

UNESCO

REVITALISATION PROJECT

 VERSION 1 DECMBER 2008

NATIONAL DIPLOMA IN
COMPUTER

System Programming

COURSE CODE

UNESCO-NIGERIA TECHNICAL &
VOCATIONAL EDUCATION

REVITALISATION PROJECT -PHASE II

VERSION 1 DECMBER 2008

NATIONAL DIPLOMA IN

COMPUTER TECHNOLOGY

System Programming

COURSE CODE: COM 212

Page | 1

Page | 2

TABLE OF CONTENTS

WEEK 1 CONCEPTS OF SYSTEM PROGRAMMING

Brief overview of System programming …………………………………5
Definition of Assembler …………………………………6
Types of Assemblers and loaders ………………………………….7
Definition and examples of Assemblers ………………………………….8

WEEK 2 Operating System: 1-pass and 2-pass

OS definition ………………………………….10
1-pass assembler ………………………………….11
2-pass assembler …………………………………..13

WEEK 3: Assembly Functions

Basic Assembler Functions …………………………………..17
Assembler directives …………………………………..17

WEEK 4 Basic Elements of and Assembly Program

Basic Elements ……………………………………20
Op code ………………………………….....21
Instruction cycle ……………………………………..22
Types of Instructions ……………………………………...22

WEEK 5 Sample Program Example

Program example and solution ……………………………………..26
Local labels ……………………………………..30
Examples of Local labels ……………………………………..32
Symbol Table …………………………………… .32

WEEK 6 Assembler Functions

Functions of an assembler ……………………………………. 33
Assembler Modules ……………………………………. 34
Lexical Analysis ……………………………………. 35
Pass-1 module ……………………………………. 35
Pass-2 module ……………………………………..35
Main Program ……………………………………..35
Communicating between modules ……………………………………..36

Page | 3

WEEK 7 Interpretation, Translation, Compilation

Interpretation ……………………………………38
Byte code Interpreter ……………………………………38
Compiler ……………………………………40
Compiler Output ……………………………………41
Compiler vs Interpreter ……………………………………41
One-pass vs Multipass compiler …………………………………….41
Just-in-time compilation ……………………………………42

WEEK 8 Front End and Back End

Front end ……………………………………43
Back end ……………………………………44
Concepts of tokens ………………………………… ...45

WEEK 9 Error Checking, Utilities, Libraries

Error Checking ……………………………………47
Perror ……………………………………47
Assert ……………………………………48
Libraries in Computing ……………………………………49
Types of Libraries ……………………………………49

WEEK 10 Operating Systems: Importance, Uses, Types

OS in hierarchy ……………………………………54
Functions of OS ……………………………………55
OS for PCs ………………………………….. .56
MS Dos ……………………………………56
MS Windows ……………………………………57

WEEK 11 OS Services

OS services ……………………………………59

WEEK 12 I/O Buffering and Files

I/O Buffering ……………………………………61
Files devices ……………………………………61
Spooling ……………………………………60

Page | 4

WEEK 13 Interrupts

Interrupts ………………………………….64
Interrupts handler ………………………………... 68

WEEK 14 Multiprogramming, Multitasking, Multiprocessing

Batch processing ………………………………… 70
Time sharing ………………………………… 70
Real time OS ………………………………….70
Network OS ……………………………… 72
Examples of networks OS ……………………………….. 74

WEEK 15 Review of Important Concepts………………………… ..76

Page | 5

WEEK 1

 Learning Outcome for this week:

 The concept of system programming
 The differences between systems programs and application programs
 The difference between Assembler and operating systems.
 Brief Review of Program Concepts

Teacher’s Activities:

i) Define System Programming, Application Programming
ii) Differentiate between System Programming and Application Programming
iii) Give examples of each
iv) Define Assembler and operating Systems
v) Review what a program is.

Page | 6

DEFINITION

System programming (or systems programming) is the activity of programming system
software. The primary distinguishing characteristic of systems programming when compared to
application programming is that application programming aims at producing software which
provides services to the user (e.g. word processor, Spreadsheets, databases, Accounting
packages)

Systems programming aims at producing software which provides services to the computer
hardware (e.g. disk defragmenter, Operating Systems…). It also requires a greater degree of
hardware awareness that is to say it is machine dependent and the programmer needs to know the
hardware within which the software will operate

BRIEF OVERVIEW OF SYSTEM PROGRAMMING

In system programming more specifically:

• The programmer will make assumptions about the hardware and other properties of the
system that the program runs on, and will often exploit those properties (for example by
using an algorithm that is known to be efficient when used with specific hardware)

• Usually a low-level programming language or programming language dialect is used and
does the following:

o Operate in resource-constrained environments
o Is very efficient and has little runtime overhead
o Has a small runtime library, or none at all
o Allows for direct and "raw" control over memory access and control flow
o Let the programmer write parts of the program directly in assembly language

• Debugging can be difficult if it is not possible to run the program in a debugger due to
resource constraints. Running the program in a simulated environment can be used to
reduce this problem.

• Note: All underlined words concepts will be discussed as the study progresses.

Systems programming is sufficiently different from application programming that programmers
tend to specialize in one or the other.

In system programming, often limited programming facilities are available. The use of automatic
garbage collection is not common and debugging is sometimes hard to do. The runtime library, if
available at all, is usually far less powerful, and does less error checking. Because of those
limitations, monitoring and logging are often used; operating systems may have extremely
elaborate logging subsystems.

Implementing certain parts in operating system and networking requires systems programming

For historical reasons, some organizations use the term systems programmer to describe a job
function which would be more accurately termed systems administrator. This is particularly true

Page | 7

in organizations whose computer resources have historically been dominated by mainframes,
although the term is even used to describe job functions which do not involve mainframes.

DEFINITION OF ASSEMBLER

Computer science is not as precise a field as mathematics, so most definitions are not
rigorous. An attempt to define Assembler can be formulated as follows: An assembler is a
translator that translates source instructions (in symbolic language) into target instructions (in
machine language), on a one to one basis.
This means that each source instruction is translated into exactly one target instruction.
This definition has the advantage of clearly describing the translation process of an assembler. It
is not a precise definition, however, because an assembler can do (and usually does) much more
than just translation. It off.ers a lot of help to the programmer in many aspects of writing the
program. The many types of help offered by the assembler are grouped under the general term
directives (or pseudo-instructions).
 Another good definition of assemblers is can be profered thus: An assembler is a translator that
translates a machine-oriented language into machine language.

This definition distinguishes between assemblers and compilers. Compilers being translators of
problem-oriented languages or of machine-independent languages.
This definition, however, says nothing about the one-to-one nature of the translation, and thus
ignores a most important operating feature of an assembler.
One reason for studying assemblers is that the operation of an assembler reflects the architecture
of the computer. The assembler language depends heavily on the internal organization of the
computer. Architectural features such as memory word size, number formats, internal character
codes, index registers, and general purpose registers, affect the way assembler instructions are
written and the way the assembler handles instructions and directives. This fact explains why
there is an interest in assemblers today and why a course on assembler language is still required
for many, perhaps even most, computer science degrees.
Today, assemblers are translators and they work on one program at a time. The tasks of locating,
loading, and linking (as well as many other tasks) are performed by a loader.
A modern assembler has two inputs and two outputs. The first input is short,
typically a single line typed at a keyboard. It activates the assembler and specifies
the name of a source .le (the .le containing the source code to be assembled). It
may contain other information that the assembler should have before it starts. This
includes commands and specifications such as:

i) The names of the object file and listing file. Display (or do not display)the
listing on the screen while it is being generated.

ii) Display all error messages but do not stop for any error.
iii) Save the listing file and do not print it (see figure below).

This program does not use macros. The symbol table is larger (or smaller) than usual

and needs a certain amount of memory. All these terms will be explained elsewhere.

Page | 8

Figure: 1.1 Main Components and Operations of an Assembler

TYPES OF ASSEMBLERS AND LOADERS

1) A One-pass Assembler: One that performs all its functions by reading the source file
once.

2) A Two-Pass Assembler: One that reads the source file twice.
3) A Resident Assembler: One that is permanently loaded in memory.

Typically such an assembler resides in ROM, is very simple (supports only a few
directives and no macros), and is a one-pass assembler.

4) A Macro-Assembler: One that supports macros
5) A Cross-Assembler: An assembler that runs on one computer and assembles programs for

another. Many cross-assemblers are written in a higher-level language to make them
portable. They run on a large machine and produce object code for a small machine.

6) A Meta-Assembler: One that can handle many different instruction sets.
7) A Disassembler: This, in a sense, is the opposite of an assembler. It translates machine

code into a source program in assembler language.

We shall later discuss (1) and (2) in this course

Page | 9

WHAT IS A PROGRAM?

Depending on who you talk to, you will get very different answers. In operating systems, when a
program is running, it is called a process. The program itself can be in many forms, i.e. machine
code, assembly code, C code, C++ or Fortran, Java, etc…

Processors execute machine code ONLY. Machine code is written with binary machine words
composed of op codes and operands. The op codes represent different instructions, for instance
an arithmetic addition. Operands are operated on by the instruction. A machine word may look
like:

10001000110101001010101101101011

In this case, 10001000 encodes the op code, 110101001010 and 101101101011 are the
two operands. Most people don’t want to write code in this format. Naturally, our forerunners
sought a way out, using mnemonics to represent all those binary streams. Then the line above
may become:

ADD AX, BX

These mnemonics and some other directive commands are collectively called assembly
language. The assembly program now looks more readable and maintainable:

 0000000000000100 MOV BX, VALUE1
 0000000000001000 MOV AX, FACTOR
 0000000000001100 MUL AX, BX

This is how CPU goes about to scale VALUE1 by FACTOR. VALUE1 x FACTOR doesn’t
make any sense to the processor. 04, 08 and 0C, written in HEX numbers, are memory addresses
where corresponding lines in the program are stored.

