UNESCO-NIGERIA TECHNICAL &
VOCATIONAL EDUCATION
REVITALISATION PROJECT-PHASE I

System Programming
PRACTICALS MANUAL

COURSE CODE: COM 212

Version 1December 2008

Page | 1

TABLE OF CONTENTS

WEEK 1

Studying a Simple Assembly Program . 4
Familiarizing with DIreCtiveS =~ e 5
WEEK 2

Intel Assembly Program example e 6
WEEK 3

Additional study on Intel Assembler 8
WEEK 4-6

Step by Step example Program e 9
WEEK 7-8

Example using C programming Language ... eeeeeeeeeeeeeeeeeeneiennnnnn 13

WEEK 10-12
Using Dos Debug 14
WEEK 13 -15
Creating a Batch Processing File 15

Page | 2

WEEK ONE
PRACTICALS

LEARNING OBJECTIVES

* In this Lab we shall be getting familiar with an asembler program and start
learning it from scratch. Make sure an assemblersiinstalled in all your systems.

« Do not worry even if you are unable to figure out Wat is happening. Just recognize
the format of an assembly program

SIMPLE ASSEMBLERS

We shall be concerned here with implementing a Erapsembler language translator progr:
To distinguish between programs written in "assembbde", and the "assembler program"
which translates these, we shall use the convetitmmASSEMBLER means the language and
"assembler" means the translator.

The basic purpose of an assembler is to transI8®@EMBLER language mnemonics into bin
or hexadecimal machine code. Some assemblergidaibre than this, but most modern
assemblers offer a variety of additional featuaesl the boundary between assemblers and
compilers has become somewhat blurred.

A simple ASSEMBLER language

Rather than use an assembler for a real machinshaleimplement one for a rudimentary
ASSEMBLER language for the hypothetical single-awualator machine

An example of a program in our proposed languaggé/en below, along with its equivalent
object code. We have, as is conventiponakd hexadecimal notation for the object codeeric
values in the source have been specified in décima

Assembler 1.0 on 01/06/96 at 17:40:45
00 BEG ; count the bits in a number
00 OA INI ; Read(A)

01 LOOP ; REPEAT

0116 SHR;A:=ADIV2

02 3A0D BCC EVEN ; IFAMOD 2 # 0 THEN
04 1E 13 STATEMP ; TEMP = A

06 19 14 LDA BITS

08 05 INC

09 1E 14 STABITS ;BITS :=BITS + 1
OB 19 13 LDA TEMP ; A := TEMP

12 18 HLT ; terminate execution

13 TEMP DS 1; VAR TEMP : BYTE
14 00 BITSDC O ; BITS: BYTE

15 END

Page | 3

ASSEMBLER programs like this usually consist ofgsence of statements or instructions,
written one to a line. These statements fall imto main classes:

Firstly, there are the executable instructions tieatespond directly to executable code.
These can be recognized immediately by the pressreeistinctive mnemonic for an
opcode. For our machine these executable instngtiovide further into two classes: there
are those that require an address or operand asfhe instruction (as in STA TEMP) and
occupy two bytes of object code, and there areettiwst stand alone (like INI and HLT).
When it is necessary to refer to such statemesésvilere, they may be labeled with an
introductory distinctive label identifier of theqggrammer’s choice (as in EVEN BNZ
LOOP), and may include a comment, extending frormanductory semicolon to the end of
a line.

The address or operand for those instructionsréfwatires them is denoted most simply by
either a numeric literal, or by an identifier oéthrogrammer’s choice. Such identifiers
usually correspond to the ones that are used & &tements - when an identifier is used to
label a statement itself we speak of a definingioence of a label; when an identifier
appears as an address or operand we speak of li@dapgrurrence of a label.

The second class of statement includes the diesctin source form these appear to be
deceptively similar to executable instructionseytlare often introduced by a label,
terminated with a comment, and have what may appdag mnemonic and address
components. However, directives have a ratherrdiffierole to play. They do not generally
correspond to operations that will form part of toele that is to be executed at run-time, but
rather denote actions that direct the action oftdsembler at compile-time - for example,
indicating where in memory a block of code or datep be located when the object code is
later loaded, or indicating that a block of memisrjo be preset

with literal values, or that a name is to be gitem literal to enhance readability.

