
Page | 1

UNESCO-NIGERIA TECHNICAL &
VOCATIONAL EDUCATION
REVITALISATION PROJECT-PHASE II

 Version 1 December 2008

NATIONAL DIPLOMA IN

COMPUTER SCIENCE

System Programming
PRACTICALS MANUAL

COURSE CODE: COM 212

Page | 2

TABLE OF CONTENTS

WEEK 1

Studying a Simple Assembly Program ..4
Familiarizing with Directives ..5

WEEK 2

Intel Assembly Program example ..6

WEEK 3

Additional study on Intel Assembler ..8

WEEK 4 – 6

Step by Step example Program ..9

WEEK 7- 8

Example using C programming Language ..13

WEEK 10- 12

Using Dos Debug ..14

WEEK 13 – 15

Creating a Batch Processing File ..15

Page | 3

WEEK ONE

 PRACTICALS

LEARNING OBJECTIVES

• In this Lab we shall be getting familiar with an assembler program and start
learning it from scratch. Make sure an assembler is installed in all your systems.

• Do not worry even if you are unable to figure out what is happening. Just recognize
the format of an assembly program

SIMPLE ASSEMBLERS

We shall be concerned here with implementing a simple assembler language translator programs.
To distinguish between programs written in "assembler code", and the "assembler program"
which translates these, we shall use the convention that ASSEMBLER means the language and
"assembler" means the translator.
The basic purpose of an assembler is to translate ASSEMBLER language mnemonics into binary
or hexadecimal machine code. Some assemblers do little more than this, but most modern
assemblers offer a variety of additional features, and the boundary between assemblers and
compilers has become somewhat blurred.

A simple ASSEMBLER language

Rather than use an assembler for a real machine, we shall implement one for a rudimentary
ASSEMBLER language for the hypothetical single-accumulator machine
An example of a program in our proposed language is given below, along with its equivalent
object code. We have, as is conventional, used hexadecimal notation for the object code; numeric
values in the source have been specified in decimal.

Assembler 1.0 on 01/06/96 at 17:40:45
00 BEG ; count the bits in a number
00 0A INI ; Read(A)
01 LOOP ; REPEAT
01 16 SHR ; A := A DIV 2
02 3A 0D BCC EVEN ; IF A MOD 2 # 0 THEN
04 1E 13 STA TEMP ; TEMP := A
06 19 14 LDA BITS
08 05 INC
09 1E 14 STA BITS ; BITS := BITS + 1
0B 19 13 LDA TEMP ; A := TEMP
12 18 HLT ; terminate execution
13 TEMP DS 1 ; VAR TEMP : BYTE
14 00 BITS DC 0 ; BITS : BYTE
15 END

Page | 4

ASSEMBLER programs like this usually consist of a sequence of statements or instructions,
written one to a line. These statements fall into two main classes:

Firstly, there are the executable instructions that correspond directly to executable code.
These can be recognized immediately by the presence of a distinctive mnemonic for an
opcode. For our machine these executable instructions divide further into two classes: there
are those that require an address or operand as part of the instruction (as in STA TEMP) and
occupy two bytes of object code, and there are those that stand alone (like INI and HLT).
When it is necessary to refer to such statements elsewhere, they may be labeled with an
introductory distinctive label identifier of the programmer’s choice (as in EVEN BNZ
LOOP), and may include a comment, extending from an introductory semicolon to the end of
a line.

The address or operand for those instructions that requires them is denoted most simply by
either a numeric literal, or by an identifier of the programmer’s choice. Such identifiers
usually correspond to the ones that are used to label statements - when an identifier is used to
label a statement itself we speak of a defining occurrence of a label; when an identifier
appears as an address or operand we speak of an applied occurrence of a label.

The second class of statement includes the directives. In source form these appear to be
deceptively similar to executable instructions - they are often introduced by a label,
terminated with a comment, and have what may appear to be mnemonic and address
components. However, directives have a rather different role to play. They do not generally
correspond to operations that will form part of the code that is to be executed at run-time, but
rather denote actions that direct the action of the assembler at compile-time - for example,
indicating where in memory a block of code or data is to be located when the object code is
later loaded, or indicating that a block of memory is to be preset
with literal values, or that a name is to be given to a literal to enhance readability.
For our ASSEMBLER we shall introduce the following directives and their associated
compile-time semantics, as a representative sample of those found in more sophisticated
languages:

Label Mnemonic Address Effect
not used BEG not used Mark the beginning of the code
not used END not used Mark the end of the code
not used ORG location Specify location where the following code
is to be loaded
optional DC value Define an (optionally labelled) byte,
to have a specified initial value
optional DS length Reserve length bytes (optional label associated
with the first byte)
name EQU value Set name to be a synonym for the given value

Besides lines that contain a full statement, most assemblers usually permit incomplete lines.
These may be completely blank (so as to enhance readability), or may contain only a label, or
may contain only a comment, or may contain only a label and a comment.

