The list continues until you use different variable names for all the 35 names and dues. With
array we need only one array to hold 35 names.

Declaring Fixed-Size Arrays

For declaring arrays, the format of the Public and Dim statements varies only in the keyword
of the command and its placement in the module. Here are the syntaxes of the two
statements:

Dim arName(intSub) [As dataType][, arName(intSub) [As dataType]]...

You name arrays (arName) just as you do regular variables. You can create an array of any

data type, so dataType can be Integer, Single, or any of the data types with which you're

familiar. The intSub portion of the commands describes the number of elements and how you
refer to those array elements.

Using Option Base
Declaring an array is easiest when you specify only the upper subscript bound. All array
subscripts begin at 0 unless the following statement appears in the module's Declarations
section:
Option Base 1

The Option Base command is rather outdated. (If you want to change the lower bounds of an

array, you should consider using the more advanced Low To option.)

The following Dim statement declares seven elements of an Integer array named intAges:

Dim intAges(6) ' Reserves 7 elements

 96

The subscript, 6, is the upper subscript, and the lower subscript is 0 (without an Option Base 1
appearing elsewhere, which would force the beginning subscript to 1). Figure next illustrates
just what's declared with this statement. An array of seven Integer values, all with the same

name (intAges), is reserved for use. Each variable is distinguished by its subscript number;

intAges(2) is a completely different variable from intAges(6).

The intAges array contains seven elements.

Example
Based on the previous discussion, you can declare the strFamilyName and curFamilyDues
arrays as follows:

Dim strFamilyName(35) As String ' Reserves 36 names
Dim curFamilyDues(35) As Currency ' Reserves 36 dues

Actually, the subscript 35 is the upper bound, and the subscript 0 is automatically the lower
bound. Therefore, these statements each dimension 36 elements in each array. The previous
discussion mentioned 35 members in the neighborhood association, so the 0 subscript isn't
used.
Because Dim was used here, the arrays have procedure-level scope. Only the code within the
procedure that contains these two statements can use the two arrays unless the procedure
passes the arrays to other procedures.
Sometimes, specifying the lower and upper bounds of the array subscripts makes sense. As
you've seen, if you specify Option Base 1, the lower array subscript is 1. If you specify Option

Base 0 or nothing at all, the lower array subscript bounds are zero. By using the expanded

array declaration statements with the To keyword, however, you can specify the upper and
lower bounds of your array subscripts.

 97

Next
These Dim statements each do the same thing:

Dim Amounts(0 To 50) ' Subscripts 0 to 50
Dim Amounts(50) ' Subscripts 0 to 50
And so do these pairs:
Option Base 1
Dim Balances(75) ' Subscripts 1 to 75
Option Base 0
Dim Balances(1 To 75) ' Subscripts 1 to 75

You can see how the Option Base statement affects the arrays you declare. Now that you can
declare arrays, you'll now learn how to use them.

Multidimensional Arrays

A multidimensional array is an array with more than one subscript. A single-dimensional
array is a list of values, whereas a multidimensional array simulates a table of values or even
multiple tables of values. The most commonly used table is a two-dimensional table (an
array with two subscripts).

Suppose that a softball team wants to keep track of its players' hits. The team played eight
games, and 10 players are on the team.

Table : A Softball Team's Hit Record

Player Game1 Game2 Game3 Game4 Game5 Game6 Game7 Game8

Adeniyi 2 1 0 0 2 3 3 1
Berryhill 1 0 3 2 5 1 2 2
Edwards 0 3 6 4 6 4 5 3
Grady 1 3 2 0 1 5 2 1
Howard 3 1 1 1 2 0 1 0
Powers 2 2 3 1 0 2 1 3
Smith 1 1 2 1 3 4 1 0
Townsend 0 0 0 0 0 0 1 0
Ulmer 2 2 1 1 2 1 1 2
Williams 2 3 1 0 1 2 1 1

Do you see that the softball table is a two-dimensional table? It has rows (the first
dimension) and columns (the second dimension). Therefore, you call it a two-dimensional
table with 10 rows and eight columns. (Generally, the number of rows is specified first.)
Each row has a player's name, and each column has a game number associated with it, but
these headings aren't part of the data. The data consists of only 80 values (10 rows times
eight columns). The data in a table, like the data in an array, always is the same type of data
(in this case, every value is an integer). If the table contains names, it's a string table, and so
on.

 98

The number of dimensions-in this case, two-corresponds to the dimensions in the physical
world. The first dimension represents a line. The single-dimensional array is a line, or list, of
values. Two dimensions represent both length and width. You write on a piece of paper in
two dimensions; two dimensions represent a flat surface. Three dimensions represent width,
length, and depth. You may have seen three-dimensional movies; not only do the images
have width and height, but they also (appear to) have depth.

It's difficult to visualize more than three dimensions. You can, however, think of each
dimension after three as another occurrence. In other words, you can store a list of one
player's season hit record in an array. The team's hit record (as shown in Table 12.2) is two-
dimensional. Their league, made up of several teams' hit records, represents a three-
dimensional table. Each team (the depth of the table) has rows and columns of hit data. If
there's more than one league, you can consider leagues another dimension.

Visual Basic lets you work with up to 60 dimensions, although real-world data rarely
requires more than two or three dimensions.

Example
The following statement declares a two-dimensional 10-by-10 array within a procedure:

Static MatrixA(9, 9) As Double

Either or both dimensions can be declared with explicit lower bounds:
Static MatrixA(1 To 10, 1 To 10) As Double

You can extend this to more than two dimensions. For example:

Dim MultiD(3, 1 To 10, 1 To 15)

This declaration creates an array that has three dimensions with sizes 4 by 10 by 15. The
total number of elements is the product of these three dimensions, or 600.

 99

WEEK 10:

CONCEPT OF CLASS/LIST BOX CONTROL

During this week you will learn :

• Classes and instances of classes
• creation of methods
• List boxes
• List Boxes Controls That Work Like Arrays

• The list box control's events.
• List box method

The Concept Of Objects

Object oriented Programming has been a technical word for quite some time. Object oriented

programming is a Programming structure that encapsulates data and functionality as a single

unit and for which the only public access is through the programming structure’s interface

(Properties, Methods and Events). There are different types of object, all objects share

specific characteristics, such as properties and methods.

The most commonly used object. In visual Basic are the form object, and the control objects

(Already Discussed). another less technical example is the use of pets, Dog and cat are

different entities (object) but of the same category of Pets Object. Similarly text boxes and

command buttons are each a unique type of object, but both considered a control object

every object belong to a class as cat and dog belong to the class of pet.

Concept Of Classes

Classes enable you to develop application using object oriented programming (OOP)

techniques. Classes are templates that define objects. When you create a new form in a visual

Basic Project, you are actually creating a class that defines a form Instantiated runtime are

derived from the class. to truly realize the benefit of OOP, you must create your own class.

Creating an Object Interface

To create an Object from a class, the class must expose an Interface. Interface is a mean by

which client code communicates with the object derived from the class.

The Interface of a class consists of one or more of the following: members. Proprieties,

methods and events. Clients interact with an object via the object’s interface. You can create

class properties using property procedures.

 100

Property procedure enable you to execute code when a properly is changed, to validate

property values, and to dictate whether a properly is read-only, write –only or both readable

and writable. Declaring a properly procedure is similar to declaring a standard functions sub

procedure but with some differences. The structure of a property procedure looks like this.

Public property Propertyname () as long

Get

‘Code to return the property’s value goes here

End Get

Set (Byval Value As long)

‘Code that accept a new value goes here

End set

End property

The first word in the property declaration simply designate the scope of the property (Public

or Private)

Properties declare with public are available to code outside of the class i.e they can be

accessed by the client code.

Properties declared as private are available only to code within the class.

The word immediately following the public or private word property, tells VB that you are

creating a property Procedure rather than a sub or function procedure. Next come the

property name and data type. Entry the declaration statement of property procedure causes

VB to complete the procedure template for you for instance, Type the following two

statements into your class.

Private M- IngHeight As Long

Public property Height () As Long

Press enter Key, and VB fill in the rest of the procedure temperature for you.

Construction and Destructor

 101

The Get construct is used to place code that returns a value for the property when ready by

the client, if you remove the Get and End Get Statement; Client won’t be able to read the

value of the properly.

The set construct is where you place code that accepts a new properly value from client code.

If you remove the set and End set statement, client won’t be able to change value of

properly. Leaving the Get construct and removing the set construct create a read-only

property. i.e Client can retrieve the value of the property but they cannot change it.

You can create new object when dimensioning a variable as follows:

Dim Objmyobject As new Clsmyclass()

When an object is no longer needed, it should be destroyed so that all the resources used by

the object can be reclaimed. Objects are destroyed automatically when the last reference to

the object is released.

To explicitly release an object, set the object variable equal to nothing like this

Objmyobject = Nothing

Creating instance of an object from a class, after obtaining a reference to an object and

assign it to a variable you can manipulate the object using an object variable. Consider the

following codes.

Dim Objmyobject As Object

Objmyobject = New Clsmyclass ()

Msgbox (objmyobject. AddTwo Numbers (1,2)

The first statement creates a variable of type object.

In the second statement, the variable appears on the left hand side of the equal sign is a

variable being set to same value, you want to place a reference to an object in the variable,

but no object has yet been created, the New Keyword tell VB to create a new object and the

text following New is the name of the class used to derive the object.

 102

The last statement calls the AddTwo numbers method of your class and displays the result in

a message box.

Try Run the Program, and save it.

Note; VB.NET handles Classes better.

List boxes

What is a list box?

A list box is a list, which appears on the screen, from which the user can choose items. In
this chapter you will create the text box and list box shown below and program the add,
delete, clear buttons.