Things became easier, but not easy enough and one could write a lot of programs using these
commands But if one has a life away from a keyboard, there are problems:

1. The mnemonics in assembly language are in one-to-one correspondence with machine
codes, which are processor dependent. If you move from Intel x86 to Motorola 68k, a
new program has to be written. Here is a real assembly program that runs on 68k:

 ORG $1000
N EQU 5
CNT1 DC.B 0
CNT2 DC.B 0
ARRAY DC.B 2,7,1,6,3

 ORG $1500
MAIN LEA ARRAY,A2
 MOVE.B #N,D1
 CLR D6
 CLR D7

Page | 10

 JSR SORT
 STOP #$2700

SORT MOVE.B #0,D6
 MOVE.B #1,D7
LOOP MOVE.B $0(A2,D6.W),D2
 MOVE.B $0(A2,D7.W),D3
 CMP.B D2,D3
 BGT EXCHANGE
 ADD.B #1,D7
 CMP.B #5,D7
 BLT LOOP
 JMP CHECK1
EXCHANGE MOVE.B D2,$0(A2,D7.W)
 MOVE.B D3,(A2,D6.W)
 ADD.B #1,D7
 CMP.B #5,D7
 BLS LOOP
CHECK1 ADD.B #1,D6
 MOVE.B D6,D7
 CMP.B #4,D6
 BLT LOOP
 RTS
 END $1500

Note, although assembly code are very close to what machine code is, they are still
different. A n assembler converts assembly code into true machine code as we have seen
earlier (the realm of binary!).

2. In the above program, the addresses are physical addresses, which correspond to

individual bytes on your memory banks. If you have hard coded these addresses, you
better only run one program on your processor at each time!

3. How tedious it is to program in assembly language! It may take 30 lines of code to just
put a character on your console, provided that you are not making system calls. As an
anecdote, while WordPerfect and Word look very similar, one is written in assembly and
the other in C.

WEEK TWO

 Learning Outcome for this week:

 An insight into the concept of Operating System
 The meaning and work of 1
 The meaning of a 2-pass Assembler

Teacher’s Activities:

 Go through the program example and give a line by line explanation of the working of a

1-pass assembler and a 2-

ASSEMBLER

We have seen that a typically modern
instruction mnemonics into op-codes
and other entities. The use of symbolic references is a key feature of assemblers, saving tedious
calculations and manual address updates after program modifications. Most assemblers also
include macro facilities for performing textual substitution
sequences of instructions to run inline

OPERATING SYSTEM

Figure

An operating system (commonly abbreviated
computer system that is responsible for the management and coordination of activities and the
sharing of the limited resources of the computer. The operating system acts as a host for
applications that are run on the machine. As a host, one of the purposes of an operating system is

Learning Outcome for this week:

insight into the concept of Operating System
The meaning and work of 1-pass Assembler.

pass Assembler

Go through the program example and give a line by line explanation of the working of a
-pass assembler

We have seen that a typically modern assembler creates object code by translating assembly
codes, and by resolving symbolic names for memory locations

and other entities. The use of symbolic references is a key feature of assemblers, saving tedious
calculations and manual address updates after program modifications. Most assemblers also

facilities for performing textual substitution—e.g., to generate common short
inline, instead of in a subroutine.

Figure 2.1 Location of Operating System

(commonly abbreviated OS and O/S) is the software component of a
system that is responsible for the management and coordination of activities and the

sharing of the limited resources of the computer. The operating system acts as a host for
that are run on the machine. As a host, one of the purposes of an operating system is

Page | 11

Go through the program example and give a line by line explanation of the working of a

by translating assembly
for memory locations

and other entities. The use of symbolic references is a key feature of assemblers, saving tedious
calculations and manual address updates after program modifications. Most assemblers also

to generate common short

) is the software component of a
system that is responsible for the management and coordination of activities and the

sharing of the limited resources of the computer. The operating system acts as a host for
that are run on the machine. As a host, one of the purposes of an operating system is

Page | 12

to handle the details of the operation of the hardware. This relieves application programs from
having to manage these details and makes it easier to write applications. Almost all computers,
including handheld computers, desktop computers, supercomputers, and even video game
consoles, use an operating system of some type. Some of the oldest models may however use an
embedded operating system, that may be contained on a compact disk or other data storage
device.

Common contemporary operating systems include Microsoft Windows, Mac OS, Linux and
Solaris. Microsoft Windows has a significant majority of market share in the desktop and
notebook computer markets, while servers generally run on Linux or other Unix-like systems.
Embedded device markets are split amongst several operating systems.[1] [2]

We will now discuss a 1-pass and 2-pass assembler and see how they works,

THE ONE-PASS ASSEMBLER

As its name implies, this assembler reads the source file once. During that single pass, the
assembler handles both label definitions and assembly. The only problem is future symbols and,
to understand the solution Let ’s consider the following example:
LC
36 BEQ AB ;BRANCH ON EQUAL
.
.
67 BNE AB ;BRANCH ON NOT EQUAL
.
.
89 JMP AB ;UNCONDITIONALLY
.
.
126 AB anything

Symbol AB is used three times as a future symbol. On the first reference, when
The LC happens to stand at 36, the assembler searches the symbol table for AB , does
not find it, and therefore assumes that it is a future symbol. It then inserts AB into
the symbol table but, since AB has no value yet, it gets a special type. Its type is
U (underlined). Even though it is still underlined, it now occupies an entry in the
Symbol table, an entry that will be used to keep track of AB as long as it is a future
symbol. The next step is to set the ‘value ’field of that entry to 36 (the current
value of the LC).This means that the symbol table entry for AB is now pointing
to the instruction in which AB is needed. The ‘value ’field is an ideal place for the pointer since
it is the right size, it is currently empty, and it is associated with AB .The BEQ instruction itself
is only partly assembled and is stored, incomplete, in memory location 36.The field in the
instruction were the value of AB should be stored (the address field),remains empty.

Page | 13

When the assembler gets to the BNE instruction (at which point the LC stands at 67), it searches
the symbol table for AB , and fi.nds it. However, AB has a type of U , which means that it is a
future symbol and thus its ‘value ’field (=36) is not a value but a pointer .It should be noted that,
at this point, a type of U does not necessarily mean an underlined symbol. While the assembler is
performing its single pass, any underlined symbols must be considered future symbols. Only at
the end of the pass can the assembler identify underlined symbols (see below).The assembler
handles the BNE instruction by:

i) Partly assembling it and storing it in memory location 67.
ii) Copying the pointer 36 from the symbol table to the partly assembled instruction

in location 67. The instruction has an empty field (where the value of AB should have
been), where the pointer is now stored. There may be cases where this field

Figure 2.2 A 1-Pass Assembler

Page | 14

TWO 2-PASS ASSEMBLER

A two-pass assembler is easier to understand .Such an assembler performs two passes over the
source file. In the fi.rst pass it reads the entire source file, looking only for label definitions. All
labels are collected, assigned values, and placed in the symbol table in this pass. No instructions
are assembled and, at the end of the pass, the symbol table should contain all the labels defined
in the program. In the second pass, the instructions are again read and are assembled,
using the symbol table.

 Exercise What if a certain symbol is needed in pass 2, to assemble an instruction, and is not
found in the symbol table?

To assign values to labels in pass 1, the assembler has to maintain the LC. This in turn means
that the assembler has to determine the size of each instruction (in words), even though the
instructions themselves are not assembled. In many cases it is easy to figure out the size of an
instruction. On the IBM 360 for example, the mnemonic determines the size uniquely. An
assembler for this machine keeps the size of each instruction in the Op-Code table together with
the mnemonic and the Op-Code . On the DEC PDP-11 the size is determined both by the type of
the instruction and by the addressing mode(s) that it uses. Most instructions are one word (16-
bits) long. However, if they use either the index or index deferred modes, one more word is
added to the instruction. If the instruction has two operands (source and destination) both using
those modes, its size will be 3 words. On most modern microprocessors, instructions are between
1 and 4 bytes long and the size is determined by the Op-Code and the specific operands used.
This means that, in many cases, the assembler has to work hard in the first pass just to determine
the size of an instruction. It has to look at the mnemonic and, sometimes, at the operands and the
modes, even though it does not assemble the instruction in the first pass. All the information
about the mnemonic and the operand collected by the assembler in the first pass is extremely
useful in the second pass, when instructions are assembled. This is why many assemblers save all
the information collected during the first pass and transmit it to the second pass through an
intermediate file .Each record on the intermediate file contains a copy of a source line plus all the
information that has been collected about that line in the first pass. At the end of the fi.rst pass
the original source .le is closed and is no longer used. The intermediate .le is reopened and is
read by the second pass as its input file.
A record in a typical intermediate file contains:

i) The record type. It can be an instruction, a directive, a comment, or an
invalid line.

 ii) The LC value for the line.
 iii) A pointer to a specific entry in the Op-Code table or the directive table.
The second pass uses this pointer to locate the information necessary to assemble or execute the
line.