Page | 5

WEEK 2 PRACTICALS

Learning Outcome

THE TEACHER IS STRONGLY ADVICED TO VISIT THE WEB SITES LISTED SO
THAT HE CAN BE FAMILIAR TO SOME OF THE CONCEPTS BEFORE ACTUAL
PRACTICAL TAKES PLACE

Assembler Programming

NOTE: Some activities may not be completed within the allotted time. You may extend
according to the understanding of the students.
Your first Intel Assembler programs
Download some sample Intel programs for practice by your students on this site :
http://teaching.idallen.com/dat2343/OOs/
The sidebar contains links to many Intel assembler programs. First is a one-page program
named onepage.asm that you can select and download to make sure your assembler and
linker are working correctly.
WARNING: (If you can't assemble and run this simple program without any warnings or
errors, something is wrong with your assembler or linker!)
The command lines used to assemble and link this program are given in the comments at the
beginning of the program. Either put the ASM and VAL programs in the same directory as
your program, or adjust your DOS PATH variable to include where they reside. Read the
documentation for more details on how the ASM and VAL programs work.

Page | 6

PROGRAM EXAMPLE

Page | 7

WEEK 3

 PRACTICAL

This Week Practical is the continuation of what we started last week. Make sure you have
downloaded at least one Intel Assembler program and get to study it by carefully following
the various steps outlined.
 Alan's star.asm program (http://teaching.idallen.com/dat2343/00s/stars.asm prints numbers
of asterisks based on one key of input, and noecho.asm that loops reading characters without
echoing them to the screen.
There is a longer program (mostly comments!) named first.asm
http://elearning.algonquincollege.com/coursemat/pinka/dat2343/project/lec_IO.pkg that uses
Alan Pinck's I/O Package. (http://teaching.idallen.com/dat2343/00s/stars.asm (This package
contains some subroutines for inputting and outputting numbers.) You will need Alan's I/O
package in the current directory on your disk to assemble this example. This program is a
good test to see if the I/O package downloaded to your computer correctly. Program
addtwo.asm is another example that uses the I/O package.

The above programs, if properly downloaded give you a good idea of what an assembler
program .

Page | 8

WEEK 4-6

 PRACTICAL

For the next Three Weeks, you will again learn to write a simple assembler program step by
step and try to understand what it does.

EXAMPLE PROGRAM
 Write a program that has no input and outputs a continuous string of numbers, starting with
1, and counting by one. In other words, your output should be 1 2 3 4 5 6 ….
Solution
Step 1: 1 00 We clear the accumulator resetting it to zero and then load the content of
memory block 00 into the accumulator. The accumulator now contains 001.

Program Counter 25 Accumulator 1

Memory Block Block Content Memory Block Block Content

00 1 30 827

01 31

02 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Output Stream:
Step 2: 5 00 We output the contents of memory block 00. We do this because we need a 1 as
the first number in our output stream. Memory block 00 already contains a 1 so we can output
directly from it.

Program Counter 26 Accumulator 1

Memory Block Block Content Memory Block Block Content

00 1 30 827

01 31

02 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Output Stream: 1

Page | 9

Step 3: 2 00 To construct the rest of the output stream we need to increment each output
value by 1 to create the next value in the stream. Since we have 1 in the accumulator we need
to add another 1 to it to get the next output value, a 2. So in this instruction we add the
content of memory block 00, a 1, to the contents of the accumulator without resetting it first.
The accumulator content is now 2.

Program Counter 27 Accumulator 2

Memory Block Block Content Memory Block Block Content

00 1 30 827

01 31

02 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Step 4: 6 02 We want to output the next number of the output stream, 2, which is now in the
accumulator. Remember that we cannot output directly from the accumulator so we first need
to store its content to a memory block. In this instruction, we select memory block 02 for this
purpose. You could have chosen any empty block. So now memory block 02 contains a 2.

Program Counter 28 Accumulator 2

Memory Block Block Content Memory Block Block Content

00 1 30 827

01 31

02 2 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Step 5: 5 02 We can now output the next number of the output stream from memory block
02.

Program Counter 29 Accumulator 2

Memory Block Block Content Memory Block Block Content

00 1 30 827

01 31

02 2 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

Page | 10

29 502 38
Output Stream: 1 2
Step 6: 8 27 Since we need to increments again by 1 to get the next output value we can just
repeat the increment (block 27)-store (block 28)-output (block 29) sequence of instructions
infinitely to construct the rest of the output stream. The first instruction in this sequence,
increment by 1, resides in memory block 27. Therefore, that’s the location to which we need
to jump to repeat the sequence.