For our ASSEMBLER we shall introduce the followidigectives and their associated
compile-time semantics, as a representative saofiplese found in more sophisticated
languages:

Label Mnemonic Address Effect

not used BEG not used Mark the beginning of theecod

not used END not used Mark the end of the code

not used ORG location Specify location where the¥ang code
is to be loaded

optional DC value Define an (optionally labelleg}dn

to have a specified initial value

optional DS length Reserve length bytes (optioabél associated
with the first byte)

name EQU value Set name to be a synonym for trengralue

Besides lines that contain a full statement, mssémblers usually permit incomplete lines.

These may be completely blank (so as to enhandalbéiy), or may contain only a label, or
may contain only a comment, or may contain onlgkeel and a comment.

Page | 4

WEEK 2 PRACTICALS

Learning Outcome

THE TEACHER IS STRONGLY ADVICED TO VISIT THE WEB SES LISTED SO
THAT HE CAN BE FAMILIAR TO SOME OF THE CONCEPTS BORE ACTUAL
PRACTICAL TAKES PLACE

Assembler Programming

NOTE: Some activities may not be completed withim allotted time. You may extel
according to the understanding of the students.

Your first Intel Assembler programs

Download some sample Intel programs for practicgdayr students on this site :
http://teaching.idallen.com/dat2343/0O0s/

The sidebar contains links to many Intel assenyregrams. First is a one-page program
namedonepage.asrhat you can select and download to make sure gssgmbler and
linker are working correctly.

WARNING: (If you can't assemble and run this siemptogram without any warnings or
errors, something is wrong with your assembleirdelr!)

The command lines used to assemble and link tbigram are given in the comments at the
beginning of the program. Either put the ASM anil\programs in the same directory as
your program, or adjust your DOS PATH variablertolide where they reside. Read the
documentation for more details on how the ASM ard_\rograms work.

Page | 5

PROGRAM EXAMPLE

10
15
20
25
30
as
40
45
50
55
60
65
70
75
80
85
90
95
100
105

-

110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195

COPY
FIRST
CLOOFP

ENDFIL

STA
Forward jsus
reference /Lo

EOF

EDREC

START 1000
STL
JSUB /RDREC
IDA / LENGTH
COMP [/ ZERO
JEQ / ENDFIL
JSUR / WRREC
J § Croop
LDA / EQF
STH BUFFER
LDA THREE
“ LENGTH
WRREC
RETADR
RSUB
BYTE C'ECF’
WORD 3
WORD 0
RESW 1
RESW 1
RESB 4096

COPY FILE FROM TNPUT TO OUTPUT

SAVE RETUEN ADDRESS
READ INPUT RECORD
TEST FOR EOF (LENGTH = 0)

EXIT IF EQF FOUND
WRITE OUTPUT EECORD
LOOP

INSERT END OF FILE MARKER

SET LENGTH = 3

WRITE EOF

GET RETUEN ADDRESS
RETURN TO CALLER

LENGTH OF RECORD
4096-BYTE BUFFER AREA

SUBRCUTINE TO READ RECORD INTO BUFFER

LDX ZERO
LDA ZERO
™D INPUT
JEQ RLOOP
RD INPUT
COMP ZERO
JEQ EXIT
STCH BUFFER, X
TIX MAXTFEN
JLT RLOOP
STX LENGTH
RSUB

BYTE 5166 i i
WORD 40986

CLEAR LOOF COUNTER
CLEAR A TQ ZERO
TEST INPUT DEVICE
LOCE UNTIL READY

READ CHARACTER INTO REGISTER A

TEST FOR END OF RECORD (X
EXIT LOOP IF ECR

00"

STORE CHARACTER IN BUFFER

LOOP UNLESS MAX LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

RETURN TO CALLER

CODE FOR INPUT DEVICE

Page | 6

WEEK 3

PRACTICAL

This Week Practical is the continuation of whatstarted last week. Make sure you have
downloaded at least one Intel Assembler programgando study it by carefully following
the various steps outlined.

Alan's star.asm prograrmt{p://teaching.idallen.com/dat2343/00s/stars.ganints numbers
of asterisks based on one key of input, andcho.asrnthat loops reading characters without
echoing them to the screen.