 The add button will add the contents of the text box to the list. The delete button will
remove the item in the list which the user has selected. The clear button will delete all the
items from the list.

Creating a list box

Creating a list box is just like creating any other Visual Basic control.

Select View Form for frmClientList from the Project window.

Double click on the list box control in the tool box.

 103

Move and size the list box.

Adding the other controls on the form

Add a label, text box and three more command buttons to the form, as shown below.

Name each of the new controls by selecting the control on your form and changing the name

property in the properties window.

Control Name

Text1 txtInput

List1 lstClientList

Command1 cmdAdd

 104

Command2 cmdDelete

Command3 cmdClear

The controls also require the captions to be changed.

Change the Caption properties as shown below.

Control Name

Label1 Enter the name to add:

cmdAdd Add

cmdDelete Delete

cmdClear Clear

 Clear the Text property of the txtInput control.

Check the appearance of the form at this stage.

Click on the play button on the tool bar. Click on the Client List button. The second form
should then appear as shown below.

Click on the Close and Quit buttons once you have checked your form.

The add button
The Add button will add what the user has entered in the text box into the list.

Double click on the Add button on your form to display the code window.

Enter the code shown below. Remember that the Private Sub and End Sub statements will
have been entered for you by Visual Basic.

Private Sub cmdAdd_Click ()
 lstClientList.AddItem txtInput.Text
 txtInput.Text = ""

 105

 txtInput.SetFocus
End Sub

The first line of the code adds an item to the list box (remember the name of the list box is
lstClientList). The item which is added is the current value of the Text property of the
txtInput control. This will be what the user has entered into the text box.

The next line resets the Text property of the text box to a blank string, ready for the next
entry by the user.

The last line repositions the cursor inside the text box so the user can begin typing the next
entry.

Run the application to test the Add button code.

Type your name as the first client to add to the list.

Click on the Add button.

Your name should appear in the list box and the text box should appear empty. The cursor
will be positioned in the text box ready for the next entry.

Use the Close and Quit buttons on your forms to stop the application when you have
finished.

The Delete button

The Delete button will delete the item that the user has selected in the list box from the list.

Double click on the Delete button on your form to display the code window.

Enter the code shown below. Remember that the Private Sub and End Sub statements will
have been entered for you by Visual Basic.

Private Sub cmdDelete_Click ()
 If lstClientList.ListIndex >= 0 Then
 lstClientList.RemoveItem lstClientList.ListIndex

 106

 Else
 Beep
 End If
End Sub

The code uses an If statement to test whether the user has selected an item in the list.

The ListIndex property for the lstClientList control holds a number indicating which item in
the list has been selected by the user.

If ListIndex is zero then the first item in the list is selected. If ListIndex is equal to one then
the next item in the list is selected and so on.

If ListIndex is less than zero it means that nothing is selected.

If something is selected the next line of the code will remove it from the list. Visual Basic
will remove the item at list position lstClientList.ListIndex.

If nothing is selected a Beep is sounded.

You should run the application to test the Delete button code.

Click on the play button on the tool bar and click the Client List button.

Firstly, test to see what happens if you click the Delete button when the list is empty.

Click the Delete button.

A beep should sound to indicate that nothing in the list is selected for deletion. The action
should not result in an error message.

Next, test that the Delete button correctly deletes list items.

Add several items to the list by entering them in the text box and clicking on the Add button.

Click on one of the items to select it.

The item you select will become highlighted.

 107

Click on the Delete button.

The item will be removed from the list.

Try selecting and deleting the other list items.

Stop the application running when you have finished testing.

The Clear button

The Clear button will delete all of the items in the list.

Double click on the Clear button on your form to display the code window.

Enter the code shown below. Remember that the Private Sub and End Sub statements will
have been entered for you by Visual Basic.

Private Sub cmdClear_Click ()
 lstClientList.Clear
End Sub

The code uses the Clear method to delete all the items from the list.

Run the application to test the Clear button code.

Click on the play button on the tool bar. Click on Client List.

Add several items to the list using the Add button.

Click on the Clear button.

All of the items in the list will be deleted.

Stop the application running.

Save the project.

Selecting items from a list

The following example demonstrates how to use a list box to allow your user to make a
selection from the list.

The items in this list box example are added at design time.

Start a new project.

Add a list box to the form. Change its name to lstFruits.

Select the List property for the list box and click on the drop down arrow.

Type apples then press Ctrl Enter

 108

Type the other fruit names shown pressing Ctrl Enter after each one.

If you cannot see the full list of fruit in the list box on your form, make the list box larger.

Add a label with the caption shown and a text box to your form

Change the name of the text box to txtSelection.

The List property returns the contents of the list for the specified index.

Add the following code to the click event for the list box.

Private Sub lstFruits_Click()
 txtSelection.Text = lstFruits.List(lstFruits.ListIndex)
End Sub

Run the application and test that clicking on an item in the list box will cause it to be
displayed in the text box.

Stop the application.

 109

List Boxes: Controls That Work Like Arrays

The list box control works a lot like an active array on your form that the user can scroll
through, seeing all the items in the list. Often, programmers initialize list boxes with data
from arrays. Unlike most controls, you can't add values to a list box control through the
Property window, but must add the values at runtime through code.

A ListBox control displays a list of items from which the user can select one or more. If the
number of items exceeds the number that can be displayed, a scroll bar is automatically
added to the ListBox control.

If no item is selected, the ListIndex property value is -1. The first item in the list is
ListIndex 0, and the value of the ListCount property is always one more than the largest
ListIndex value.

The following table contains the list of property values that you can set for list box controls.
You've seen many of the properties before because several controls share many of the same
properties.

The list box properties.

Property Description

BackColor The background color of the list box. It's a hexadecimal number
representing one of thousands of possible Windows color values. You can
select from a palette of colors displayed by Visual Basic when you're ready
to set the BackColor property. The default background color is the same as
the form's default background color.

Columns If 0 (the default), the list box scrolls vertically in a single column. If 1 or
more, the list box items appear in the number of columns specified (one or
more columns) which the user scrolls the list box horizontally to see all the
items if needed. Figure 11.4 shows two identical list boxes, one with a
Columns property of 0 and one with a Columns property of 3.

DragIcon The icon that appears when the user drags the list box control around on the
form. (You'll only rarely allow the user to move a list box control, so the
Drag... property settings aren't usually relevant.)

DragMode Either contains 1 for manual mouse dragging requirements (the user can
press and hold the mouse button while dragging the control) or 0 (the
default) for automatic mouse dragging, meaning that the user can't drag the
list box control but that you, through code, can initiate the dragging if
needed.

Enabled If set to True (the default), the list box control can respond to events.
Otherwise, Visual Basic halts event processing for that particular control.

FontBold True (the default) if the list values are to display in boldfaced characters;
False otherwise.

FontItalic True (the default) if the list values are to display in italicized characters;
False otherwise.

 110

FontName The name of the list box's text style. Typically, you'll use the name of a
Windows TrueType font.

FontSize The size, in points, of the font used for the list box values.

FontStrikethru True (the default) if the list values are to display in strikethru letters
(characters with a dash through each one); False otherwise.

FontUnderline True (the default) if the list box values are to display in underlined letters;
False otherwise.

ForeColor The color of the values inside the list box.

Height The height, in twips, of the list box control.

HelpContextID If you add advanced, context-sensitive help to your application), the
HelpContextID provides the identifying number for the help text.

Index If the list box control is part of a control array, the Index property provides
the numeric subscript for each particular list box control (see the next unit).

Left The number of twips from the left edge of the Form window to the left edge
of the list box control.

MousePointer The shape that the mouse cursor changes to if the user moves the mouse
cursor over the list box control. The possible values are from 0 to 12 and
represent a range of different shapes that the mouse cursor can take.

MultiSelect If 0-None (the default), the user can select only one list box item. If 1-
Simple, the user can select more than one item by clicking with the mouse
or by pressing the spacebar over items in the list. If 2-Extended, the user can
select multiple items using Shift+click and Shift+arrow to extend the
selection from a previously selected item to the current item. Ctrl+click
either selects or deselects an item from the list.

Name The name of the control. By default, Visual Basic generates the names
List1, List2, and so on as you add subsequent list box controls to the form.

Sorted If True, Visual Basic doesn't display the list box values sorted numerically
or alphabetically. If False (the default), the values appear in the same order
in which the program added them to the list.

TabIndex The focus tab order begins at 0 and increments every time that you add a
new control. You can change the focus order by changing the controls'
TabIndex to other values. No two controls on the same form can have the
same TabIndex value.

TabStop If True, the user can press Tab to move the focus to this list box. If False,
the list box can't receive the focus.

Tag Unused by Visual Basic. This is for the programmer's use for an identifying
comment applied to the list box control.

Top The number of twips from the top edge of a list box control to the top of the
form.

Visible True or False, indicating whether or not the user can see (and, therefore,
use) the list box control.

Width The number of twips wide that the list box control consumes.

 111

When placing a list box control on the form, decide how tall you want the list box to be by
resizing the control to the size that fits the form best. Remember that if all the list box values
don't all fit within the list box, Visual Basic adds scroll bars to the list box so that the user
can scroll through the values.

This following table contains all the list box events that you can program. Table contains all
the list box events that you can use in a program. You'll rarely write event procedures for list
box controls, however. Most of the time, you'll let the user scroll through the list box values
to see information they need; programs don't need to respond to list box events as often as
they need to respond to command buttons and text boxes.

The list box control's events.