Page | 15

More sophisticated high-level assemblers provide language abstractions such as:

• Advanced control structures
• High-level procedure/function declarations and invocations
• High-level abstract data types, including structures/records, unions, classes, and sets
• Sophisticated macro processing
• Object-Oriented features such as encapsulation, polymorphism, inheritance, interfaces

Note In normal professional usage, the term assembler is often used ambiguously: It is
frequently used to refer to an assembly language itself, rather than to the assembler utility. Thus:
"CP/CMS was written in S/360 assembler" as opposed to "ASM-H was a widely-used S/370
assembler."

• A copy of the source line.
Notice that a label, if any, is not used by pass 2 but must be included in the intermediate
file since it is needed in the final listing.

There can be two problems with labels in the first pass; multiply-defined labels and invalid labels
Before a label is inserted into the symbol table, the table has to be searched for that label. If the
label is already in the table, it is doubly (or even multiply-) defined. The assembler should treat
this label as an error and the best way of doing this is by inserting a special code in the type .eld
in the symbol table.
Thus a situation such as:
AB ADD 5,X
.
.
AB SUB 6,Y
.
.
JMP AB
will generate the entry:
name value type
AB .MTDF
in the symbol table.
Labels normally have a maximum size (typically 6 or 8 characters), must start with a letter, and
may only consist of letters, digits, and a few other characters. Labels that do not conform to these
rules are invalid labels and are normally considered a fatal error. However, some assemblers will
truncate a long label to the maximum size and will issue just a warning, not an error, in such a
case.

 Exercise What is the advantage of allowing characters other than letters and digits in a label?

The only problem with symbols in the second pass is bad symbols .These are either multiply-
defined or underlined symbols. When a source line uses a symbol in the operand field, the
assembler looks it up in the symbol table. If the symbol is found but has a type of MTDF ,or if
the symbol is not found in the symbol table (i.e., it has not been defined), the assembler responds
as follows.

Page | 16

• It flags the instruction in the listing .le. It assembles the instruction as far as possible, and
writes it on the object file.

• It flags the entire object file. The flag instructs the loader not to start execution of the
program. The object .le is still generated and the loader will read and load it, but not start
it. Loading such a .le may be useful if the user wants to see a memory map assemblers.

This point is the reason why a one-pass assembler can only produce an absolute object .le (which
has only limited use), whereas a two-pass assembler can produce a re-locatable object file, which
is much more general.

Exercise What would be good Pascal declarations for such a future symbol
list: a. Using absolute pointers.

b. Housed in an array.

Page | 17

Figure: 2.3 Operations of a 2-pass assembler

Page | 18

WEEK THREE

 Learning outcome for this week:

 Review the work of a 2-pass assembler
 Basic Assembly Functions
 Assembler directives
 An Assembler example program

Teacher’s Activities:

Outline

i) Basic assembler functions
ii) A simple SIC assembler example

Page | 19

BASIC ASSEMBLER FUNCTIONS

1) Translating mnemonic operation codes to their machine language equivalents
2) Assigning machine addresses to symbolic labels

 Figure 3.1 Basic Assembler Functions

OTHER FUNCTIONS INCLUDE:

• Converting mnemonic operation codes to their machine language equivalents
• Converting symbolic operands to their equivalent machine addresses
• Deciding the proper instruction format
• Converting the data constants to internal machine representations
• Writing the object program and the assembly listing

ASSEMBLER DIRECTIVES

• Assembler directives are pseudo instructions
• They provide instructions to the assembler itself
• They are not translated into machine operation codes
• Example for SIC assembler directive
• START : specify name & starting address
• END : end of source program, specify the first execution instruction
• BYTE, WORD, RESB, RESW
• End of record : a null char (00)
• End of file : a zero- length record

NOTE: This program example will be theoretically explained in the class and further used
in a lab as practical example.

Page | 20

PROGRAM EXAMPLE

Page | 21

 PURPOSE OF EXAMPLE PROGRAM

• Reads records from input device (code F1)
• Copies them to output device (code 05)
• At the end of the file, writes EOF on the output device, then RSUB to the operating

system
• Data transfer (RD, WD)
• A buffer is used to store record. Buffering is necessary for different I/ O rates
• The end of each record is marked with a null character (00) 16
• The end of the file is indicated by a zero- length record
• Subroutines (JSUB, RSUB) RDREC, WRREC
• Save link register first before nested jump

Page | 22

WEEK FOUR

Learning outcome for this week

 The general format of an Assembly program statement
 The purpose of each field of Assembly language statement
 The meaning of symbolic operations, types of operations, program counter
 Registers, Instruction cycle
 Types of Instructions

TEACHER’S ACTIVITIES

• Describe the general format of an Assembly Language Program Statement (label, op-
code, Addresses, operands, pseudo-operations , pseudo-instructions)

• Explain the purpose of each field of assembly language statement
• Example of a list of op-code to write a simple program

BASIC ELEMENTS OF AN ASSEMBLY PROGRAM

Instructions (statements) in assembly language are generally very simple, unlike those in high-
level languages. Each instruction typically consists of an operation or op-code plus zero or more
operands. Most instructions refer to a single value, or a pair of values.

Generally, an op-code is a symbolic name for a single executable machine language instruction.
Operands can be either immediate (typically one byte values, coded in the instruction itself) or
the addresses of data located elsewhere in storage. This is determined by the underlying
processor architecture: the assembler merely reflects how this architecture works.

Most modern assemblers also support pseudo-operations, which are directives obeyed by the
assembler at assembly time instead of the CPU at run time. (For example, pseudo-ops would be
used to reserve storage areas and optionally set their initial contents.) The names of pseudo-ops
often start with a dot to distinguish them from machine instructions.

Some assemblers also support pseudo-instructions, which generate two or more machine
instructions.

Symbolic assemblers allow programmers to associate arbitrary names (labels or symbols) with
memory locations. Usually, every constant and variable is given a name so instructions can
reference those locations by name, thus promoting self-documenting code. In executable code,

Page | 23

the name of each subroutine is associated with its entry point, so any calls to a subroutine can use
its name. Inside subroutines, GOTO destinations are given labels. Some assemblers support local
symbols which are lexically distinct from normal symbols (e.g., the use of "10$" as a GOTO
destination).

Most assemblers provide flexible symbol management, allowing programmers to manage
different name spaces, automatically calculate offsets within data structures, and assign labels
that refer to literal values or the result of simple computations performed by the assembler.
Labels can also be used to initialize constants and variables with re-locatable addresses.

Assembly languages, like most other computer languages, allow comments to be added to
assembly source code that are ignored by the assembler. Good use of comments is even more
important with assembly code than with higher-level languages, as the meaning of a sequence of
instructions is harder to decipher from the code itself.

Wise use of these facilities can greatly simplify the problems of coding and maintaining low-
level code. Raw assembly source code as generated by compilers or dis-assemblers — code
without any comments, meaningful symbols, or data definitions — is quite difficult to read when
changes must be made.

Op-code

In computer technology, an op-code (operation code) is the portion of a machine language
instruction that specifies the operation to be performed. Their specification and format are laid
out in the instruction set architecture of the processor in question (which may be a general CPU
or a more specialized processing unit). Apart from the op-code itself, an instruction normally
also has one or more specifiers for operands (i.e. data) on which the operation should act,
although some operations may have implicit operands, or none at all. There are instruction sets
with nearly uniform fields for op-code and operand specifiers, as well as others (the x86
architecture for instance) with a more complicated, varied length structure. [1]

Depending on architecture, the operands may be register values, values in the stack, other
memory values, I/O ports, etc, specified and accessed using more or less complex addressing
modes. The types of operations include arithmetic, data copying, logical operations, and
program control, as well as special instructions (such as CPUID and others).

Assembly language commands have the following syntax: a 1-digit op code followed by a 2-digit
memory address or operand. Each command is stored in a separate memory block. For example:
20 0 68 means that in memory block 20, we have a command with the op code 0 which executes
on memory block 68.

Finally, the program counter keeps track of the memory block that contains the next command
to be executed. By default the program counter is incremented by 1 after each command
execution because we typically store commands in consecutive memory blocks. However, the
program counter can jump to any memory block depending on the program’s sequence of
execution.

Page | 24

• IR -- The instruction register. It holds the instruction currently being executed.
• CSR -- The control status register. It contains information pertaining to the execution of

the current and previous instructions.

THE INSTRUCTION CYCLE
The computer's operation consists of running instructions repetitively. This is known as the
instruction cycle. The instruction cycle consists of 4 general phases:

• 1. Decode instruction (in IR)
• 2. Execute instruction
• 3. Determine next instruction
• 4. Load next instruction into the IR

What is an instruction? Like everything else, it's a sequence of 0's and 1's. Instructions are
stored as part of a program's memory, and the instruction that is pointed to by the pc register is
the one that gets loaded into the IR for execution.

In other words, if the pc contains the value 0x2040, then the IR is executing the instruction
contained in the 4 bytes starting at memory address 0x2040.

 An assembler converts assembly code into the proper 0's and 1's that compose the program. If
you call gcc with the -S flag, it will produce a .s file containing the assembler for that program in
C language for instance. Without the -S flag, it produces the instructions directly.