There is a longer program (mostly comments!) nafimetdasm
http://elearning.algonquincollege.com/coursemak@idat2343/project/lec_10.pKbat uses
Alan Pinck's 1/0 Package(http://teaching.idallen.com/dat2343/00s/stars.&Ehis package
contains some subroutines for inputting and outpyittumbers.) You will need Alan's 1/10
package in the current directory on your disk weasble this example. This program is a
good test to see if the 1/0 package downloadedtw gomputer correctly. Program
addtwo.asms another example that uses the 1/0 package.

The above programs, if properly downloaded give g@ood idea of what an assembler
program .

Page | 7

WEEK 4-6

PRACTICAL

For the next Three Weeks, you will again learn titera simple assembler program step by
step and try to understand what it does.

EXAMPLE PROGRAM

Write a program that has no input and outputsndilmoous string of numbers, starting with
1, and counting by one. In other words, your oughduld be 123456

Solution

Step 1: 1 00 We clear the accumulator resettitmyazero and then load the content of
memory block 00 into the accumulator. The accunoulabw contains 001.

Program Counter 25 Accumulator 1
Memory Block Block Content Memory Block Block Conte
00 1 30 827
01 31

02 32

...... 33

25 100 34

26 50C 35

27 200 36

28 602 37

29 502 38

Output Stream:
Step 2: 5 00 We output the contents of memory b@fzkWVe do this because we need a 1 as
the first number in our output stream. Memory bl@€kalready contains a 1 so we can output
directly from it.

Program Counter 26 Accumulator 1
Memory Block Block Content Memory Block Block Conte
00 1 30 827
01 31

02 32

...... 33

25 100 34

26 50C 35

27 200 36

28 602 37

29 502 38

Output Stream: 1

Page | 8

Step 3: 2 00 To construct the rest of the outpetst we need to increment each output
value by 1 to create the next value in the streginte we have 1 in the accumulator we need
to add another 1 to it to get the next output vadu®. So in this instruction we add the
content of memory block 00, a 1, to the contenthefaccumulator without resetting it first.
The accumulator content is now 2.

Program Counter 27 Accumulator 2
Memory Bloct Block Conter Memory Bloct Block Conter
00 1 3C 827
01 31

02 32

...... 33

25 10C 34

26 500 35

27 200 36

28 602 37

29 502 38

Step 4: 6 02 We want to output the next numbehefoutput stream, 2, which is now in the
accumulator. Remember that we cannot output dyiréaim the accumulator so we first need
to store its content to a memory block. In thigrimstion, we select memory block 02 for this
purpose. You could have chosen any empty blockaddomemory block 02 contains a 2.

Program Counter 28 Accumulator 2
Memory Bloct Block Conter Memory Bloct Block Conter
00 1 3C 827
01 31

02 2 32

...... 33

25 10C 34

26 500 35

27 200 36

28 602 37

29 50z 38

Step 5: 5 02 We can now output the next numbenebutput stream from memory block
02.

Program Counter 29 Accumulator 2

Memory Block Block Content Memory Block Block Conte
0C 1 3C 827

01 31

02 2 32

...... 33

25 10C 34

26 500 35

27 200 36

28 602 37

Page | 9

29 502
Output Stream: 1 2

38

Step 6: 8 27 Since we need to increments againtbygit the next output value we can just
repeat the increment (block 27)-store (block 28pati(block 29) sequence of instructions
infinitely to construct the rest of the output sime The first instruction in this sequence,
increment by 1, resides in memory block 27. Themefthat's the location to which we need

to jump to repeat the sequence.
Program Countc 30

Memory Block Block Content
00 1

01

02 2

25 100

26 500

27 20C

28 602

29 502

Accumulato
Memory Block

30

31

32

33

34

35

36

37

38

2

Block Conte

827

Follow the changes in the next few steps of theganm. Note the pattern that develops. |
have only shown the increment and store steps @dnmito one figure) to emphasize how
the contents of the accumulator and memory bloc&Hahge for every execution of the

increment-store-output sequence.
Steps 7 & 8

Program Counter 27

Memory Block Block Content
00 1

01

02 3

25 100

26 50C

27 20C

28 602

29 502

Output Stream (after step 9): 12 3
...... Steps 11 & 12

Program Countc 27

Memory Block Block Content
00 1

01

02 4

25 100

Accumulator
Memory Block
30

31

32

33

34

35

36

37

38

Accumulato
Memory Block

30

31

32

33

34

3
Block Conte
827

Block Conte
827

Page | 10

Output Stream (after step 13): 123 4
...... Steps 15 & 16

Program Counter 27 Accumulator 5
Memory Block | Block Content | Memory Block | Block Conte
00 \1 30 827
01 31
__|32 |
...... | 33]
10C 34 |
50C 35]
27 200 36 |
8 k2 37 |
29 502 38 |

Output Stream (after step 17): 12345
The sequence keeps repeating infinitely.