Event Description

Click Occurs when the user clicks the list box control

DblClick Occurs when the user double-clicks the list box control

DragDrop Occurs when a dragging operation of the list box completes

DragOver Occurs during a drag operation

GotFocus Occurs when the list box receives the focus

KeyDown Occurs when the user presses a key as long as the KeyPreview property is set
to True for the controls on the form; otherwise, the form gets the KeyDown
event

KeyPress Occurs when the user presses a key over the list box

KeyUp Occurs when the user releases a key over the list box

LostFocus Occurs when the list box loses the focus to another object

MouseDown Occurs when the user presses a mouse button over the list box

MouseMove Occurs when the user moves the mouse over the list box

 112

MouseUp Occurs when the user releases a mouse button over the list box

The following table contains a list of list box control methods that you'll need to use for
initializing, analyzing, and removing items from a list box control. Methods works like
miniature programs that operate on controls. Here is the format of a method's use on a list
box named lstItems:

lstItems.AddItem "Arizona"

The control name always precedes the method and the dot operator. Any data needed by the
method appears to the right of the method.

List box methods.

Method Name Description

AddItem Adds a single item to the list box

Clear Clears all items from the list

List A string array that holds each item within the list box

ListCount The total number of items in a list box

RemoveItem Removes a single item from a list box

Selected Determines whether the user has selected a particular item in the list box

Use the AddItem method to add properties to a list box control. Suppose that you want to add
a few state names to a list box named lstStates. The following code adds the state names:

'
Add several states to a list box control

lstStates.AddItem "Arizona"

lstStates.AddItem "Alabama"

lstStates.AddItem "Oklahoma"

lstStates.AddItem "New York"

lstStates.AddItem "California"

lstStates.AddItem "Nebraska"

lstStates.AddItem "Ohio"

lstStates.AddItem "Florida"

lstStates.AddItem "Texas"

lstStates.AddItem "South Dakota"

lstStates.AddItem "Nevada"

lstStates.AddItem

 113

"Illinois"

lstStates.AddItem "New Mexico"

This code would most likely appear in the Form_Load() event procedure so that the list
boxes are initialized with their values before the form appears and before the list boxes are
seen on the form.

Each item in a list box has a subscript just as each element in an array has a subscript. The
first item that you add to a list box has a subscript of 0, the second has a subscript of 1, and
so on. To remove the third item from the list box, therefore, your code can apply the
RemoveItem method, as follows:

lstStates.RemoveItem(2) ' 3rd item has a subscript of 2

If you want to remove all items from the list box, use the Clear method. The following
simple method removes all the state names from the state list box:

lstStates.Clear ' Remove all items

You can assign individual items from a list box control that contains data by using the List
method. You must save list box values in string or variant variables unless you convert list
box items to a numeric data type using Val() first. The following assignment statements store
the first and fourth list box item in two string variables:

FirstStringVar = lstStates.List(0)

SecondStringVar = lstStates.List(3)

The ListCount method always provides the total number of items in the list box control. For
example, the following statement stores the number of list box items in a numeric variable
named Num:

Num = lstStates.ListCount

The Selected method returns either a true or false value that determines whether a user has
selected a list box item. The Selected method returns true for possibly more than one list box
item if the MultiSelect property is set to either 1-Simple or 2-Extended. Those properties
indicate that the user can select more than one item at once

 114

The code in Listing stores every selected item of a list box named lstStates in a string array.
The string array is defined with enough elements to hold all the items if the user happens to
have selected all fifty items that were first added to the list box.

A list box control holds one or more values through which the user can scroll. Unlike many
other controls, the user can only look at and select items in the list box, but not add items to

the list box. Through methods, you can, however, add items, delete items, and check for
selected items in the list box by using the methods inside your code procedures

 115

WEEK 11:

CONCEPT OF DATA FILE IN VB/ ADVANCED VB

 CONTROLS

During this week you will learn :

• Creating a sequential file
• Creating a random file
• Combo Boxes
• The Timer Control
• Scrolling the Scroll Bars

CONCEPT OF FILES

A Data file can be described as the collection of related records that is stored in an auxiliary

storage media such as magnetic tape or disk with a file name for example all records about

all the students in Kaduna polytechnic form a student file. In a data file a line of information

is known as a logical record. A file can be organized serially, sequentially or randomly.

 Visual Basic can handle both Sequential and Random access files.

 SEQUENTIAL FILE PROCESSING COMMANDS IN VISUAL BASIC

 visual basic uses some of the traditional basic file processing commands but with

little variations. Some of these commands and statements are highlighted below:

1. OPEN STATEMENT: The link between the external disk filename and the

internal file number is made through the open statement.

 Syntax:

 Open filename for mode As # file number:

 The filename is a string expression or variable

The modes can either be input, output , append or binary

eg. Open “stud.dat” for input as #1

2. CLOSE STATEMENT: This is used to close an opened file at the end of the file

session.

 Syntax

Close # file number

Eg. Close #1

3. Print # and Write # statements; These are used to write into an opened file

Syntax:

Print #, Filenumber,{variable list}

Eg. Print # 1, Sname,Saddress,Sage,Sex,……

 116

Write# 1,Sname,Saddress,Sage,Sex,……

Write# and Print # Statements differes only in the way they handle strings

4. Input # statement: This read Data back from an existing file

Syntax;

Input # file number,{Variable list}

Eg. Input# 2, Sname,Saddress,Sage,Sex,……

5. Kill Statements: This Delete a file from the disk

Syntax: Kill”filename”

Eg. Kill”Temp.dat”

6. EOF Function: This is used to test for End of file

Syntax: EOF(Channel)

Eg.

Do While NOT EOF(1)

 Loop

 THE RANDOM FILE

 Opening Random file is a little different from that of a sequential file. We use the

“For Random” option with some other options as described below.

Open “stud.dat” for random as #2 len=len(myrecord)

In a random file user defined data type are used to group all the related variables together
into one record as shown below

Private sub form_load()

 Type single-Record

 Record-key as integer

 Sname As String*20

 Snum as string*10

End type

Dim myrecord As single-record

Open”stud.txt”for random as #2, Len = len(myrecord)

End sub

 117

The len parameter is used by the open statement to specify the total number of character in a
record

Put Statement: The put statement is used to write data into a random file instead of the
print statement used in a sequential file.

Eg Put #2, 1,Myrecord

The Get statement: This is used to read data from the random file, instead of input
statement in sequential file. in addition, it specify the record number to be read and the name
of the variable into which data is to be copied.

Eg. Get #1,myrecord.

Note: Database gives you a better way to handle your data records.

Combo Boxes

The combo box control is a combination of a list box and a text box. Items are stored in a list
and viewed using a drop down menu.

The contents of the Text property of the combo box is displayed at the top of the combo box.

Combo boxes work a little like list boxes except that the user can add items to a combo box
at runtime. There are three kinds of combo boxes determined by the Style property. The
AddItem and RemoveItem methods are popular for combo boxes, although all of the list box
methods that you learned in the previous lesson apply to combo boxes as well.

Figure shows the location of the combo box control on the Toolbox window. No matter what
kind of combo box you want to place on the form, you'll use the same combo box control on
the toolbox to add the combo box to the form.

There are three kinds of combo boxes, as follows:

 118

• A dropdown combo box takes up only a single line on the form unless the user opens
the combo box (by pressing the combo box's down arrow) to see additional values.
The user can enter additional items at the top of the dropdown combo box and select
items from the combo box.

• A simple combo box always displays items as if they were in a list box. The user can
add items to the combo box list as well.

• A dropdown list box is a special list box that the user can't enter new items into, but
that normally appears closed to a single line until the user clicks the down arrow
button to open the list box to its full size. Technically, dropdown list boxes are not
combo box controls but work more like list boxes. The reason dropdown list boxes
fall inside the combo box control family is that you place dropdown list boxes on
forms by clicking the combo box control and setting the appropriate combo box
property (Style).

The following table contains a description of every combo list property value that you can
set in the Property window.

The combo box properties.

Property Description

BackColor The background color of the combo box. This is a hexadecimal number
representing one of thousands of possible Windows color values. You can
select from a palette of colors displayed by Visual Basic when you're ready
to set the BackColor property. The default background color is the same as
the form's default background color.

 119

DragIcon The icon that appears when the user drags the combo box control around on
the form. (You will only rarely allow the user to move a combo box control,
so the Drag... property settings aren't usually relevant.)

DragMode Either contains 1 for manual mouse dragging requirements (the user can
press and hold the mouse button while dragging the control) or 0 (the
default) for automatic mouse dragging, meaning that the user can't drag the
combo box control but that you, through code, can initiate the dragging if
needed.

Enabled If set to True (the default), the combo box control can respond to events.
Otherwise, Visual Basic halts event processing for that particular control.

FontBold True (the default) if the combo values are to display in boldfaced characters;
False otherwise.

FontItalic True (the default) if the combo values are to display in italicized characters;
False otherwise.

FontName The name of the combo box's text style. Typically, you'll use the name of a
Windows TrueType font.

FontSize The size, in points, of the font used for the combo box values.

FontStrikethru True (the default) if the combo values are to display in strikethru letters
(characters with a dash through each one); False otherwise.

FontUnderline True (the default) if the combo box values are to display in underlined
letters; False otherwise.

ForeColor The color of the values inside the combo box.

Height The height, in twips, of the combo box control.

HelpContextID If you add advanced, context-sensitive help to your application), the
HelpContextID provides the identifying number for the help text.

Index If the combo box control is part of a control array, the Index property
provides the numeric subscript for each particular combo box control. (See
the next unit).

Left The number of twips from the left edge of the Form window to the left edge
of the combo box control.

MousePointer The shape that the mouse cursor changes to if the user moves the mouse
cursor over the combo box control. The possible values are from 0 to 12 and
represent a range of different shapes that the mouse cursor can take.

Name The name of the control. By default, Visual Basic generates the names
Combo1, Combo2, and so on as you add subsequent combo box controls to
the form.

Sorted If True, Visual Basic doesn't display the combo box values sorted
numerically or alphabetical. If False (the default), the values appear in the
same order in which the program added them to the list.