TYPES OF INSTRUCTIONS

1. Memory <-> Register instructions:
 ld mem -> %reg Load the value of the register from memory.

 st %reg -> mem Store the value of the register into memory.
There are a few ways to address memory:
 st %r0 -> i Store the value of register r0 into the memory
 location of global variable i.

 st %r0 -> [r1] Treat the value of register r1 as a pointer
 to a memory location, and store the
 value of r0 in that memory location.

 st %r0 -> [fp+4] Treat the value of the frame pointer as a
 pointer to a memory location, and store the
 value of r0 in the memory location 4 bytes
 after that location. You can use any value,
 positive or negative, not just 4.
 However, you cannot use a register (i.e.

Page | 25

 you can't do st %r0 -> [fp+r2]).
 This only works with the frame pointer. It does
 not work with any other register.

 st %r0 -> [sp]-- Treat the value of register sp as a
 pointer to a memory location, store the
 value of r0 into that memory location, and then
 subtract 4 to the value of sp.

 st %r0 -> ++[sp] Treat the value of register sp as a
 pointer to a memory location. First, add 4 to
 that value, then store the
 value of r0 into that memory location.

2. Register <-> Register instructions:
 mov %reg -> %reg Copy a register's value to another
 mov #val -> %reg register, or set its value to a constant.
All arithmetic goes from register to register:
 add %reg1, %reg2 -> %reg3 Add reg1 & reg2 and put the sum in reg3.
 sub %reg1, %reg2 -> %reg3 Subtract reg2 from reg1.
 mul %reg1, %reg2 -> %reg3 Multiply reg1 & reg2.
 idiv %reg1, %reg2 -> %reg3 Do integer division of reg2 into reg1.
 imod %reg1, %reg2 -> %reg3 Do reg1 mod reg2.
There are two special instructions that let you perform addition and subtraction on the stack
pointer:
 push %reg This subtracts the value of stack pointer
 push #val by value contained in reg or the constant defined in val.

 pop %reg This adds the value of %reg or #val
 pop #val to the stack pointer.

3. Control instructions
 jsr a Call the subroutine starting at instruction a.
 ret Return from a subroutine.
There are also "compare" and "branch" instructions, which is how you implement for and if
statements, but I won't go over them yet.

Finally, there are also "directives" which are not really code, but specify that memory must be
allocated for variables. For example:

 .globl i Allocate 4 bytes in the globals segment
 for the variable i.

The program counter points to where the instruction register must go to load its value. On normal
instructions, the pc is incremented by 4 so that the next instruction can be loaded. On control
instructions, the pc gets a new value, allowing the machine to call subroutines, perform "if-then"
statements, etc.

Page | 26

Here is the list of the op codes we will be using to construct assembly language programs.

Op
Code

Function
Abbreviation

Task

0 INP Stores the next value from the input stream into the
specified memory block. Every time this op code is called
the next value in the list is read and stored. For example,
001 means store the next value in the input stream in
memory block 01.

1 CLA Clears the accumulator (reset content to 0) and adds the
content of the specified memory location to the
accumulator.

2 ADD Adds the content of the specified memory location to the
accumulator without clearing the accumulator first.

3 TAC Tests the value in the accumulator, if it is negative it jumps
to the specified memory block. For example, 325 means
check the content of the accumulator, if it is negative set the
program counter to 25, go to memory block 25, and execute
the command stored in it.

4 SFT This op code is followed by two 1-digit operands. The first
indicates the number of places to shift the content of the
accumulator to the left and the second indicates the number
of places to shift the content of the accumulator to the right.
The left shift is implemented before the right shift. Note that
you do not have to have non-zero shifts in both directions.
You could set the value to 0 for the direction in which you
do not wish to shift.

For example consider the instruction 401 and the value in
the accumulator is 2121. We see that the amount of shift to
the left is 0 so no shift to the left. The amount of shift to the
right is 1 so we move all digits of the accumulator to the
right one place dropping the rightmost digit � we get 212.
Shifting 1 place to the right is analogous to getting the

Page | 27

quotient of the division of the accumulator’s content by 10.

Let’s try another example, 420. The accumulator again
contains 2121 initially. The amount of shift to the left is 2
so we move all digits of the accumulator’s content to the
left two places and add a zero to the right for every place we
shift � we get 2100. The first 2 digits are truncated because
the accumulator is only four positions in length. Shifting 1
place to the left is like multiplying the accumulator’s
content by 10.

5 OUT Outputs the content of the specified memory block. For
example, 501 means output the content of memory block
01.

6 STO Stores the content of the accumulator in the specified
memory block. For example, 601 means store the content of
the accumulator into memory block 01.

7 SUB Subtracts the content of the specified memory block from
the content of the accumulator. For example, 701 means
subtract the content of memory block 01 from the content of
the accumulator.

8 JMP Jumps to the specified memory block unconditionally. For
example, 825 means set the program counter to 25, go to
memory block 25, and execute the command stored in it.

9 HRS Halts or ends the program. We always use 900.

Rules & Assumptions:

• You may always assume that memory block 00 contains the value 1 at the start of the
program. It remains 1 unless you specifically overwrite it.

• You cannot output directly from the accumulator. You must store the accumulator
content first to a memory block and then output from the memory block.

• It is a good rule of thumb to always use op code 1 when you want to add the first number
in your program to the accumulator. That way you ensure that you are not computing
based on a previous value stored in the accumulator.

• You may start your program in any empty memory block you want. You may also use
any empty memory block to store data.

Page | 28

WEEK FIVE

Learning Outcome for this week:

 Write a program with no input but output
 Symbol table and Local labels

TEACHER’S ACTIVITIES

• Explain step by step the following program to students
Explain the meaning and uses of local labels

Note: There will be further practice of this program in a lab class

Sample Program

Write a program that has no input and outputs a continuous string of numbers, starting with 1,
and counting by one. In other words, your output should be 1 2 3 4 5 6 ….

Solution

Step 1: 1 00 We clear the accumulator resetting it to zero and then load the content of memory
block 00 into the accumulator. The accumulator now contains 001.

Program Counter 25 Accumulator 1

Memory Block Block Content Memory Block Block Content
00 1 30 827

01 31

02 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Output Stream:

Page | 29

Step 2: 5 00 We output the contents of memory block 00. We do this because we need a 1 as the
first number in our output stream. Memory block 00 already contains a 1 so we can output
directly from it.

Program Counter 26 Accumulator 1

Memory Block Block Content Memory Block Block Content
00 1 30 827

01 31

02 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Output Stream: 1

Step 3: 2 00 To construct the rest of the output stream we need to increment each output value
by 1 to create the next value in the stream. Since we have 1 in the accumulator we need to add
another 1 to it to get the next output value, a 2. So in this instruction we add the content of
memory block 00, a 1, to the contents of the accumulator without resetting it first. The
accumulator content is now 2.

Program Counter 27 Accumulator 2

Memory Block Block Content Memory Block Block Content
00 1 30 827

01 31

02 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Step 4: 6 02 We want to output the next number of the output stream, 2, which is now in the
accumulator. Remember that we cannot output directly from the accumulator so we first need to
store its content to a memory block. In this instruction, we select memory block 02 for this
purpose. You could have chosen any empty block. So now memory block 02 contains a 2.

Page | 30

Program Counter 28 Accumulator 2

Memory Block Block Content Memory Block Block Content
00 1 30 827

01 31

02 2 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Step 5: 5 02 We can now output the next number of the output stream from memory block 02.

Program Counter 29 Accumulator 2

Memory Block Block Content Memory Block Block Content
00 1 30 827

01 31

02 2 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Output Stream: 1 2

Step 6: 8 27 Since we need to increments again by 1 to get the next output value we can just
repeat the increment (block 27)-store (block 28)-output (block 29) sequence of instructions
infinitely to construct the rest of the output stream. The first instruction in this sequence,
increment by 1, resides in memory block 27. Therefore, that’s the location to which we need to
jump to repeat the sequence.

Page | 31

Program Counter 30 Accumulator 2

Memory Block Block Content Memory Block Block Content
00 1 30 827

01 31

02 2 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Follow the changes in the next few steps of the program. Note the pattern that develops. I have
only shown the increment and store steps (lumped into one figure) to emphasize how the
contents of the accumulator and memory block 02 change for every execution of the increment-
store-output sequence.

Steps 7 & 8

Program Counter 27 Accumulator 3

Memory Block Block Content Memory Block Block Content
00 1 30 827

01 31

02 3 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Output Stream (after step 9): 1 2 3

…… Steps 11 & 12

Page | 32

Program Counter 27 Accumulator 4

Memory Block Block Content Memory Block Block Content
00 1 30 827

01 31

02 4 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Output Stream (after step 13): 1 2 3 4

…… Steps 15 & 16

Program Counter 27 Accumulator 5

Memory Block Block Content Memory Block Block Content
00 1 30 827

01 31

02 5 32

…… 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

 Output Stream (after step 17): 1 2 3 4 5

The sequence keeps repeating infinitely.

LOCAL LABELS

In principle, a label may have any name that obeys the simple syntax rules of the assembler. In
practice, though, label names should be descriptive. Names such as DATE,MORE,LOSS,RED
are preferable to A001,A002,...
There are exceptions, however. The use of the non-descriptive label A1 in the following
example:
.