Page | 11

WEEK 7-9

PRACTICAL

This is another program written in C language. It will help you detect errors. Type it and run
it.

PROGRAM

#include < stdio.h >

#include < errno.h >

main()

{
inti;
FILE *f;

f = fopen("~lagos/nonexist”, "r");
if (f == NULL) {
printf("f = null. errno = %d\n", errno);
perror("f1");
}
}

chla.c tries to open the file ~lagos/nonexist for reading. That file doesn't exist. Thus, fopen
returns NULL (read the man page for fopen), and sets errno to flag the error. When you run
the program, you'll see that errno was set to 2. To see what that means, you can do one of two
things:
1. Look up the errno value in /usr/include/errno.h (You will have to eventually look at
lusr/include/sys/errono.h on UNIX flavor machines since on that type of system, the C
standard errno.h does have "#include < sys/errno.h >" init.). You'll see the line:

#define ENOENT 2 /* No such file or directory */
2. Use the procedure "perror()" -- again, read the man page. It prints out what the errno
means. Thus, the output of f1 is

f=null. errno=2

f1: No such file or directory
This is the standard interface for errors.

Page | 12

WEEK 10-12

PRACTICALS

This practical is based on acquainting the studernhe use of DOS DEBUG command and
also

Understanding some instructions such as PUSH, B@EL, and INT.

The student should make sure that he has visitetbtlowing websites before the practicals
begins.

http://chesworth.com/pv/technical/dos_debug_ tutdrian
http://www.datainstitute.com/debugl.htm

Saving output from DEBUG

Some of the assignments require you to save theibat DEBUG in afile. If you're

running in a DOS Window under Windows 9x, you chmegs use the mouse to copy text
and paste it into another application such as Nate@ordpad, or Write. (Do not save the
window as a graphic using Print Screen - the riegpfile is huge and unnecessary. Save the
text only, using cut-and-paste into another appbcasuch as Write, Wordpad, or Notepad,
and print from there.)

When you print some screen text or programs, yostmse a Courier or Terminal fixed-
width font so that the text lines up. Do not pmith a variable-width font such as Times,
Tahoma, or Arial!

If you're running in pure-DOS mode, without Windowtudy the examples below under the
headingDEBUG Scripts You can enter a few DEBUG commands into a téxt&nd have
DEBUG read the file and execute the commands wiaileredirect the output into an output
file. Then, you can print the output files (use@ourier or Terminal fixed-width font).
Understanding PUSH, POP, CALL, and INT

The PUSH, POP, CALL, and INT instructions all use stack (the memory area pointed at
by SS:SP). The following DEBUG scripts and theinetated output files show what
happens. Each of the input files was run througBDG to produce the corresponding
output file, to which explanatory comments wereeatily hand:

C:> debug <push_pop.txt >push_pop_out.txt

C:> debug <call_push.txt >call_push_out.txt

C:> debug <int_push.txt >int_push_out.txt

Read these Output files for annotated examplelseofviorkings of

PUSH/POP, CALL, and INT: Annotated DEBUG

DEBUG Input Output

push pop.t push pop out.t
call_push.tx call_push_out.t
int_push.txt int_push_out.txt

Page | 13

WEEK 13 -15

PRACTICALS

This Practical focuses on Batch processing.dksected that the students will find great
reward in going through examples and practicals.

Examples of Batch Processing under Windows

Several examples of executing SAS batch jobs udiedows 95, 98, NT, ME and
Windows 2000 operating systems are demonstratezseTéxamples will work with all of the
operating systems listed. The screen shots foethsmg Windows 2000, Windows
95/98/ME/XP may be slightly different.