Program Counter 30 Accumulator 2

Memory Block Block Content Memory Block Block Content

00 1 30 827

01 31

02 2 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Follow the changes in the next few steps of the program. Note the pattern that develops. I
have only shown the increment and store steps (lumped into one figure) to emphasize how
the contents of the accumulator and memory block 02 change for every execution of the
increment-store-output sequence.
Steps 7 & 8

Program Counter 27 Accumulator 3

Memory Block Block Content Memory Block Block Content

00 1 30 827

01 31

02 3 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Output Stream (after step 9): 1 2 3
…… Steps 11 & 12

Program Counter 27 Accumulator 4

Memory Block Block Content Memory Block Block Content

00 1 30 827

01 31

02 4 32

…… 33

25 100 34

Page | 11

26 500 35

27 200 36

28 602 37

29 502 38

Output Stream (after step 13): 1 2 3 4
…… Steps 15 & 16

Program Counter 27 Accumulator 5

Memory Block Block Content Memory Block Block Content

00 1 30 827

01 31

02 5 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

 Output Stream (after step 17): 1 2 3 4 5
The sequence keeps repeating infinitely.

Page | 12

WEEK 7-9

 PRACTICAL

This is another program written in C language. It will help you detect errors. Type it and run
it.
PROGRAM
#include < stdio.h >
#include < errno.h >

main()
{
 int i;
 FILE *f;

 f = fopen("~lagos/nonexist", "r");
 if (f == NULL) {
 printf("f = null. errno = %d\n", errno);
 perror("f1");
 }
}
ch1a.c tries to open the file ~lagos/nonexist for reading. That file doesn't exist. Thus, fopen
returns NULL (read the man page for fopen), and sets errno to flag the error. When you run
the program, you'll see that errno was set to 2. To see what that means, you can do one of two
things:
1. Look up the errno value in /usr/include/errno.h (You will have to eventually look at
/usr/include/sys/errono.h on UNIX flavor machines since on that type of system, the C
standard errno.h does have "#include < sys/errno.h >" in it.). You'll see the line:
 #define ENOENT 2 /* No such file or directory */
2. Use the procedure "perror()" -- again, read the man page. It prints out what the errno
means. Thus, the output of f1 is
 f = null. errno = 2
 f1: No such file or directory
This is the standard interface for errors.

Page | 13

WEEK 10- 12

 PRACTICALS
This practical is based on acquainting the student on the use of DOS DEBUG command and
also
Understanding some instructions such as PUSH, POP, CALL, and INT.
The student should make sure that he has visited the following websites before the practicals
begins.
http://chesworth.com/pv/technical/dos_debug_tutorial.htm
http://www.datainstitute.com/debug1.htm
Saving output from DEBUG
Some of the assignments require you to save the output of DEBUG in a file. If you're
running in a DOS Window under Windows 9x, you can always use the mouse to copy text
and paste it into another application such as Notepad, Wordpad, or Write. (Do not save the
window as a graphic using Print Screen - the resulting file is huge and unnecessary. Save the
text only, using cut-and-paste into another application such as Write, Wordpad, or Notepad,
and print from there.)
When you print some screen text or programs, you must use a Courier or Terminal fixed-
width font so that the text lines up. Do not print with a variable-width font such as Times,
Tahoma, or Arial!
If you're running in pure-DOS mode, without Windows, study the examples below under the
heading DEBUG Scripts. You can enter a few DEBUG commands into a text file, and have
DEBUG read the file and execute the commands while you redirect the output into an output
file. Then, you can print the output files (using a Courier or Terminal fixed-width font).
Understanding PUSH, POP, CALL, and INT
The PUSH, POP, CALL, and INT instructions all use the stack (the memory area pointed at
by SS:SP). The following DEBUG scripts and their annotated output files show what
happens. Each of the input files was run through DEBUG to produce the corresponding
output file, to which explanatory comments were added by hand:
C:> debug <push_pop.txt >push_pop_out.txt
C:> debug <call_push.txt >call_push_out.txt
C:> debug <int_push.txt >int_push_out.txt

Read these Output files for annotated examples of the workings of
PUSH/POP, CALL, and INT:
DEBUG Input

Annotated DEBUG
Output

push_pop.txt push_pop_out.txt

call_push.txt call_push_out.txt

int_push.txt int_push_out.txt

Page | 14

WEEK 13 – 15

PRACTICALS
 This Practical focuses on Batch processing. It is expected that the students will find great
reward in going through examples and practicals.