Page | 33

JMP A1
DDCT DS 12 reserve 12 locations for array DDCT
A1 .
.
is justified since it is only used to jump over the array DDCT .(Note that the array ’s
name is descriptive, possibly meaning deductions or double-dictionary) We say that A1 is used
only locally, to serve a limited purpose.
 As a result, many assemblers support a feature called local labels. .The main idea is that if a
label is used locally and does not require a descriptive name, why not give it a name that will
signify this fact. Names such as 1H ,2H for the local labels were used. The name of a local label
in our examples is a single decimal digit. When such a label is referred to (in the operand field),
the digit is followed by either B or F (for Backward or Forward).
LC
.
.
13 1:...
.
.
17 JMP 1F jump to 24
.
.
24 1:LOD R2,1B 1B here means address 13
.
.
31 1:ADD R1,2F 2F is address 102
.
.
102 2:DC 1206,-17
.
.
115 SUB R3,2B-1 102-1=101

EXAMPLE.LOCAL LABELS.

The example shows that local labels is a simple, useful, concept that is easy to implement. In a
two-pass assembler, each local label is entered into the symbol table as any other symbol, in pass
1.Thus the symbol table in our example contains:
Symbol Table
n v
113
124
131
2 102
The order of the labels in the symbol table is important. If the symbol table is sorted between the
two passes, all occurrences of each octal label should remain sorted by value. In pass 2,when an

Page | 34

instruction uses a octal label such as 1F , the assembler identifies the specific occurrence of label
1 by comparing all local labels 1 to the current value of the LC. The first such instruction in our
example is the ‘JMP 1F ’at LC=17.Clearly,the assembler should look for a octal label with the
name ‘1 ’and a value .17.The smallest such label has value 24.In the second case, LC=24 and the
assembler is looking for a 1B .It needs the label with name ‘1 ’ and a value which is the largest
among all values <24.It therefore identifies the label as the ‘1 ’at 13.

 EXERCISE
If we modify the instruction at 24 above to read 1:LOD R2,1F would the 1F refer to address 31
or 24?
In a one-pass assembler, again the labels are recognized and put into the symbol table in the
single pass. An instruction using a octal label iB is no problem, since is needs the most recent
occurrence of the local label ‘1 ’in the table. An instruction using an iF is handled like any other
future symbol case. An entry is opened in the symbol table with the name iF ,a type of U ,and a
value which is a pointer to the instruction.
In the example above, a snapshot of the symbol table at LC=32 is:

SYMBOL TABLE

n v t
113 D
124 D
1 31 D 31 is the value of the third 1
2 31 U 31 is a pointer to the ADD instruction

An advantage of this feature is that the local labels are easy to identify as such,
since their names start with a digit. Most assemblers require regular label names
to start with a letter. In modern assemblers, local labels sometimes use a syntax different from
the one shown here.
The LC as a local symbol
Virtually all assemblers allow a notation such as ‘BPL *+6 ’where ‘*’stands
for the current value of the LC. The operand in this case is located at a point 6
locations following the BPL instruction.
The LC symbol can be part of any address expression and is, of course, re-locatable. Thus *+A is
valid if A is absolute, while *-A is always okay (and is absolute if A is relative, relative if A is
absolute).This feature is easy to implement. The address expression involving the ‘*’is
calculated, using the current value of the LC, and the value is used to assemble the instruction, or
execute the directive, on the current source line. Nothing is stored in the symbol table.

Some assemblers use the asterisk for multiplication, and may designate the
period ‘.’or the ‘$’for the LC symbol. On the PDP-11 the notation ‘X:.=.+8 ’is used to increment
the LC by 8,and thus to reserve eight ocations (compare this to the DS directive).

 EXERCISE

What is the meaning of JMP *,JMP *-*?

Page | 35

WEEK SIX

 Learning Outcome for this week:

 The Assembler Functions
 Assembler modules

ASSEMBLER FUNCTIONS

Two important steps are involved in designing software: dividing the software into smaller, more
manageable components or modules, and determining how the modules will communicate. For
both of these steps, the designer needs to keep the major kinds of software functionality in mind.
The following are the primary functions of an assemblers.

• Generate machine code output

This is the primary purpose of an assembler. The assembler usually generates a file copy
of data and machine instructions that will later be loaded into a computer in preparation
for execution. The file copy must also contain a starting address - the address of the first
instruction to be executed.

• Provide program error information for the programmer

Assembly language programming is difficult. Assembly language programmers make
mistakes. Some of these mistakes can be caught by the assembler. The ease of assembly
language programming is dependent to a large extent on the quality of assembler error
messages.

• Provide machine code information for the programmer

The assembler cannot catch all programmer errors. Some can only be detected by
executing the assembled program. Then assembler can, however, provide information
about the machine code that aids the programmer in debugging runtime errors. For
difficult debugging problems, the programmer may need to know what code was
generated and where data and instructions are located in memory.

• Assign memory for data and instructions

Early assemblers force programmers to assign memory addresses for all data and keep
track of addresses assigned for instructions. Modern assembler allow programmers to use
symbols (usually statement labels) to represent addresses for data or branch or jump
targets. This makes the programmer's life much simpler. However, addresses are required
for machine code generation. Thus the assembler must pick up the responsibity of
assigning addresses to program symbols. These assignments must be remembered for use
when the symbols appear in instruction operands.

Page | 36

DEALING WITH CHARACTERS

The input to an assembler consists of a stream of characters which represent assembly
information in several different ways: integers, real numbers, labels, quoted characters and
strings, register names, and various kinds of punctuation. If character processing is mixed in with
algorithms for building symbol tables or algorithms for code generation, the result is a complex
mess that would challenge even the best programmers. The problem is that this organization (or
disorganization) forces programmers to deal with two distinct kinds of abstraction
simultaneously. The result is difficult algorithm development, a large number of errors, and
difficulty in debugging. These problems are magnified if the assembler requires maintenance at a
later time.

A good general design principle is to assign responsibility for different kinds of abstractions to
different program modules. This principle is crucial for large designs, but is a good practice for
smaller designs as well. Dividing responsibilities for different kinds of abstractions into different
modules allows programmers to focus their attention on one aspect of the problem at a time.

For an assembler, the implication is that there should be a module dedicated to handling text at
the level of characters. This module is called a lexical analyser or scanner.

ASSEMBLER MODULES

Thus an assembler has four main modules,

• A scanner,
• A pass 1 module,
• A pass 2 module, and
• A main program module.

The responsibilities of these modules are described in more detail in the following
sections.

LEXICAL ANALYSIS: THE SCANNER

The primary purpose of the scanner module is processing characters into higher level units that
are more meaningful for the pass 1 and pass 2 modules. These units are called tokens. The
process of forming these groups is called lexical analysis. The need for a scanner arises in most
programs that deal with complex input.

Part of the design of a scanner involves deciding precisely what a token is; that is, deciding the
level of the units that the scanner delivers to the pass modules. Some possibilities are discussed
in Options for Scanner Interfaces.

Page | 37

BUILDING THE SYMBOL TABLE: PASS 1

During pass 1, the input is read and memory addresses are assigned to program labels. Memory
is allocated sequentially so that the pass 1 module can use a location counter. For each input
statement, this counter is incremented by the size of memory allocated. Whenever a label is
encountered, it is recorded in the symbol table. The address assigned is the value of the location
counter at the beginning of the statement.

Most assemblers need to do some processing of assembler directives to determine the size of the
data involved. Modern RISC processors have fixed instruction lengths, so machine instructions
require very little processing during pass 1.

Some assemblers keep data and instructions in separate regions of memory. If this is done then
two separate location counters are used, one for data and one for instructions.

The symbol table could be treated as a sub-module of the pass 1 module. This choice has little if
any effect on the complexity of coding, but a separately compiled sub-module does facilitate
separate testing.

GENERATING OUTPUT: PASS 2

The primary effort in pass 2 is translating instructions into machine code. If the assembler is
mixing data and instructions in the same area of memory then translation of data must be done in
pass 2. For assemblers that use separate areas of memory for data and instructions, translation of
data could be moved into pass 1. This is somewhat advantageous in that it results in a better
balance of the complexities of the two pass modules.

Most of the error reports generated by an assembler are generated during pass 2. These reports
can be interleaved with assembler listing output so that the assembly language programmer can
readily associate an error report with the code that caused it.

While pass 2 is running, machine code is saved in a byte array (two arrays if data and
instructions are kept separate). If there are no errors then at the end of pass 2 the array(s) is
written to a file in binary form and it can also be displayed as a hexadecimal dump for the
assembly language programmer. The Assembler Output web page describes C programming
techniques for saving binary data in an array and writing the array to a file. There is enough
complexity involved in handling the binary data arrays that a separate sub-module could be used.

For large instruction sets, a Table-Driven Design is useful. In this approach, instructions are
classified according to their operand types. This classification information, along with other
coding information, is stored in a table. In a language like C that allows initialization of arrays,
the table does not require any runtime code for its construction. It is just an initialized array. The
pass 2 module uses the information in the table to determine the kind of information it seeks
from the scanner, and the order of that information.

Page | 38

A table driven design could also be used for handling directives. This could be used in pass 1 as
well as pass 2. However, if the number of assembler directives is small then it is not as important
as for the handling of machine instructions.

 THE MAIN PROGRAM

The main program in an assembler is not complex. The primary work is providing file
parameters for function calls to the other modules and passing an error boolean from pass 1 to
pass 2 so that an executable output is not generated when there is an error in the assembly
language source.