(Note: For all the examples, assume that the Sysfes is installed in the "C:\Program
Files\SAS Institute\SAS\V8\" directory. Change gah as necessary).

1. The first example of running SAS in batch is simaplest way. If SAS is registered
properly,

open Explorer and right click on the program taekecuted. (SAS should be registered
properly when you install SAS the first time. If SAs not registered properly refer to the
example on the next page.) Select the Batch Sulgstiiin. This will execute the program as
a batch job. The .LOG and .LST file will be locaiadhe same folder as the program by
default.

The .LOG file is the log for the program that hagib executed. This file will contain useful
information if the program did not run correctly.

The .LST file is the output file for the progranatihas been executed. This file is only
created if

there is output for the program.

Example 1:

Page | 14

EN Exploring - C:%

J File E dit 1=t Go F awvorntes Tonol=s

Jq-v-b,@éﬁ

El=eals By e Up Cual

| agdress = v

Faolders

-4 |_Fdare]

'_f_j Drezktop

SASYIew

Erint
Open

S ubrnit

B atch Submit

Bl AddteZip
Add to test.zip

| 2=

S |

- .NE

-8 My Computer I Sieme e
B2y 3 Floppw (0] =] Mt Cut
= 1;.\ (=) Fz Cegw
S Tmesetupt A s
1 ~scnpks Elsc Create S horbcut
- A7) Acmobae3 ‘-i’l Se Delets
421 Exchanas [==15u R enames
g :i Ediz:;menti % S Propertics
A0 o
-[:I Frogram File=s - illg testlog.log
B [1—

Batch S wbrnit

vl

71
153l
TE. 200
el

=]

1181

=
544l |
1
NE
-

=
You can also have .SAS files run in batch whendwouible click on the files within
Explorer. The default action for .SAS files neenl®¢é set to Batch Submit.
If the default action for the .SAS files needs ¢éodnanged, follow this example:
Open up Windows Explorer and Select View > Options.

& C-wtestdir [_ T3 ><]]

File Ecit [T Help

I —q testdir » T owlbar

wr Status Bar

_:l E| = |

|meles] <] =lew| [| EE

. - | arge |lcons

Small lcons
L=k
Dietail=

Srrangs [cons P
Line up lcons

FBefresh

| Options..____||

Change=s the dizplay options for this window.

Now Select >File Types and SAS System Program

D gt s
Folder | wice File Tupes ||

Fegister=d file tvpaes:

=4 S5 Swstern Permansnt Ltk
Bl 525 Sustem Program

S, SAS Sestsrn P aiserye

SsS Swustermn Slide Presentation
@ S Spsterm Slide Press mtatior
[l S5 Sustem Stored Program
= 55 Swstem Uil

i saved S earch

— Fil= bpp= detsils

Bemowe |

SRy

= S5<S Swstem ><pok Transpork File

[= N =]

S

Cortert Tope Chd IWE)

2 PB apmn

SaaS

applicationd--sas

DS

| Cancel I

] b

Select >Edit

Page | 15

Edit File Type = 1=

Change lcon.. . I

Di=scription of bope: IS.*'—'\S Swskem Frogram

otk Twps [HIFE |- Iapplicatinh.—":—ksas -—I
1=l

Default Extension For Content T ope: I_tas

(m]=1=T] =
A | | >

Hoewa. . I Edit. .. I Eemowe I S et Default I

I Confirrn Open After Dovenload
I Ernable Quick %iewr

I Alvways showe extension Ik I Carncel I

D. Highlight the Batch Submit action and Sele&et Default and then select OK.
Once this is set, double clicking a .SAS file wikecute the SAS program in batch
Mode. The .LOG and .LST files will be created ie same folder as the .SAS file.

2 EXAMPLE 2 .

The second example of SAS batch submissions heeSAS executable command with the
-SYSIN option. Select START>Run and type in the owand illustrated in Example 2

below. Specify the location of the program. Thiample will run the TEST.SAS program
located in root of the C drive. The splash scremmlee eliminated by using the -NOSPLASH
option. Also, adding the —ICON option will minimizke DOS window when the program is
started. The .LOG and LST files will reside in ®&S root directory.

The -SYSIN option specifies the SAS program filattwill be run in batch. The path needs
to be

a valid Windows path.