Style The default, 0-Dropdown Combo, produces a dropdown combo box control.
1-Simple Combo turns the combo box into a simple combo box control. 2-
Dropdown list turns the combo box into a dropdown list box control.

TabIndex The focus tab order begins at 0 and increments every time that you add a
new control. You can change the focus order by changing the controls'

 120

TabIndex to other values. No two controls on the same form can have the
same TabIndex value.

TabStop If True, the user can press Tab to move the focus to this combo box. If
False, the combo box can't receive the focus.

Tag Unused by Visual Basic. This is for the programmer's use for an identifying
comment applied to the combo box control.

Text The initial value only that the user sees in the combo box.

Top The number of twips from the top edge of a combo box control to the top of
the form.

Visible True (the default) or False, indicating whether the user can see (and,
therefore, use) the combo box control.

Width The number of twips wide that the combo box control consumes.

Note: Notice that there is no MultiSelect combo box property as there is with list box
controls. The user can select only one combo box item at any one time.

The following table contains a list of the combo box events for which you can write
matching event procedures when your program must react to a user's manipulation of a
combo box.

The combo box control's events.

Event Description

Change Occurs when the user changes the value in the data entry portion of the
dropdown combo or the simple combo box; not available for dropdown list
boxes because the user can't change data in them

Click Occurs when the user clicks the combo box control

DblClick Occurs when the user double-clicks the combo box control

DragDrop Occurs when a dragging operation of the combo box completes

DragOver Occurs during a drag operation

DropDown Occurs when the user opens a dropdown combo box or a dropdown list box

GotFocus Occurs when the combo box receives the focus

KeyDown Occurs when the user presses a key as long as the KeyPreview property is set to
True for the controls on the form; otherwise, the form gets the KeyDown event

KeyPress Occurs when the user presses a key over the combo box

KeyUp Occurs when the user releases a key over the combo box

LostFocus Occurs when the combo box loses the focus to another object

 121

The combo box controls support the same methods that the list box controls support.
Therefore, you can add, remove, count, and select items from the combo box if you apply the
methods seen in The following table.

The following list contains a command button's event procedure that adds a value to a combo
box's list of items. Unlike text box controls, you'll need to provide the user with some data
entry mechanism, such as a command button, that informs the program when to use the
AddItem method to add an item to a combo box.

Note: Listing assumes that another procedure, such as the Form_Load() procedure, added
the initial values to the combo box.

Listing A command button's event procedure that adds an item to a
combo box.

Sub cmdSimple_Click ()

 ' Add the user's item to the simple combo

 comSCtrl.AddItem comSCtrl.Text

 comSCtrl.Text = ""

 comSCtrl.SetFocus

End Sub

Output : Figure contains a screen that you saw in the second lesson of the book. The
CONTROLS.VBP application demonstrates the simple combo box and shows how you can
set up an application to add items to a list of values.

 22

Analysis: The command button in Figure 11.8 is named cmdSimple, so clicking the
command button executes the event procedure shown in Listing 11.3. Line 3 stores the
combo box's Text property value to that combo box's list of items. The combo box will not
contain a user's entry in the upper data entry portion of the combo box until an AddItem
method adds that entry to the list. The Text property always holds the current value shown in
the data entry portion of the combo box, but the AddItem method must add that value to the
list.

As soon as the user's entry is added, line 4 erases the data entry portion of the combo box.
After all, the user's text will now appear in the lower listing portion of the combo box (thanks
to line 3), so line 4 clears the data entry area for more input. In addition, line 5 sets the focus
back to the combo box (the focus appears in the data entry area that line 4 cleared) so that the
user is ready to add an additional item to the combo box.

The Timer Control

A timer control allows you to generate events at specified time intervals. For example, you
could build your own version of the Windows Clock application by displaying the time in a
label and using a timer control to update the display every second. Your application might
look like the following:

 123

Starting and stopping a timer control
A timer is started by setting the Enabled property to TRUE and giving the Interval property
a value greater than 0.

The timer can be stopped while the application is running by setting the Enabled property to
FALSE or setting the Interval property to 0.

Designing the Clock application

Start a new project and add two labels with Name property set to lblTime and lblDate
respectively. Change the FontName for the labels to Courier New (a non-proportional font)
and choose a suitable FontSize for each label. Change the caption of the form to Clock.

Add a Timer Control to the form. It doesn’t matter where you put this control because it is
invisible when the project is running.

Select the Properties window for the Timer Control and set Enabled to True and the Interval
property to 1000.

The units for the interval are milliseconds. With these settings, the code in the event
Timer1_Timer will be executed approximately every second.

Add the following event procedure code and try out your application. Private Sub

Form_Load()
 lblDate.Caption = Date
End Sub

Private Sub Timer1_Timer()
 lblTime.Caption = Time
End Sub

 124

Scrolling the Scroll Bars

The scroll bars give the user the ability to control changing values. Rather than type specific
values, the user can move the scroll bars with the mouse to specify relative positions within a
range of values.

The following table contains a list of the scroll bar properties. The most unique and
important property values for a scroll bar are the LargeChange, Max, Min, and SmallChange.

The scroll bar properties.

Property Description

DragIcon Specifies the icon that appears when the user drags the scroll bar around on
the form. (You'll only rarely allow the user to move a scroll bar, so the
Drag... property settings aren't usually relevant.)

DragMode Contains either 1 for manual mouse dragging requirements (the user can
press and hold the mouse button while dragging the control) or 0 (the
default) for automatic mouse dragging, meaning that the user can't drag the
scroll bar but that you, through code, can initiate the dragging if needed.

Enabled If set to True (the default), the scroll bar can respond to events. Otherwise,
Visual Basic halts event processing for that particular control.

Height Contains the height, in twips, of the scroll bar.

 125

HelpContextID If you add advanced, context-sensitive help to your application, the
HelpContextID provides the identifying number for the help text.

Index If the scroll bar is part of a control array, the Index property provides the
numeric subscript for each particular scroll bar.

LargeChange Specifies the amount that the scroll bar changes when the user clicks within
the scroll bar's shaft area.

Left Holds the number of twips from the left edge of the Form window to the left
edge of the scroll bar.

Max Indicates the maximum number of units that the scroll bar value represents
at its highest setting. The range is from 1 to 32767 (the default).

Min Indicates the minimum number of units the scroll bar value represents at its
lowest setting. The range is from 1 (the default) to 32767.

MousePointer Contains the shape that the mouse cursor changes to if the user moves the
mouse cursor over the scroll bar. The possible values are from 0 to 12, and
represent a range of different shapes that the mouse cursor can take on.

Name Contains the name of the control. By default, Visual Basic generates the
names VScroll1, VScroll2, and so on (for vertical scroll bars), and HScroll1,
HScroll2, and so on (for horizontal scroll bars) as you add subsequent scroll
bars to the form.

SmallChange Specifies the amount that the scroll bar changes when the user clicks an
arrow at either end of the scroll bar.

TabIndex Determines that the focus tab order begins at 0 and increments every time
you add a new control. You can change the focus order by changing the
controls' TabIndex to other values. No two controls on the same form can
have the same TabIndex value.

TabStop If True, the user can press Tab to move the focus to this scroll bar. If False,
the scroll bar can't receive the focus.

Tag Unused by Visual Basic. This is for the programmer's use for an identifying
comment applied to the scroll bar.

Top Holds the number of twips from the top edge of a scrollbar to the top of the
form.

Value Contains the unit of measurement currently represented by the position of
the scroll bar.

Visible Contains either True or False, indicating whether the user can see (and,
therefore, use) the scroll bar.

Width Holds the number of twips wide that the scroll bar consumes.

Tip: Prefix the names of your horizontal scroll bars with the hsb prefix and your vertical
scroll bars with the vsb prefix so that you can easily distinguish them from each other.

When you place a scroll bar on a form, you must decide at that time what range of values the
scroll bar is to represent. The scroll bar's full range can extend from 1 to 32767. Set the Min
property to the lowest value represented by the scroll bar. Set the Max property to the highest
value represented by the scroll bar.

 126

When the user eventually uses the scroll bar, the scroll bar arrows control small movements
in the scroll bar's value determined by the SmallChange property. Clicking the empty shaft
on either side of the scroll box produces a positive or negative change in the value
represented by the LargeChange property. The user can drag the scroll bar itself to any
position within the scroll bar shaft to jump to a specific location instead of changing the
value gradually.

Suppose, for example, that a horizontal scroll bar was to represent a range of whole dollar
amounts from $5 to $100. When the user clicks the scroll arrows, the scroll bar's value is to
change by one dollar. When the user clicks the empty shaft on either side of the scroll box,
the scroll bar's value is to change by five dollars. Here are the property values that you would
set that determine how Visual Basic interprets each click of the scroll bar:

Min: 5

Max: 100

SmallChange: 1

LargeChange: 5

The physical size of the scroll bar has no bearing on the scroll bar's returned values when the
user selects from the scroll bar. Adjust the scroll bars on your form so that the scroll bars are
wide enough or tall enough to look appropriate sizes for the items that they represent.

The following Listing contains the SCROLL.MAK code that you can load and run to adjust
the circle and bar sizes that you saw in above Figure

Review: There are two scroll bars, a horizontal scroll bar and a vertical scroll bar, that give
the user the ability to select from a range of possible values without having to enter
individual values.

Listing. The code for the SCROLL.MAK application.