COMMUNICATION BETWEEN MODULES

The diagram below indicates the communication pathways between the modules of an
assembler. For each arrow in the diagram, the module at the tail of the arrow plays the role of a
client and the module at the head of the arrow plays the role of a server. This means that the
client calls functions provided by the server.

 Figure 6.1 Module Communication

The communication between the main program and the two pass modules is quite simple - the
main program just calls pass 1 or 2 functions directing them to do their work in the proper order.
The functions do not return any data except for possibly an error indication.

The communication between the main program and the scanner is also simple. The name of the
file to be assembled is known directly in the main program. The main program either passes the
name to the scanner or opens the file and passes it to the scanner. This could be done indirectly
through the pass 1 and pass 2 modules.

The communication between pass 1 and pass 2 involves symbol table information. Pass 2 needs
to get addresses for labels and values of defined constants from the symbol table. Although there
is a fair amount of communication, the interface is simple. It can be a standard table interface.

Page | 39

The scanner is the communication focal point of an assembler. All of the other modules
communicate with the scanner. The communication between the pass modules and the scanner is
more complex than the communication along other pathways. For this reason, the best place to
start working on assembler communication is the scanner client interface. This is an important
aspect of assembler design. It cannot be taken lightly.

Page | 40

WEEK SEVEN

Learning Outcome for this week

 The meaning of translation and compilation
 The types of compiler
 The stages compilation

TEACHER’S ACTIVITIES

• Define interpretation, translation and compilation

• Differentiate between interpretation translation and compilation
• Describe various types of compilers
• Describe types of tables generated in the process of compilation

• Explain code generation and optimization
• Describe error handling

THE INTERPRETER

In computer science, an interpreter normally means a computer program that executes, i.e.
performs, instructions written in a programming language. While interpretation and compilation
are the two principal means by which programming languages are implemented, these are not
fully distinct categories, one of the reasons being that most interpreting systems also perform
some translation work, just like compilers.

 An interpreter may be a program that either

1. Executes the source code directly
2. Translates source code into some efficient intermediate representation (code) and

immediately executes this
3. Explicitly executes stored precompiled code made by a compiler which is part of the

interpreter system

Perl, Python, MATLAB , and Ruby are examples of type 2, while UCSD, Pascal and Java are
type 3: Source programs are compiled ahead of time and stored as machine independent code,
which is then linked at run-time and executed by an interpreter and/or compiler (for JIT
systems). Some systems, such as Smalltalk, and others, may also combine 2 and 3.

The terms interpreted language or compiled language merely mean that the canonical
implementation of that language is an interpreter or a compiler; a high level language is basically
an abstraction which is (ideally) independent of particular implementations.

Page | 41

EFFICIENCY, ADVANTAGES AND DISADVANTAGES

The main disadvantage of interpreters is that when a program is interpreted, it typically runs
slower than if it had been compiled. The difference in speeds could be tiny or great; often an
order of magnitude and sometimes more. It generally takes longer to run a program under an
interpreter than to run the compiled code but it can take less time to interpret it than the total time
required to compile and run it. This is especially important when prototyping and testing code
when an edit-interpret-debug cycle can often be much shorter than an edit-compile-run-debug
cycle.

Interpreting code is slower than running the compiled code because the interpreter must analyze
each statement in the program each time it is executed and then perform the desired action,
whereas the compiled code just performs the action within a fixed context determined by the
compilation. This run-time analysis is known as "interpretive overhead". Access to variables is
also slower in an interpreter because the mapping of identifiers to storage locations must be done
repeatedly at run-time rather than at compile time.

There are various compromises between the development speed when using an interpreter and
the execution speed when using a compiler. Some systems (e.g., some LISPs) allow interpreted
and compiled code to call each other and to share variables. This means that once a routine has
been tested and debugged under the interpreter it can be compiled and thus benefit from faster
execution while other routines are being developed. Many interpreters do not execute the source
code as it stands but convert it into some more compact internal form. For example, some
BASIC interpreters replace keywords with single byte tokens which can be used to find the
instruction in a jump table. An interpreter might well use the same lexical analyzer and parser as
the compiler and then interpret the resulting abstract syntax tree.

BYTECODE INTERPRETERS

There is a spectrum of possibilities between interpreting and compiling, depending on the
amount of analysis performed before the program is executed. For example, Emacs Lisp is
compiled to byte code, which is a highly compressed and optimized representation of the Lisp
source, but is not machine code (and therefore not tied to any particular hardware). This
"compiled" code is then interpreted by a byte code interpreter (itself written in C). The compiled
code in this case is machine code for a virtual machine, which is implemented not in hardware,
but in the byte code interpreter. The same approach is used with the Forth code used in Open
Firmware systems: the source language is compiled into "F code" (a byte code), which is then
interpreted by a virtual machine.

THE COMPILER

Figure: 7.1 A diagram of the operation of a t

A compiler is a computer program
language (the source language) into another computer language (the
original sequence is usually called the
the output has a form suitable for processing by other programs (e.g., a
human-readable text file.

The most common reason for wanting to translate source code is to create an
program. The name "compiler" is primarily used for programs that translate source code from a
high-level programming language
language). A program that translates from a low level language to a higher level one is a
decompiler. A program that translates between high
translator, source to source translator
program that translates the form of expressions without a

A compiler is likely to perform many or all of the following operations:
preprocessing, parsing, semantic analysis,

A diagram of the operation of a typical multi-language, multi-target compiler.

computer program (or set of programs) that translates text written in a
) into another computer language (the target language

original sequence is usually called the source code and the output called object code
the output has a form suitable for processing by other programs (e.g., a linker), but it may be a

The most common reason for wanting to translate source code is to create an executable
program. The name "compiler" is primarily used for programs that translate source code from a

level programming language to a lower level language (e.g., assembly language
). A program that translates from a low level language to a higher level one is a

. A program that translates between high-level languages is usually called a
source to source translator, or language converter. A language rewriter

program that translates the form of expressions without a change of language.

A compiler is likely to perform many or all of the following operations: lexical analysis
, semantic analysis, code generation, and code optimization

Page | 42

target compiler.

(or set of programs) that translates text written in a computer
target language). The

object code. Commonly
), but it may be a

executable
program. The name "compiler" is primarily used for programs that translate source code from a

assembly language or machine
). A program that translates from a low level language to a higher level one is a

ges is usually called a language
rewriter is usually a

lexical analysis,
code optimization.

Page | 43

COMPILER OUTPUT

One classification of compilers is by the platform on which their generated code executes. This is
known as the target platform.

A native or hosted compiler is one whose output is intended to directly run on the same type of
computer and operating system as the compiler itself runs on. The output of a cross compiler is
designed to run on a different platform. Cross compilers are often used when developing
software for embedded systems that are not intended to support a software development
environment.

The output of a compiler that produces code for a virtual machine (VM) may or may not be
executed on the same platform as the compiler that produced it. For this reason such compilers
are not usually classified as native or cross compilers.

COMPILED VERSUS INTERPRETED LANGUAGES

Higher-level programming languages are generally divided for convenience into compiled
languages and interpreted languages. However, there is rarely anything about a language that
requires it to be exclusively compiled, or exclusively interpreted. The categorization usually
reflects the most popular or widespread implementations of a language — for instance, BASIC is
sometimes called an interpreted language, and C a compiled one, despite the existence of BASIC
compilers and C interpreters.

In a sense, all languages are interpreted, with "execution" being merely a special case of
interpretation performed by transistors switching on a CPU. Modern trends toward just-in-time
compilation and byte code interpretation also blur the traditional categorizations.

There are exceptions. Some language specifications spell out that implementations must include
a compilation facility; for example, Common Lisp. Other languages have features that are very
easy to implement in an interpreter, but make writing a compiler much harder; for example,
APL, SNOBOL4, and many scripting languages allow programs to construct arbitrary source
code at runtime with regular string operations, and then execute that code by passing it to a
special evaluation function. To implement these features in a compiled language, programs must
usually be shipped with a runtime library that includes a version of the compiler itself.

ONE-PASS VERSUS MULTI-PASS COMPILERS

Classifying compilers by number of passes has its background in the hardware resource
limitations of computers. Compiling involves performing lots of work and early computers did
not have enough memory to contain one program that did all of this work. So compilers were
split up into smaller programs which each made a pass over the source (or some representation of
it) performing some of the required analysis and translations.

Page | 44

The ability to compile in a single pass is often seen as a benefit because it simplifies the job of
writing a compiler and one pass compilers are generally faster than multi-pass compilers. Many
languages were designed so that they could be compiled in a single pass (e.g., Pascal).

In some cases the design of a language feature may require a compiler to perform more than one
pass over the source. For instance, consider a declaration appearing on line 20 of the source
which affects the translation of a statement appearing on line 10. In this case, the first pass needs
to gather information about declarations appearing after statements that they affect, with the
actual translation happening during a subsequent pass.

The disadvantage of compiling in a single pass is that it is not possible to perform many of the
sophisticated optimizations needed to generate high quality code. It can be difficult to count
exactly how many passes an optimizing compiler makes. For instance, different phases of
optimization may analyse one expression many times but only analyse another expression once.

Splitting a compiler up into small programs is a technique used by researchers interested in
producing provably correct compilers. Proving the correctness of a set of small programs often
requires less effort than proving the correctness of a larger, single, equivalent program.