Example:
Run KHE
Type the name of 5 program, felder, or document, ahd
Wwindows will oper it for you,
Oper: ||E:E:"-.Ei.-"-'-.5 [nabibuteSA5 W ENS as exe'' -sysin o hlest sas

I | Bimnin Sep anate fAEmar SpEse

Ok Cancel | Erowzs. . |

3. Another option using the command in the presiexample is to create a .BAT file. This
isa

file that can be executed by the operating sysidma.easiest way to create a .BAT file is to
use

Notepad or another text editor. Here is an exaroptbe text that can be used within the file.

Page | 16

B Untitled - Motepad [_ [=]
Eile Edit Search Help
"C:ywProgram FilesySAS InstituteySASZWWUB\Sas.exe' —sysin c:itest.sas| =]

|- |
Once this file is created, select Start>Run, tacatethe job or double click on the .BAT file.
The .LOG file and the .LST files will reside in th@der of the .BAT file. The destination of
the

.LOG and .LST file can be changed using the —LOGtar -PRINT options.

The —PRINT option is used to change the destindtiloter for the output of the program.
The —LOG option is used to change the destinabdief for the log of the program that has
been

executed.

Example: "C:\Program Files\SAS Institute\SAS\V8\8ae" -SYSIN c:\testprog.sas
-NOSPLASH -ICON -PRINT c:\test.Ist -LOG c:\test.log

Example:

Run I

Type the name of a program, folder, docurment, or [mkernet
resource, and Windows will open it for vou,

Oper: |n::"«test.b-at j

s Cancel I Browmse.., I

Running a .BAT program will open a DOS window, whigill not close until the job is
finish.

4a. Running more than one job at a time catidme within the .BAT file. Use the
previous example but add more programs within tB8T.BAT file. This example will
execute 5 jobs concurrently.

Example:

Bl Untitled - Hotepad

Eile Edit Seach Help

“C=yProgram FilesiySAS InstituternSASiU8vSas.exe™ —-sysin
“C=yProgram Files\SAS InstituteySASAU8ASas.exe'™ -sysin
"C=xProgram Files\SAS InstituterSASiuU8vSas.exe™ —-sysin
“Cz%Program Files\SAS InstituteiSAS%UB\Sas.exe™ —-sysin
“C:z%Program Files\SAS Institutei\SAS\UBA\Sas.exe'™ -sysin
“Cz3\Program Files\3AS ImstituteiSASAUB\Sas_exe™ -sysin

:zvtestl.sas |=|
wtestZ .sas
Zvtest3.sas
Ztest3_.sas
wtesth_sas
wtestS_sas

nanahhn

|

Page | 17

4b.

This example shows how to run concurrent batch fjobgvindows 2000 and Windows
XP. The Start command is needed so the batch jdbsuw concurrently. The START
command also requires a title. The title can bebtibguotes but this example uses Job#.

Example:

B Untitled - Notepad
File Edit Format MWiew Help

Start "Jobl" "C:wProgram FileshsSas InstitutednSashwihsas.exe'" —sysin cihtestl.sas
Start "dok2" "“CZ:MProgram Files»SAS InstitutesSAshwBhsas.emxe' —sysin cihtest2. =as
Start "Job3" "C:iwProgram Fileshsas InstituterSAashwihsas.exe' —sysin Ccinfestl.sas
Sstart "dob4” UCihwProgram Files»SAas InstTituternSAshwEhsas.eme’ —sysin ciniests. sas
Start "Jobs" "CiwProgram Fileshsas InstitutehSashwiEhsas.exe'" —sysin cintestl.sas

< | &

5a. This next example shows how to create @@EST.BAT) file that will run 5 jobs
consecutively, instead of concurrently. The logd@) and output files (.LST) will be
located in the directory where the .BAT file isdbed unless you use the —PRINT and
—LOG options on the command line. (This exampleidVindows 95,98, ME,NT)
Example:

g Untitled - Motepad [— O]
Fil= Edit Search Help

start/w C:\"Program Files \"EA§8 Institute \EASUB\Sas.exe -sysin testl.sas ;J
startsw C:=\"Program Files"\"SAS Institute' \SASWUB\Sas.exe —syusin test2.sas
start/w C:\"Program Files"\"5A5 Institute' \SAS\UB\Sas.exe -syusin test3.sas
start/w C-\"Program Files"%"5AS Institute\SASUB\Sas _exe —sysin testh_sas
start/w C:\"Program Files"\"5A3 Institute''\SAS\UB\Sas_exe -sysin testS5.sas