Option Explicit

Sub Form_Load ()

' Set initial scroll bar values

 hsbBar.Value = 1800 ' Circle's default width

 vsbBar.Value = 1800 ' Bar's default height

End Sub

Sub hsbBar_Change ()

 ' As user clicks the scroll bar,

 ' the width of the circle adjusts

 shpCircle.Width = hsbBar.Value

 127

End Sub

Sub vsbBar_Change ()

 ' As user clicks the scroll bar,

 ' the height of the bar adjusts

 shpBar.Height = vsbBar.Value

End Sub

Analysis: Here are the vital horizontal scroll bar properties that were set during the design
of the form:

Min: 50

Max: 2100

SmallChange: 50

LargeChange: 100

The shape control that contains the circle (named shpCircle) has its Width property set to
2100, so the largest that the circle could appear within the control was 2100 twips. Hence the
use of 2100 for the Max property.

Here are the vital vertical scroll bar properties that were set during the design of the form:

Min: 50

Max: 2300

SmallChange: 50

LargeChange: 100

The shape control that contains the bar (named shpBar) has its Height property set to 2300,
so the tallest that the bar could appear within the control was 2300 twips. Hence the use of
2300 for the Max property.

The two Min properties of 50 keep both the circle and bar from shrinking entirely when the
user minimizes either control.

Lines 5 and 6 set the initial values for the circle's width and the bar's height to 1800, so both
shapes are fairly large to begin with. Actually, the lines set the initial runtime values for both
the scroll bars, which, in turn, generates the Change() event procedures that follow in the
code.

Line 12 ensures that the circle's width increases or decreases, depending on the value of the
horizontal scroll bar's Value property. Line 18 ensures that the bar's height increases or
decreases, depending on the value of the vertical scroll bar's Value property.

 128

WEEK 12:

MANAGING KEYBOARD AND SCREEN I/O

During this week you will learn :

• MsgBox Function
• InputBox Function

In Windows-based applications, dialog boxes are used to prompt the user for data needed by
the application to continue or to display information to the user.

MsgBox Function

Displays a message in a dialog box, waits for the user to click a button, and returns an
Integer indicating which button the user clicked.

Syntax
MsgBox(prompt[, buttons] [, title] [, helpfile, context])

The MsgBox function syntax has these named arguments:

Part Description

prompt Required. String expression displayed as the message in the dialog box. The
maximum length of prompt is approximately 1024 characters, depending on
the width of the characters used. If prompt consists of more than one line, you
can separate the lines using a carriage return character (Chr(13)), a linefeed
character (Chr(10)), or carriage return – linefeed character combination
(Chr(13) & Chr(10)) between each line.

buttons Optional. Numeric expression that is the sum of values specifying the number
and type of buttons to display, the icon style to use, the identity of the default
button, and the modality of the message box. If omitted, the default value for
buttons is 0.

title Optional. String expression displayed in the title bar of the dialog box. If you
omit title , the application name is placed in the title bar.

helpfile Optional. String expression that identifies the Help file to use to provide
context-sensitive Help for the dialog box. If helpfile is provided, context must
also be provided.

context Optional. Numeric expression that is the Help context number assigned to the
appropriate Help topic by the Help author. If context is provided, helpfile
must also be provided.

 129

Settings
The buttons argument settings are:

Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort , Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

vbDefaultButton4 768 Fourth button is default.

vbApplicationModal 0 Application modal; the user must respond to
the message box before continuing work in the
current application.

vbSystemModal 4096 System modal; all applications are suspended
until the user responds to the message box.

vbMsgBoxHelpButton 16384 Adds Help button to the message box

VbMsgBoxSetForeground 65536 Specifies the message box window as the
foreground window

vbMsgBoxRight 524288 Text is right aligned

vbMsgBoxRtlReading 1048576 Specifies text should appear as right-to-left
reading on Hebrew and Arabic systems

The first group of values (0–5) describes the number and type of buttons displayed in the
dialog box; the second group (16, 32, 48, 64) describes the icon style; the third group (0, 256,
512) determines which button is the default; and the fourth group (0, 4096) determines the
modality of the message box. When adding numbers to create a final value for the buttons
argument, use only one number from each group.
Note These constants are specified by Visual Basic for Applications. As a result, the names
can be used anywhere in your code in place of the actual values.

 130

Return Values

Constant Value Description

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

Remarks
When both helpfile and context are provided, the user can press F1 to view the Help topic
corresponding to the context. Some host applications, for example, Microsoft Excel, also
automatically add a Help button to the dialog box.
If the dialog box displays a Cancel button, pressing the ESC key has the same effect as
clicking Cancel. If the dialog box contains a Help button, context-sensitive Help is provided
for the dialog box. However, no value is returned until one of the other buttons is clicked.

Example :

This example uses the MsgBox function to display a critical-error message in a dialog box
with Yes and No buttons. The No button is specified as the default response. The value
returned by the MsgBox function depends on the button chosen by the user. This example
assumes that DEMO.HLP is a Help file that contains a topic with a Help context number equal
to 1000 .

Dim Msg, Style, Title, Help, Ctxt, Response, MyStri ng
Msg = "Do you want to continue ?" ' Define messag e.
Style = vbYesNo + vbCritical + vbDefaultButton2 ' Define buttons.
Title = "MsgBox Demonstration" ' Define title.
Help = "DEMO.HLP" ' Define Help file.
Ctxt = 1000 ' Define topic
 ' context.
 ' Display message.
Response = MsgBox(Msg, Style , Title , Help , Ctxt)
If Response = vbYes Then ' User chose Yes.
 MyString = "Yes" ' Perform some action.
Else ' User chose No.
 MyString = "No" ' Perform some action.
End If

 131

InputBox Function

Displays a prompt in a dialog box, waits for the user to input text or click a button, and
returns a String containing the contents of the text box.

Syntax
InputBox(prompt [, title] [, default] [, xpos] [, ypos] [, helpfile, context])

The InputBox function syntax has these named arguments:

Part Description

prompt Required. String expression displayed as the message in the dialog box.
The maximum length of prompt is approximately 1024 characters,
depending on the width of the characters used. If prompt consists of more
than one line, you can separate the lines using a carriage return character
(Chr(13)), a linefeed character (Chr(10)), or carriage return–linefeed
character combination (Chr(13) & Chr(10)) between each line.

title Optional. String expression displayed in the title bar of the dialog box. If
you omit title , the application name is placed in the title bar.

default Optional. String expression displayed in the text box as the default
response if no other input is provided. If you omit default, the text box is
displayed empty.

xpos Optional. Numeric expression that specifies, in twips, the horizontal
distance of the left edge of the dialog box from the left edge of the screen.
If xpos is omitted, the dialog box is horizontally centered.

ypos Optional. Numeric expression that specifies, in twips, the vertical distance
of the upper edge of the dialog box from the top of the screen. If ypos is
omitted, the dialog box is vertically positioned approximately one-third of
the way down the screen.

helpfile Optional. String expression that identifies the Help file to use to provide
context-sensitive Help for the dialog box. If helpfile is provided, context
must also be provided.

context Optional. Numeric expression that is the Help context number assigned to
the appropriate Help topic by the Help author. If context is provided,
helpfile must also be provided.

Remarks
When both helpfile and context are provided, the user can press F1 to view the Help topic
corresponding to the context. Some host applications, for example, Microsoft Excel, also
automatically add a Help button to the dialog box. If the user clicks OK or presses ENTER ,
the InputBox function returns whatever is in the text box. If the user clicks Cancel, the
function returns a zero-length string ("").

 132

Example :

This example shows various ways to use the InputBox function to prompt the user to enter a
value. If the x and y positions are omitted, the dialog box is automatically centered for the
respective axes. The variable MyValue contains the value entered by the user if the user
clicks OK or presses the ENTER key . If the user clicks Cancel, a zero-length string is
returned.

Dim Message, Title, Default, MyValue
Message = "Enter a value between 1 and 3" ' Set p rompt.
Title = "InputBox Demo" ' Set title.
Default = "1" ' Set default.
' Display message, title, and default value.
MyValue = InputBox(Message, Title , Default)

' Use Helpfile and context. The Help button is adde d automatically.
MyValue = InputBox(Message, Title , , , , "DEMO.HLP" , 10)

' Display dialog box at position 100, 100.
MyValue = InputBox(Message, Title , Default , 100 , 100)

 133

WEEK 13:

DATABASE MANAGEMENT IN VISUAL BASIC

 During this week you will learn :

• The Basic Elements of a Database
• Using Data Control
• Data Access Objects (DAO)
• DAO Advantages and Disadvantages
• Visual Basic Wizard
• Data Form Wizard

All applications use structured information of one kind or another, whether it is accounting
data, scientific measurements, employee information, or a list of recipes. Data access in
Microsoft Visual Basic gives you the tools to create and use structured database systems to
manage your application's data.

These tools include the Microsoft Jet database engine, the Data control, and the data access
objects (DAO) programming interface.

The Basic Elements of a Database

Element Description
Database A group of data tables that contain related information.
Table A group of data records, each containing the same type of information. In the

phone book example, the book itself is a table.
Record A single entry in a table, consisting of a number of data fields. In a phone book, a

record is one of the single-line entries.
Field A specific piece of data contained in a record. In a phone book, at least four fields

can be identified: last name, first name, address, and phone number.
Index A special type of table that contains the values of a key field or fields and contains

pointers to the location of the actual record. These values and pointers are stored
in a specific order and can be used to present data in that order. For the phone
book example, one index might be used to sort the information by last and first
name; another index might be used to sort the information by street address; and a
third might be used to sort the information by phone number.

Query A command, based on a specific set of conditions or criteria, designed to retrieve
a certain group of records from one or more tables or to perform an operation on a
table. For example, you would write a query that could show all the students in a
class whose last name begins with S and who have a grade point average of more
than 3.0.

Recordset A group of records, created by a query, from one or more tables in a database. The
records in a recordset are typically a subset of all the records in a table. When the
recordset is created, the number of records and the order in which they're
presented can be controlled by the query that creates the recordset.