While the typical multi-pass compiler outputs machine code from its final pass, there are several
other types:

• A "source-to-source compiler" is a type of compiler that takes a high level language as its
input and outputs a high level language. For example, an automatic parallelizing compiler
will frequently take in a high level language program as an input and then transform the
code and annotate it with parallel code annotations (e.g. OpenMP) or language constructs
(e.g. Fortran's DOALL statements).

• Stage compiler that compiles to assembly language of a theoretical machine, like some
Prolog implementations

o This Prolog machine is also known as the Warren Abstract Machine (or WAM).
Byte code compilers for Java, Python, and many more are also a subtype of this.

• Just-in-time compiler, used by Smalltalk and Java systems, and also by Microsoft .Net's
Common Intermediate Language (CIL)

JUST-IN-TIME COMPILATION

Further blurring the distinction between interpreters, byte-code interpreters and compilation is
just-in-time compilation (or JIT), a technique in which the intermediate representation is
compiled to native machine code at runtime. This confers the efficiency of running native code,
at the cost of startup time and increased memory use when the byte code or AST is first
compiled. Adaptive optimization is a complementary technique in which the interpreter profiles
the running program and compiles its most frequently-executed parts into native code. Both
techniques are a few decades old, appearing in languages such as Smalltalk in the 1980s.

Just-in-time compilation has gained mainstream attention amongst language implementors in
recent years, with Java, Python and the .NET Framework all now including JITs.

Page | 45

WEEK EIGHT

Learning Outcome for this week:

 Front end compilation and its stages
 Back end compilation and its stages

FRONT END

The front end analyzes the source code to build an internal representation of the program, called
the intermediate representation or IR. It also manages the symbol table, a data structure mapping
each symbol in the source code to associated information such as location, type and scope. This
is done over several phases, which includes some of the following:

1. Line reconstruction. Languages which strop their keywords or allow arbitrary spaces
within identifiers require a phase before parsing, which converts the input character
sequence to a canonical form ready for the parser. The top-down, recursive-descent,
table-driven parsers used in the 1960s typically read the source one character at a time
and did not require a separate tokenizing phase. Atlas Autocode, and Imp (and some
implementations of Algol and Coral66) are examples of stropped languages whose
compilers would have a Line Reconstruction phase.

2. Lexical analysis breaks the source code text into small pieces called tokens. Each token
is a single atomic unit of the language, for instance a keyword, identifier or symbol name.
The token syntax is typically a regular language, so a finite state automaton constructed
from a regular expression can be used to recognize it. This phase is also called lexing or
scanning, and the software doing lexical analysis is called a lexical analyzer or scanner.

3. Preprocessing. Some languages, e.g., C, require a preprocessing phase which supports
macro substitution and conditional compilation. Typically the preprocessing phase occurs
before syntactic or semantic analysis; e.g. in the case of C, the preprocessor manipulates
lexical tokens rather than syntactic forms. However, some languages such as Scheme
support macro substitutions based on syntactic forms.

4. Syntax analysis involves parsing the token sequence to identify the syntactic structure of
the program. This phase typically builds a parse tree, which replaces the linear sequence
of tokens with a tree structure built according to the rules of a formal grammar which
define the language's syntax. The parse tree is often analyzed, augmented, and
transformed by later phases in the compiler.

5. Semantic analysis is the phase in which the compiler adds semantic information to the
parse tree and builds the symbol table. This phase performs semantic checks such as type
checking (checking for type errors), or object binding (associating variable and function
references with their definitions), or definite assignment (requiring all local variables to
be initialized before use), rejecting incorrect programs or issuing warnings. Semantic
analysis usually requires a complete parse tree, meaning that this phase logically follows
the parsing phase, and logically proceeds the code generation phase, though it is often
possible to fold multiple phases into one pass over the code in a compiler
implementation.

Page | 46

BACK END

The term back end is sometimes confused with code generator because of the overlapped
functionality of generating assembly code. Some literature uses middle end to distinguish the
generic analysis and optimization phases in the back end from the machine-dependent code
generators.

The main phases of the back end include the following:

1. Analysis: This is the gathering of program information from the intermediate
representation derived from the input. Typical analyses are data flow analysis to build
use-define chains, dependence analysis, alias analysis, pointer analysis, escape analysis
etc. Accurate analysis is the basis for any compiler optimization. The call graph and
control flow graph are usually also built during the analysis phase.

2. Optimization: the intermediate language representation is transformed into functionally
equivalent but faster (or smaller) forms. Popular optimizations are inline expansion, dead
code elimination, constant propagation, loop transformation, register allocation or even
automatic parallelization.

3. Code generation: the transformed intermediate language is translated into the output
language, usually the native machine language of the system. This involves resource and
storage decisions, such as deciding which variables to fit into registers and memory and
the selection and scheduling of appropriate machine instructions along with their
associated addressing modes

Compiler analysis is the prerequisite for any compiler optimization, and they tightly work
together. For example, dependence analysis is crucial for loop transformation.

In addition, the scope of compiler analysis and optimizations vary greatly, from as small as a
basic block to the procedure/function level, or even over the whole program (interprocedural
optimization). Obviously, a compiler can potentially do a better job using a broader view. But
that broad view is not free: large scope analysis and optimizations are very costly in terms of
compilation time and memory space; this is especially true for interprocedural analysis and
optimizations.

Due to the extra time and space needed for compiler analysis and optimizations, some compilers
skip them by default. Users have to use compilation options to explicitly tell the compiler which
optimizations should be enabled.

Lexical analysis

In computer science, lexical analysis is the process of converting a sequence of characters into a
sequence of tokens. Programs performing lexical analysis are called lexical analyzers or lexers.
A lexer is often organized as separate scanner and tokenizer functions, though the boundaries
may not be clearly defined.

Page | 47

Lexical grammar

The specification of a programming language will include a set of rules, often expressed
syntactically, specifying the set of possible character sequences that can form a token or lexeme.
The whitespace characters are often ignored during lexical analysis.

Tokens

A token is a categorized block of text. The block of text corresponding to the token is known as a
lexeme. A lexical analyzer processes lexemes to categorize them according to function, giving
them meaning. This assignment of meaning is known as tokenization. A token can look like
anything; it just needs to be a useful part of the structured text.

Consider this expression in the C programming language:

sum=3+2;

Tokenized in the following table:

lexeme token type

sum IDENT

= ASSIGN_OP

3 NUMBER

+ ADD_OP

2 NUMBER

; SEMICOLON

Tokens are frequently defined by regular expressions, which are understood by a lexical analyzer
generator such as lex. The lexical analyzer (either generated automatically by a tool like lex, or
hand-crafted) reads in a stream of characters, identifies the lexemes in the stream, and
categorizes them into tokens. This is called "tokenizing." If the lexer finds an invalid token, it
will report an error.

Page | 48

Following tokenizing is parsing. From there, the interpreted data may be loaded into data
structures, for general use, interpretation, or compiling.

Consider a text describing a calculation:

46 - number of (cows);

The lexemes here might be: "46", "-", "number_of ", " (" , "cows" , ")" and ";". The lexical
analyzer will denote lexemes "46" as 'number', "-" as 'character' and "number_of " as a separate
token. Even the lexeme ";" in some languages (such as C) has some special meaning.

The Scanner

The first stage, the scanner, is usually based on a finite state machine. It has encoded within it
information on the possible sequences of characters that can be contained within any of the
tokens it handles (individual instances of these character sequences are known as lexemes). For
instance, an integer token may contain any sequence of numerical digit characters. In many
cases, the first non-whitespace character can be used to deduce the kind of token that follows and
subsequent input characters are then processed one at a time until reaching a character that is not
in the set of characters acceptable for that token (this is known as the maximal munch rule). In
some languages the lexeme creation rules are more complicated and may involve backtracking
over previously read characters.

The Tokenizer

Tokenization is the process of demarcating and possibly classifying sections of a string of input
characters. The resulting tokens are then passed on to some other form of processing. The
process can be considered a sub-task of parsing input.

Page | 49

WEEK NINE

Learning Outcome for this week

 Describe error checking and handling
 Explain utilities and give some examples
 Discuss the types of libraries

ERROR CHECKING

One of the major differences between systems programming and application programming is that
error checking is not something nice to have but so essential that one cannot live without. Very
commonly, you can see people do "printf" to output error messages to the console. Although
better than not having any error checking, however, this is not enough even when not doing
systems programming.

NOTE:

WE SHALL BASED OUR EXAMPLES HERE ON C PROGRAMMING LANGUAGE

When each program runs and becomes a process, there are three files opened for it by default,
stdin, stdout and stderr. The first two obviously are the input and output consoles and the third,
stderr, is where the error messages are supposed to go to. stdin and stdout may be redirected,
while stderr cannot. Therefore the error messages are best output using:

 fprintf(stderr,"your error message");
It should also be known to you that printf and fprintf(stdout,"...") do the same task.

Besides using fprintf, there are two other important tools for use in error checking: perror and
assert, both are ANSI C standard and available on all operating systems that claim to support
ANSI C'1987.

PERROR

When a computer is turned on, the program that gets executed first is called the ``operating
system.'' It controls pretty much all activity in the computer. This includes who logs in, how disks
are used, how memory is used, how the CPU is used, and how you talk with other computers. In
the following discussions, our study Operating System example will be "Unix".

The way that programs talk to the operating system is via ` s̀ystem calls.'' A system call looks
like a procedure call (see below), but it's different -- it is a request to the operating system to
perform some activity.