-

5b. This example is for Windows 2000 and Windows XRis example shows how to
execute batch jobs consecutively.
Example:

B Untitled - Hotepad

FEile Edit Format WYiew Help

WProgram FileshSAsS Institutersasiwwihsas. exae'’ -sysin hwrestl.sas
wProgram FileshsSAS InstituteihsSAashiwvihsas.exe' -sysin thnIestZ.sas
WProgram FileshSAS InsTituternsasywwihsas., axe'’ -sysin wtestl.sas

nProgram Fileshsas InstitutehsashwiEhsas.exe'' —-sysin

i i i thEtEest2.sas
DWProgram Fileshsas InsTitutarsasywihsas, axa’’ -sysin

wrtestl.sas

e Yslatstal
ananann

<3 | (=

6. This next section will show examples of usirgcheduler to run SAS jobs at a specific
time. These jobs can be executed overnight withauing anyone at the computer. The
Scheduled Tasks program is located under My ComportéVindows NT 4 and is

located in the Control Panel under Windows 2000Wiradows 98 and ME. Windows95
doesn’t have this scheduler.

Page | 18

E My Computer
File Edit “iew Help

=] E3

34 Floppy [&] =]

LTN
Chal-Up
MHetwiorking

= = & & &

[D:] Control Fanel Frinter=

| 1 object(z] zelected

| v

Double click on the Scheduled Tasks icon to invibleefollowing wizard:

Scheduled T ask Wizard E3

LClick the program wau want WwWindows to run.
To zee more programs. click Browse.

Application | Wersion |:|
Fporobat Header | 3.0.000 -
ddress Book 2.50.41322.24...
Er—\gent 1.6
@ AP Teaxt Wiewer E.00.27:9
Calculator 4.00
oo Paver 00 =

Brovaze. . |

Carncel |

< Back I

[b I

Now that the Scheduler Wizard is running, seleetBhowse button and point to the

Select Frogram to Schedule

=l = = ==

Open I

TEST.BAT file.
Loak jn: I _ 4 bestdir
_: L =1}
[El test. A
File name: Itest.hat
Filez of tppe: I Frograms

LI Cancel |

Once a file has been selected, choose how ofteriabk should be executed and select

the next button.

Page | 19

Schedulsd T ask wwizard |

pPe a nams For this task. T he task name can bs

3

the csame name =as Ehe program marm e
==

P=rform this tosla:

L4 D =il

Lol VoV Ry Y

£ kot bl

£ Oree time onls

T eSSl ey cormpeaber skarks

T el | log o

= Baclk 1 Pl = 1 Cansel I

Now select the date and time this job should bewesl and select Next.

S cheduled T ask wa=ond

Seleck the e arned ad ass seoed vwwart Ehas basks o skark
Skart birne:
EHE == =k p—]
Zreart doakes
I v==ro il |
= Bk | et | | (= p— |

After the time has been selected, the prompt feruger name and password will appear.
Enter your user name and password your job isiingnunder and select Next.

Now that the user name and password are entethltbwing message window will be
displayed.

S cheduled T ask wWazard |

rowu have successfulle scheduled thie Folloecsing Easi=:

Ee=k

mirmdowes wwill perform this taske:
Ak 11 DTS Aabd on 1 A2 S0

= Back | | Firi=h 1 Cancel |

The task has now been scheduled, select the Fonisbn.
This will display the Task Scheduler’'s main mend #me job will be listed there.

Bl Scheduled Tasks =] E5
File Edit Yiew Advanced Help

[0 Scheduled Tasks =1 & [Elem| =~ == EiEElss

| Schedule | Mext Hun Time I Lazt Bun Time | Status |

A 171354 on 152 17:35:00 Akd Mewver

4

|1 objects] selected

Page | 20

	Cover
	Table of Contents
	WEEK ONE
	WEEK 2
	WEEK 3
	WEEK 4-6
	WEEK 7-9
	WEEK 10- 12
	WEEK 13 – 15
	Return to Table