 134

The Microsoft Jet database engine provides the means by which Visual Basic interacts with
databases. You use it with Visual Basic to access databases and database functionality. The
Jet engine is shared by Visual Basic, Microsoft Access, and other Microsoft products, and it
lets you work with a wide variety of data types, including several types of text and numeric
fields. These different data types give you a great deal of flexibility in designing database
applications.

Using Data Control

In the following example, we will create a simple database application which enable
one to browse customers' names.

To create this application, insert the data control into the new form.

Place the data control somewhere at the bottom of the form. Name the data control
as data_navigator.

To be able to use the data control, we need to connect it to any database. We can
create a database file using any database application but I suggest we use the
database files that come with VB6. Let select NWIND.MDB as our database file.

To connect the data control to this database, double-click the DatabaseName
property in the properties window and select the above file, i.e NWIND.MDB.

Next, double-click on the RecordSource property to select the customers table from
the database. You can also change the caption of the data control to anything but I
use "Click to browse Customers" here. After that, we will place a label and change
its caption to Customer Name.

Last but not least, insert another label and name it as cus_name and leave the label
empty as customers' names will appear here when we click the arrows on the data
control. We need to bind this label to the data control for the application to work.

To do this, open the label's DataSource and select data_navigator that will appear
automatically. One more thing that we need to do is to bind the label to the correct
field so that data in this field will appear on this label. To do this, open the DataField
property and select ContactName. Now, press F5 and run the program. You should
be able to browse all the customers' names by clicking the arrows on the data
control.

The Design Interface.

 135

The Runtime Interface

You can also add other fields using exactly the same method. For example, you can add
adress, City and telephone number to the database browser.

 136

Data Access Objects (DAO)

If you use either the Professional or Enterprise editions, you can learn how to program
Visual Basic by using DAO (Data Access Objects). Data Access Objects are database objects
that you create and manage with your program code.
The primary reason for mastering DAO is because it offers several advantages over the Data
control. DAO gives you more control and speed in accessing databases. Although using
DAO takes a little more knowledge than using the Data control and its related controls, DAO
is the choice among most VB programmers due to its powerful advantages.

DAO Advantages and Disadvantages

The Data control is simple to use but doesn't offer extremely fast database access. Although
today's computers run quickly, you'll notice speed degradation when you use the Data
control in large database tables, especially ODBC-based databases.

When you use DAO, you must write more program code than you have to write with the
Data control. As you saw in the first topic section, you can program the Data control
primarily through setting property values. Although you can write code that accesses various
Data control methods, straightforward database access is less involved with the Data control.

The DAO lets you control the data access in a much stricter way than with the Data control.
The ease of the Data control reflects its inability to be flexible. Also, the overhead of the
Data control doesn't burden DAO-based programs. DAO uses the recordset concept for most
of its operations, and you can create a recordset variable just as you can create other kinds of
object variables in Visual Basic.

 137

Visual Basic Wizard

The preceding topic section only scratched the surface of DAO, but you now know the
fundamental requirements and issues that surround DAO programming. You deserve a
break, so this final topic section demonstrates a way that you can let Visual Basic do all the
work--writing a database application by responding to a few dialog boxes from the VB
Application Wizard.

The VB Application Wizard lets you add database capabilities to your project without
extensive programming. As you'll see when you follow this topic section's example, the
resulting code is fairly complete and forms the basis for a true database application.
The New Project dialog box contains the VB Application Wizard that you've used a few
times throughout this book. When you get to the dialog box shown in Figure, you can click
the Yes option to add database support to your application.

The VB Application Wizard creates database-based applications.
After you select the database option, the rest of the wizard changes dramatically from the
dialog boxes that you've seen so far. The next "Example" and "Next Step" sections describe
the wizard in more detail.

Example
From the File menu choose New Project, double-click the VB Application Wizard icon, and
click Next six times to accept all the VB Application Wizard defaults and to display the
dialog box you saw earlier in Figure. Perform these steps to begin the database-aware
application:

1. Click Yes to request that the wizard add a database form to the application. You must
now select a database on which the wizard will base the form's fields.

2. Click the Browse button and locate the Biblio.mdb database located in the VB
directory. Notice that you can select from a wide variety of database systems by

 138

opening the Database Format drop-down list. (For this application, retain the
default database, Access.) Click Next to display the Select Tables dialog box

Visual Basic must know the table you want to access.

3. Your application can retrieve data directly from the database tables or from any
defined queries. As you might recall from earlier in this lesson, a query is a
predefined selection criterion for records and fields. A query is just a named
instruction set that produces a subset of the database data. The big advantage of
queries over table access is that a query, if predefined by users of the database system
that generated the database file, can contain data from multiple database tables. The
Biblio.mdb database contains only one query, named All Titles (you can click the
Queries option to see the query name).

4. This dialog box lets you add multiple tables, so you can select data from more
than one table even if no query exists, but the query is often more efficient if
defined properly. For this application, however, you'll select two tables:
Authors and Titles.

5. Click the Authors table and then click the > button to send the Authors table
to the Selected list. Now send the Titles table to the Selected list.

6. Click Next and Finish to finish the wizard and create the project.

The wizard generates a substantial amount of database code for you and designs forms that
make the two tables available to the application. When you run the application, choose
Authors from the View menu to display the Form window shown in Figure.

 139

The wizard created the form that updates the Authors table.
From the View menu, choose Titles to open the Titles dialog box. Perhaps the most
surprising feature of the application appears when you click Grid. Visual Basic formats the
table's data into the worksheet-like format shown in Figure. You can resize columns, sort on
columns (by clicking a column title), and scroll through the grid to view multiple records at
one time. The grid comes from the DBGrid control that the wizard added to the application's
Toolbox window during the project's creation.

 140

The grid shows more information at one time.

Data Form Wizard

Visual Basic contains a special Data Form Wizard that lets you design advanced forms that
you can insert into your applications. These forms offer unique DAO and RDO (Remote
Data Objects that might appear on a network) capabilities that you can select by answering
the wizard's dialog box questions. The Data Form Wizard is an add-in program that you have
to set up before you can use it. (You must also have the Professional or Enterprise VB
editions before you can add the Data Form Wizard.)
Perform these steps to add the Data Form Wizard to your Add-Ins menu:

1. From the Add-Ins menu, choose Add-In Manager to display the list of add-ins you
can add to your Visual Basic development environment.

2. Select the Data Form Wizard and click OK. When you open theAdd-Ins menu
again, the Data Form Wizard appears on the menu.

3. Choose Add-Ins, Data Form Wizard to start the wizard. After reading the
opening dialog box, click Next to select a database type. You'll connect the
Microsoft Access Biblio.mdb database to the wizard, so keep Access selected
and click Next again.

4. Select the Biblio.mdb database and click Next to display the Form dialog box
in Figure. The three options determine the style of the form you want the
wizard to generate.

 141

Select the kind of form you want the wizard to create from the data.

5. The Single Record style displays records one form at a time and is most useful for
adding new records to the database from the application. Grid presents the grid view
(called the datasheet view) of the data in a worksheet format like you saw in Figure.
The Master/Detail view provides an interesting combination for the data display. As
you click each option, the dialog box updates its icon to show you what the resulting
form will look like.

6. Select Master/Detail and click Next. The next dialog box determines which
table and fields you want to see in the resulting application's form. Select the
Publishers table and then move the following fields to the Selected Fields list:
PubID, Company Name, and State.

7. You've entered the Master section of the form, and you must now click Next
to move to the next dialog box and enter the Detail section of the form. The
Master section will show one selected record, and the Detail section will list
the multiple records beneath the Master record.

8. Select the Titles table for the Detail section. A title list will appear beneath the
publisher shown in the upper half of the form. Send these fields to the
Selected Fields list: Title, Year Published, ISBN, and PubID.

9. Select the Titles field in the Column to Sort By list box. The form will display
the titles in alphabetical order by title and not in the table's actual order, which
may be different. Click Next to move to the next dialog box.

10. The Record Source Relation dialog box lets you connect the Master section to
the Details section by selecting a common field. Click the PubID field in each
column, and then click Finish to complete the wizard and generate the project.

The Data Form Wizard generates only the form, not a complete project. Therefore, you can
add the form into whatever project that needs the form. To try the form, choose Properties
from the Project menu and change Startup Object to frmTitles. When you run the
application, you'll see the resulting Master/Detail form. As you click through the records,
publishers with multiple titles in the database will appear as shown in Figure. Although you

 142

normally wouldn't show the PubID field (because the field will contain the same value for
each record), you can see now how the PubID field connects the Master record to the Detail
record.

The Master and Detail record are synchronized.
After designing the form, you can save it and add it to future projects that need access to the
data.

 143

 WEEK 14

 GENERATE REPORT
USING DATA REPORT

IN VISUAL BASIC
 During this week you will learn:

. Add data environment
. Create the logical view of your report . Add data report

. Create Report format
. Print report

 To generate the report from your database follow the steps below

1. On the Menu bar click project

2. Select Add data environment

The Data environment window is displayed as shown below:

3. Right click on connection 1

4. Select properties in the Data link pup-up menu windows displayed

5. Specify the provide or the Database engine. By selecting 3.51 OLE DB

provide for the Database Structure created within vb environment or using

MS Access ‘97

6. Click next, this takes you to connector Data link Properties windows

 144

7. Select or Enter a database name

8. Click Test connector, to be sure you can successfully connected

9. Click OK. This takes you back to the Data environment window

10. Create the logical view of your report i.e. Table or fields that you need in

your database. To do this;

• Click on connector

• Click on Add command Icon on the Data environment tool bar,

Command 1 is created

• Right Click the Command 1 created

• Click on property from the PUP-UP menu displayed

• Command properties window is displayed

• Specify the command name e.g. (mystock)

• Select Database Object

• Select Table

• Select Object name

• Select mytable

• Click apply

• Click OK

11. Now create the Report format as follows:

 145

 - Click project

- Click Add Data Report, the Data Project Properties is

displayed

- Click Report Header for the Heading that appears once in the

Report

- Click Page Header for the Column Title

- Click Detail Section for Fields in the Report

- Go To Properties window, select Data Source

- Select data source, eg Destock

- Click Data Member, select Command Object for the Data

Members i.e. (mdstock)

- Right click any area within the Data report window

- From the PUP-UP displayed, select retrieve structure, to link

our report to the command structure created earlier in the Data

environment

- Click Yes

- Select the band (i.e. the Page Header)

- Double Click label on the tool bar

- Set the properties e.g.