Examples of Batch Processing under Windows

Several examples of executing SAS batch jobs under Windows 95, 98, NT, ME and
Windows 2000 operating systems are demonstrated. These examples will work with all of the
operating systems listed. The screen shots for those using Windows 2000, Windows
95/98/ME/XP may be slightly different.
(Note: For all the examples, assume that the SAS System is installed in the "C:\Program
Files\SAS Institute\SAS\V8\" directory. Change the path as necessary).

1. The first example of running SAS in batch is the simplest way. If SAS is registered
properly,
open Explorer and right click on the program to be executed. (SAS should be registered
properly when you install SAS the first time. If SAS is not registered properly refer to the
example on the next page.) Select the Batch Submit option. This will execute the program as
a batch job. The .LOG and .LST file will be located in the same folder as the program by
default.
The .LOG file is the log for the program that has been executed. This file will contain useful
information if the program did not run correctly.
The .LST file is the output file for the program that has been executed. This file is only
created if
there is output for the program.

Example 1:

Page | 15

You can also have .SAS files run in batch when you double click on the files within
Explorer. The default action for .SAS files needs to be set to Batch Submit.
If the default action for the .SAS files needs to be changed, follow this example:

Open up Windows Explorer and Select View > Options.

Now Select >File Types and SAS System Program

Select >Edit

Page | 16

D. Highlight the Batch Submit action and Select > Set Default and then select OK.
Once this is set, double clicking a .SAS file will execute the SAS program in batch
Mode. The .LOG and .LST files will be created in the same folder as the .SAS file.

2 EXAMPLE 2 .

 The second example of SAS batch submissions uses the SAS executable command with the
-SYSIN option. Select START>Run and type in the command illustrated in Example 2
below. Specify the location of the program. This example will run the TEST.SAS program
located in root of the C drive. The splash screen can be eliminated by using the –NOSPLASH
option. Also, adding the –ICON option will minimize the DOS window when the program is
started. The .LOG and LST files will reside in the SAS root directory.
The -SYSIN option specifies the SAS program file that will be run in batch. The path needs
to be
a valid Windows path.

Example:

3. Another option using the command in the previous example is to create a .BAT file. This
is a
file that can be executed by the operating system. The easiest way to create a .BAT file is to
use
Notepad or another text editor. Here is an example of the text that can be used within the file.

Page | 17

Once this file is created, select Start>Run, to execute the job or double click on the .BAT file.
The .LOG file and the .LST files will reside in the folder of the .BAT file. The destination of
the
.LOG and .LST file can be changed using the –LOG and the -PRINT options.
The –PRINT option is used to change the destination folder for the output of the program.
The –LOG option is used to change the destination folder for the log of the program that has
been
executed.
Example: "C:\Program Files\SAS Institute\SAS\V8\Sas.exe" -SYSIN c:\testprog.sas
-NOSPLASH -ICON -PRINT c:\test.lst –LOG c:\test.log
Example:

Running a .BAT program will open a DOS window, which will not close until the job is
finish.

4a. Running more than one job at a time can be done within the .BAT file. Use the
previous example but add more programs within the TEST.BAT file. This example will
execute 5 jobs concurrently.
Example:

Page | 18

4b.
This example shows how to run concurrent batch jobs for Windows 2000 and Windows
XP. The Start command is needed so the batch jobs will run concurrently. The START
command also requires a title. The title can be double quotes but this example uses Job#.

Example:

5a. This next example shows how to create a batch (TEST.BAT) file that will run 5 jobs
consecutively, instead of concurrently. The log (.LOG) and output files (.LST) will be
located in the directory where the .BAT file is located unless you use the –PRINT and
–LOG options on the command line. (This example is for Windows 95,98,ME,NT)
Example:

5b. This example is for Windows 2000 and Windows XP. This example shows how to
execute batch jobs consecutively.
Example:

6. This next section will show examples of using a scheduler to run SAS jobs at a specific
time. These jobs can be executed overnight without having anyone at the computer. The
Scheduled Tasks program is located under My Computer for Windows NT 4 and is
located in the Control Panel under Windows 2000 and Windows 98 and ME. Windows95
doesn’t have this scheduler.

Page | 19

Double click on the Scheduled Tasks icon to invoke the following wizard:

Now that the Scheduler Wizard is running, select the Browse button and point to the
TEST.BAT file.

Once a file has been selected, choose how often this task should be executed and select
the next button.

Page | 20

Now select the date and time this job should be executed and select Next.

After the time has been selected, the prompt for the user name and password will appear.
Enter your user name and password your job is running under and select Next.

Now that the user name and password are entered, the following message window will be
displayed.

The task has now been scheduled, select the Finish button.
This will display the Task Scheduler’s main menu and the job will be listed there.

	Cover
	Table of Contents
	WEEK ONE
	WEEK 2
	WEEK 3
	WEEK 4-6
	WEEK 7-9
	WEEK 10- 12
	WEEK 13 – 15
	Return to Table