 Change Caption to “STOCK REPORT”.

- Click on Details report

- Double Click the Report Text box

 146

- Click Unbound

a. Click Data Member in Properties Text box

b. Select (cmdstock)

c. Select Data field Itemnum

 12. Give your Data report a name e.g. drpstock

 13. Set caption for the windows

 14. Set window state to Maximise

 15. Save the project to Update all the work

 16. Then Go back to the interface form

 17. Double click the Command Report

 18. Type the program statements as shown below

 Private Sub Cmd_report_Click()

 drpStoc.ref

 drpStock.Show

 End Sub

• Run the Program, then Click on Report Command, the report is

displayed

• Click Print Icon on the report to Print the report on paper

 147

WEEK 15:

CREATING MENUS

During this week you will learn :

• Menu Basics
• Menu Control
• Menu Editor Dialog Box
• Creating Menus with the Menu Editor
• Writing Code for Menu Controls
• MsgBox Function
• InputBox Function

Visual Basic makes creating and placing menu bar items into your application as easy as
pushing command buttons and typing a few keystrokes. The Menu Design window contains
menu description tools that enable you to create the application's menu bar, menu
commands, and shortcut access keys to all of your applications.

Menu Basics

If you want your application to provide a set of commands to users, menus offer a
convenient and consistent way to group commands and an easy way for users to access them.
Figure Illustrates the elements of a menu interface on an untitled form.

The menu bar appears immediately below the title bar on the form and contains one or more
menu titles. When you click a menu title (such as File), a menu containing a list of menu
items drops down. Menu items can include commands (such as New and Exit), separator
bars, and submenu titles. Each menu item the user sees corresponds to a menu control you
define in the Menu Editor (described later in this chapter).

 148

To make your application easier to use, you should group menu items according to their
function. In Figure above, for example, the file-related commands New, Open, and Save
As… are all found on the File menu.
Some menu items perform an action directly; for example, the Exit menu item on the File
menu closes the application. Other menu items display a dialog box — a window that
requires the user to supply information needed by the application to perform the action.
These menu items should be followed by an ellipsis (…). For example, when you choose
Save As… from the File menu, the Save File As dialog box appears.
A menu control is an object; like other objects it has properties that can be used to define its
appearance and behavior. You can set the Caption property, the Enabled and Visible
properties, the Checked property, and others at design time or at run time. Menu controls
contain only one event, the Click event, which is invoked when the menu control is selected
with the mouse or using the keyboard.

Menu Control

A Menu control displays a custom menu for your application. A menu can include
commands, submenus, and separator bars. Each menu you create can have up to four levels
of submenus.

Syntax
Menu

Remarks
To create a Menu control, use the Menu Editor. Enter the name of the Menu control in the
Caption box. To create a separator bar, enter a single hyphen (-) in the Caption box. To
display a check mark to the left of a menu item, select the Checked box.
While you can set some Menu control properties using the Menu Editor, all Menu control
properties are displayed in the Properties window. To display the properties of a Menu
control, select the menu name in the Objects list at the top of the Properties window.
When you create an MDI application, the menu bar on the MDI child form replaces the
menu bar on the MDIForm object when the child form is active.

Menu Editor Command (Tools Menu)

Displays the Menu Editor dialog box.
Use the Menu Editor command to create custom menus for your application ,and to define
some of their properties.

Toolbar shortcut: . Keyboard shortcut: CTRL+E.

Menu Editor Dialog Box

 149

Allows you to create custom menus for your application and to define their properties.

Dialog Box Options

Caption
Allows you to enter the menu or command name that you want to appear on your menu bar
or in a menu.
If you want to create a separator bar in your menu, type a single hyphen (-) in the Caption
box.
To give the user keyboard access to a menu item, insert an ampersand (&) before a letter. At
run time, this letter is underlined (the ampersand is not visible), and the user can access the
menu or command by pressing ALT and the letter. If you need an ampersand to show in the
menu, put two consecutive ampersands in the caption.

Name
Allows you to enter a control name for the menu item. A control name is an identifier used
only to access the menu item in code; it doesn't appear in a menu.

Index
Allows you to assign a numeric value that determines the control's position within a control
array. This position isn't related to the screen position.

Shortcut
Allows you to select a shortcut key for each command.

HelpContextID
Allows you to assign a unique numeric value for the context ID. This value is used to find
the appropriate Help topic in the Help file identified by the HelpFile property.

 150

NegotiatePosition
Allows you to select the menu's NegotiatePosition property. This property determines
whether and how the menu appears in a container form.

Checked
Allows you to have a check mark appear initially at the left of a menu item. It is generally
used to indicate whether a toggle option is turned on or off.

Enabled
Allows you to select whether you want the menu item to respond to events, or clear if you
want the item to be unavailable and appear dimmed.

Visible
Allows you to have the menu item appear on the menu.

WindowList
Determines if the menu control contains a list of open MDI child forms in an MDI
application.

 Right Arrow
Moves the selected menu down one level each time you click it. You can create up to four
levels of submenus.

 Left Arrow
Moves the selected menu up one level each time you click it. You can create up to four
levels of submenus.

 Up Arrow
Moves the selected menu item up one position within the same menu level each time you
click it.

 Down Arrow
Moves the selected menu item down one position within the same menu level each time you
click it.

Menu List
A list box that displays a hierarchical list of menu items. Submenu items are indented to
indicate their hierarchical position or level.

Next
Moves selection to the next line.

Insert
Inserts a line in the list box above the currently selected line

Delete
Deletes the currently selected line.

 151

OK
Closes the Menu Editor and applies all changes to the last form you selected. The menu is
available at design time, but selecting a menu at design time opens the Code window for that
menu's Click event rather than executing any event code.

Cancel
Closes the Menu Editor and cancels all changes.

Creating Menus with the Menu Editor

You can use the Menu Editor to create new menus and menu bars, add new commands to
existing menus, replace existing menu commands with your own commands, and change and
delete existing menus and menu bars.
To display the Menu Editor

• From the Tools menu, choose Menu Editor .

–or–

Click the Menu Editor button on the toolbar.

This opens the Menu Editor, shown in Figure.
The Menu Editor

While most menu control properties can be set using the Menu Editor, all menu properties
are available in the Properties window. The two most important properties for menu controls
are:

• Name — This is the name you use to reference the menu control from code.

 152

• Caption — This is the text that appears on the control.

Other properties in the Menu Editor, including Index, Checked, and NegotiatePosition, are
described later in this chapter.

Using the List Box in the Menu Editor
The menu control list box (the lower portion of the Menu Editor) lists all the menu controls
for the current form. When you type a menu item in the Caption text box, that item also
appears in the menu control list box. Selecting an existing menu control from the list box
allows you to edit the properties for that control.
For example, Figure shows the menu controls for a File menu in a typical application. The
position of the menu control in the menu control list box determines whether the control is a
menu title, menu item, submenu title, or submenu item:

• A menu control that appears flush left in the list box is displayed on the menu bar as a
menu title.

• A menu control that is indented once in the list box is displayed on the menu
when the user clicks the preceding menu title.

• An indented menu control followed by menu controls that are further indented
becomes a submenu title. Menu controls indented below the submenu title
become items of that submenu.

• A menu control with a hyphen (-) as its Caption property setting appears as a
separator bar. A separator bar divides menu items into logical groups.

Note A menu control cannot be a separator bar if it is a menu title, has submenu items, is
checked or disabled, or has a shortcut key.
To create menu controls in the Menu Editor

1. Select the form.

2. From the Tools menu, choose Menu Editor .

–or–

Click the Menu Editor button on the toolbar.

3. In the Caption text box, type the text for the first menu title that you want to appear
on the menu bar. Also, place an ampersand (&) before the letter you want to be the
access key for that menu item. This letter will automatically be underlined in the
menu.

The menu title text is displayed in the menu control list box.

4. In the Name text box, type the name that you will use to refer to the menu control in
code. See "Menu Title and Naming Guidelines" later in this chapter.

5. Click the left arrow or right arrow buttons to change the indentation level of
the control.

 153

6. Set other properties for the control, if you choose. You can do this in the
Menu Editor or later, in the Properties window.

7. Choose Next to create another menu control.

–or–

Click Insert to add a menu control between existing controls.

You can also click the up arrow and down arrow buttons to move the control
among the existing menu controls.

8. Choose OK to close the Menu Editor when you have created all the menu controls
for that form.

The menu titles you create are displayed on the form. At design time, click a
menu title to drop down its corresponding menu items.

Separating Menu Items
A separator bar is displayed as a horizontal line between items on a menu. On a menu with
many items, you can use a separator bar to divide items into logical groups. For example, the
File menu in Visual Basic uses separator bars to divide its menu items into three groups, as
shown in Figure

Separator bars

To create a separator bar in the Menu Editor

1. If you are adding a separator bar to an existing menu, choose Insert to insert a menu
control between the menu items you want to separate.

2. If necessary, click the right arrow button to indent the new menu item to the
same level as the menu items it will separate.

3. Type a hyphen (-) in the Caption text box.

4. Set the Name property.

5. Choose OK to close the Menu Editor.

Note Although separator bars are created as menu controls, they do not respond to the Click
event, and users cannot choose them.

 154

Assigning Access Keys and Shortcut Keys
You can improve keyboard access to menu commands by defining access keys and shortcut
keys.

Access Keys
Access keys allow the user to open a menu by pressing the ALT key and typing a designated
letter. Once a menu is open, the user can choose a control by pressing the letter (the access
key) assigned to it. For example, ALT+E might open the Edit menu, and P might select the
Paste menu item. An access-key assignment appears as an underlined letter in the menu
control's caption, as shown in Figure
Access keys

To assign an access key to a menu control in the Menu Editor

1. Select the menu item to which you want to assign an access key.

2. In the Caption box, type an ampersand (&) immediately in front of the letter
you want to be the access key.

For example, if the Edit menu shown in Figure is open, the following Caption property
settings respond to the corresponding keys.

Menu control caption Caption property Access keys

Cut Cu&t t

Copy C&opy o

Paste

Delete

Select All

Time/Date

&Paste

De&lete

Select &All

Time/&Date

p

l

a

d

Note Do not use duplicate access keys on menus. If you use the same access key for more
than one menu item, the key will not work. For example, if C is the access key for both Cut

 155

and Copy, when you select the Edit menu and press C, the Copy command will be selected,
but the application will not carry out the command until the user presses ENTER. The Cut
command will not be selected at all.

Shortcut Keys
Shortcut keys run a menu item immediately when pressed. Frequently used menu items may
be assigned a keyboard shortcut, which provides a single-step method of keyboard access,
rather than a three-step method of pressing ALT, a menu title access character, and then a
menu item access character. Shortcut key assignments include function key and control key
combinations, such as CTRL+F1 or CTRL+A. They appear on the menu to the right of the
corresponding menu item, as shown in Figure .

Shortcut keys

To assign a shortcut key to a menu item

1. Open the Menu Editor .

2. Select the menu item.

3. Select a function key or key combination in the Shortcut combo box.

To remove a shortcut key assignment, choose "(none)" from the top of the list.

Note Shortcut keys appear automatically on the menu; therefore, you do not have to enter
CTRL+key in the Caption box of the Menu Editor.

Writing Code for Menu Controls

When the user chooses a menu control, a Click event occurs. You need to write a Click event
procedure in code for each menu control. All menu controls except separator bars (and
disabled or invisible menu controls) recognize the Click event.
The code that you write in a menu event procedure is no different than that which you would
write in any other control's event procedure. For example, the code in a File, Close menu's
Click event might look like this:

Sub mnuFileClose_Click()
 Unload Me
End Sub

Visual Basic displays a menu automatically when the menu title is chosen; therefore, it is not
necessary to write code for a menu title's Click event procedure unless you want to perform
another action, such as disabling certain menu items each time the menu is displayed.

 156

Note At design time, the menus you create are displayed on the form when you close the
Menu Editor. Choosing a menu item on the form displays the Click event procedure for that
menu control.

In Windows-based applications, dialog boxes are used to prompt the user for data needed by
the application to continue or to display information to the user.

MsgBox Function

Displays a message in a dialog box, waits for the user to click a button, and returns an
Integer indicating which button the user clicked.

Syntax
MsgBox(prompt[, buttons] [, title] [, helpfile, context])

The MsgBox function syntax has these named arguments:

Part Description

prompt Required. String expression displayed as the message in the dialog box. The
maximum length of prompt is approximately 1024 characters, depending on
the width of the characters used. If prompt consists of more than one line, you
can separate the lines using a carriage return character (Chr(13)), a linefeed
character (Chr(10)), or carriage return – linefeed character combination
(Chr(13) & Chr(10)) between each line.

buttons Optional. Numeric expression that is the sum of values specifying the number
and type of buttons to display, the icon style to use, the identity of the default
button, and the modality of the message box. If omitted, the default value for
buttons is 0.

title Optional. String expression displayed in the title bar of the dialog box. If you
omit title , the application name is placed in the title bar.

helpfile Optional. String expression that identifies the Help file to use to provide
context-sensitive Help for the dialog box. If helpfile is provided, context must
also be provided.

context Optional. Numeric expression that is the Help context number assigned to the
appropriate Help topic by the Help author. If context is provided, helpfile
must also be provided.

Settings
The buttons argument settings are:

Constant Value Description

 157

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort , Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

vbDefaultButton4 768 Fourth button is default.

vbApplicationModal 0 Application modal; the user must respond to
the message box before continuing work in the
current application.

vbSystemModal 4096 System modal; all applications are suspended
until the user responds to the message box.

vbMsgBoxHelpButton 16384 Adds Help button to the message box

VbMsgBoxSetForeground 65536 Specifies the message box window as the
foreground window

vbMsgBoxRight 524288 Text is right aligned

vbMsgBoxRtlReading 1048576 Specifies text should appear as right-to-left
reading on Hebrew and Arabic systems

The first group of values (0–5) describes the number and type of buttons displayed in the
dialog box; the second group (16, 32, 48, 64) describes the icon style; the third group (0, 256,
512) determines which button is the default; and the fourth group (0, 4096) determines the
modality of the message box. When adding numbers to create a final value for the buttons
argument, use only one number from each group.
Note These constants are specified by Visual Basic for Applications. As a result, the names
can be used anywhere in your code in place of the actual values.

 158

Return Values

Constant Value Description

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

Remarks
When both helpfile and context are provided, the user can press F1 to view the Help topic
corresponding to the context. Some host applications, for example, Microsoft Excel, also
automatically add a Help button to the dialog box.
If the dialog box displays a Cancel button, pressing the ESC key has the same effect as
clicking Cancel. If the dialog box contains a Help button, context-sensitive Help is provided
for the dialog box. However, no value is returned until one of the other buttons is clicked.

Example :

This example uses the MsgBox function to display a critical-error message in a dialog box
with Yes and No buttons. The No button is specified as the default response. The value
returned by the MsgBox function depends on the button chosen by the user. This example
assumes that DEMO.HLP is a Help file that contains a topic with a Help context number equal
to 1000 .

Dim Msg, Style, Title, Help, Ctxt, Response, MyStri ng
Msg = "Do you want to continue ?" ' Define messag e.
Style = vbYesNo + vbCritical + vbDefaultButton2 ' Define buttons.
Title = "MsgBox Demonstration" ' Define title.
Help = "DEMO.HLP" ' Define Help file.
Ctxt = 1000 ' Define topic
 ' context.
 ' Display message.
Response = MsgBox(Msg, Style , Title , Help , Ctxt)
If Response = vbYes Then ' User chose Yes.
 MyString = "Yes" ' Perform some action.
Else ' User chose No.
 MyString = "No" ' Perform some action.
End If

InputBox Function

 159

Displays a prompt in a dialog box, waits for the user to input text or click a button, and
returns a String containing the contents of the text box.

Syntax
InputBox(prompt [, title] [, default] [, xpos] [, ypos] [, helpfile, context])

The InputBox function syntax has these named arguments:

Part Description

prompt Required. String expression displayed as the message in the dialog box.
The maximum length of prompt is approximately 1024 characters,
depending on the width of the characters used. If prompt consists of more
than one line, you can separate the lines using a carriage return character
(Chr(13)), a linefeed character (Chr(10)), or carriage return–linefeed
character combination (Chr(13) & Chr(10)) between each line.

title Optional. String expression displayed in the title bar of the dialog box. If
you omit title , the application name is placed in the title bar.

default Optional. String expression displayed in the text box as the default
response if no other input is provided. If you omit default, the text box is
displayed empty.

xpos Optional. Numeric expression that specifies, in twips, the horizontal
distance of the left edge of the dialog box from the left edge of the screen.
If xpos is omitted, the dialog box is horizontally centered.

ypos Optional. Numeric expression that specifies, in twips, the vertical distance
of the upper edge of the dialog box from the top of the screen. If ypos is
omitted, the dialog box is vertically positioned approximately one-third of
the way down the screen.

helpfile Optional. String expression that identifies the Help file to use to provide
context-sensitive Help for the dialog box. If helpfile is provided, context
must also be provided.

context Optional. Numeric expression that is the Help context number assigned to
the appropriate Help topic by the Help author. If context is provided,
helpfile must also be provided.

Remarks
When both helpfile and context are provided, the user can press F1 to view the Help topic
corresponding to the context. Some host applications, for example, Microsoft Excel, also
automatically add a Help button to the dialog box. If the user clicks OK or presses ENTER ,
the InputBox function returns whatever is in the text box. If the user clicks Cancel, the
function returns a zero-length string ("").

 160

Example :

This example shows various ways to use the InputBox function to prompt the user to enter a
value. If the x and y positions are omitted, the dialog box is automatically centered for the
respective axes. The variable MyValue contains the value entered by the user if the user
clicks OK or presses the ENTER key . If the user clicks Cancel, a zero-length string is
returned.

Dim Message, Title, Default, MyValue
Message = "Enter a value between 1 and 3" ' Set p rompt.
Title = "InputBox Demo" ' Set title.
Default = "1" ' Set default.
' Display message, title, and default value.
MyValue = InputBox(Message, Title , Default)

' Use Helpfile and context. The Help button is adde d automatically.
MyValue = InputBox(Message, Title , , , , "DEMO.HLP" , 10)

' Display dialog box at position 100, 100.
MyValue = InputBox(Message, Title , Default , 100 , 100)

	Cover
	Table of Contents
	WEEK 1:
	WEEK 2 :
	WEEK 3:
	WEEK 4 :
	WEEK 5:
	WEEK 6 :
	WEEK 7:
	WEEK 8:
	WEEK 9:
	WEEK 10:
	WEEK 11:
	WEEK 12:
	WEEK 13:
	WEEK 14
	WEEK 15:
	Return to Table