Page | 50

System calls are expensive. While a procedure call can usually be performed in a few machine
instructions, a system call requires the computer to save its state, let the operating system take
control of the CPU, have the operating system perform some function, have the operating system
save its state, and then have the operating system give control of the CPU back to you.

Usually when an error occurs in a system or library call, a special return value comes back, and a
global variable "errno" is set to say what the error is. For example, suppose you try to open a file
that does not exist:

#include < stdio.h >
#include < errno.h >

main()
{
 int i;
 FILE *f;

 f = fopen("~huangj/nonexist", "r");
 if (f == NULL) {
 printf("f = null. errno = %d\n", errno);
 perror("f1");
 }
}
ch1a.c tries to open the file ~huangj/nonexist for reading. That file doesn't exist. Thus, fopen
returns NULL (read the man page for fopen), and sets errno to flag the error. When you run the
program, you'll see that errno was set to 2. To see what that means, you can do one of two
things:

• 1. Look up the errno value in /usr/include/errno.h (You will have to eventually look at
/usr/include/sys/errono.h on UNIX flavor machines since on that type of system, the C
standard errno.h does have "#include < sys/errno.h >" in it.). You'll see the line:

• #define ENOENT 2 /* No such file or directory */
• 2. Use the procedure "perror() " -- again, read the man page. It prints out what the errno

means. Thus, the output of f1 is
• f = null. errno = 2
• f1: No such file or directory

This is the standard interface for errors.

ASSERT

Most of the time, there is a need to make assumptions when you write code. Everybody does it.
But what if the assumption is wrong? Is there a good way to check it? The answer is to use
assert.

The most typical use of the assert (very likely implemented as a macro on most operating
systems you can find) is to identify program errors during development. The argument given to

Page | 51

assert should be chosen so that it holds true only if the program is operating as intended. The
macro evaluates the assert argument and, if the argument expression is false (0), alerts the user
and halts program execution. No action is taken if the argument is true (nonzero).

When an assertion fails, an output message with the following text is generated:

assertion failed in file name in line num
where name is the name of the source file and num is the line number of the assertion that failed.

The liberal use of assertions throughout your programs can catch errors during development. A
good rule of thumb is that you should write assertions for any assumptions you make. For
example, if you assume that an argument is not NULL, use an assertion statement to check for
that condition.

void checkerror_strcpy(char * src, char *dst)
{
 assert(src!=dst);
 assert(src!=NULL);
 assert(dst!=NULL);
}
Here we check that some assumptions we made for strcpy are true. After we are sure there are no
errors in the software, we can easily disable all assertion checks adding "#define NDEBUG"
before where "#include < assert.h >" appears in the source code.

LIBRARY IN COMPUTING
�

In computer science, a library is a collection of subroutines or classes used to develop software.
Libraries contain code and data that provide services to independent programs. This allows code
and data to be shared and changed in a modular fashion. Some executables are both standalone
programs and libraries, but most libraries are not executables. Executables and libraries make
references known as links to each other through the process known as linking, which is typically
done by a linker.

Most modern operating systems (OS) provide libraries that implement the majority of system
services. Such libraries have commoditized the services a modern application expects an OS to
provide. As such, most code used by modern applications is provided in these libraries.

TYPES OF LIBRARIES

� STATIC LIBRARIES

Historically, libraries could only be static. A static library, also known as an archive, consists of
a set of routines which are copied into a target application by the compiler, linker, or binder,
producing object files and a stand-alone executable file. This process, and the stand-alone
executable file, are known as a static build of the target application.

Page | 52

The linker resolves all of the unresolved addresses into fixed or relocatable addresses (from a
common base) by loading all code and libraries into actual runtime memory locations.

A linker may work on specific types of object files, and thus require specific (compatible) types
of libraries. The linking process resolves references by searching the libraries in the order given.
Usually, it is not considered an error if a name can be found multiple times in a given set of
libraries.

� DYNAMIC LINKING

Dynamic linking means that the subroutines of a library are loaded into an application program
at runtime, rather than being linked in at compile time, and remain as separate files on disk. Only
a minimum amount of work is done at compile time by the linker; it only records what library
routines the program needs and the index names or numbers of the routines in the library. The
majority of the work of linking is done at the time the application is loaded (load time) or during
execution (runtime). The necessary linking code, called a loader, is actually part of the
underlying operating system. At the appropriate time the loader finds the relevant libraries on
disk and adds the relevant data from the libraries to the process's memory space.

Some operating systems can only link in a library at load time, before the process starts
executing; others may be able to wait until after the process has started to execute and link in the
library just when it is actually referenced (i.e., during runtime). The latter is often called "delay
loading" or "deferred loading". In either case, such a library is called a dynamically linked
library.

RELOCATION

One wrinkle that the loader must handle is that the actual location in memory of the library data
cannot be known until after the executable and all dynamically linked libraries have been loaded
into memory. This is because the memory locations used depend on which specific dynamic
libraries have been loaded. It is not possible to depend on the absolute location of the data in the
executable, nor even in the library, since conflicts between different libraries would result: if two
of them specified the same or overlapping addresses, it would be impossible to use both in the
same program.

However, in practice, the shared libraries on most systems do not change often. Therefore, it is
possible to compute a likely load address for every shared library on the system before it is
needed, and store that information in the libraries and executables. If every shared library that is
loaded has undergone this process, then each will load at their predetermined addresses, which
speeds up the process of dynamic linking. This optimization is known as pre-binding in Mac OS
X and pre-linking in Linux. Disadvantages of this technique include the time required to pre-
compute these addresses every time the shared libraries change, the inability to use address space
layout randomization, and the requirement of sufficient virtual address space for use (a problem
that will be alleviated by the adoption of 64-bit architectures, at least for the time being).

Page | 53

� LOCATING LIBRARIES AT RUNTIME

Dynamic linkers/loaders vary widely in functionality. Some depend on explicit paths to the
libraries being stored in the executable. Any change to the library naming or layout of the file
system will cause these systems to fail. More commonly, only the name of the library (and not
the path) is stored in the executable, with the operating system supplying a system to find the
library on-disk based on some algorithm.

One of the biggest disadvantages of dynamic linking is that the executables depend on the
separately stored libraries in order to function properly. If the library is deleted, moved, or
renamed, or if an incompatible version of the DLL is copied to a place that is earlier in the
search, the executable would fail to load. On Windows this is commonly known as DLL hell.

 Unix-like systems

Most Unix-like systems have a "search path" specifying file system directories in which to look
for dynamic libraries. On some systems, the default path is specified in a configuration file; in
others, it is hard coded into the dynamic loader. Some executable file formats can specify
additional directories in which to search for libraries for a particular program.

Microsoft Windows

Microsoft Windows will check the registry to determine the proper place to find an ActiveX
DLL, but for other DLLs it will check the directory that the program was loaded from; the
current working directory; any directories set by calling the SetDllDirectory() function;

AmigaOS

Under AmigaOS generic system libraries are stored in a directory defined by the LIBS: path
assignment and application-specific libraries can be stored in the same directory as the
application's executable. AmigaOS will search these locations when an executable attempts to
launch a shared library. An application may also supply an explicit path when attempting to
launch a library.

� SHARED LIBRARIES

In addition to being loaded statically or dynamically, libraries are also often classified according
to how they are shared among programs. Dynamic libraries almost always offer some form of
sharing, allowing the same library to be used by multiple programs at the same time. Static
libraries, by definition, cannot be shared. The term "linker" comes from the process of copying
procedures or subroutines which may come from "relocatable" libraries and adjusting or
"linking" the machine address to the final locations of each module.

The shared library term is slightly ambiguous, because it covers at least two different concepts.
First, it is the sharing of code located on disk by unrelated programs. The second concept is the
sharing of code in memory, when programs execute the same physical page of RAM, mapped

Page | 54

into different address spaces. It would seem that the latter would be preferable, and indeed it has
a number of advantages. For instance on the OpenStep system, applications were often only a
few hundred kilobytes in size and loaded almost instantly; the vast majority of their code was
located in libraries that had already been loaded for other purposes by the operating system.
There is a cost, however; shared code must be specifically written to run in a multitasking
environment.

In most modern operating systems, shared libraries can be of the same format as the "regular"
executables. This allows two main advantages: first, it requires making only one loader for both
of them, rather than two (having the single loader is considered well worth its added
complexity). Secondly, it allows the executables also to be used as DLLs, if they have a symbol
table.

The term DLL is mostly used on Windows and OS/2 products. On Unix and Unix-like platforms,
the term shared library or shared object is more commonly used; consequently, the most
common filename extension for shared library files is .so, usually followed by another dot and a
version number. This is technically justified in view of the different semantics.

� DYNAMIC LOADING

Dynamic loading is a subset of dynamic linking where a dynamically linked library loads and
unloads at run-time on request. Such a request may be made implicitly at compile-time or
explicitly at run-time. Implicit requests are made at compile-time when a linker adds library
references that include file paths or simply file names. Explicit requests are made when
applications make direct calls to an operating system's API at runtime.

Most operating systems that support dynamically linked libraries also support dynamically
loading such libraries via a run-time linker API. For instance, Microsoft Windows uses the API
functions LoadLibrary, LoadLibraryEx, FreeLibrary and GetProcAddress with Microsoft Dynamic Link
Libraries; POSIX based systems, including most UNIX and UNIX-like systems, use dlopen,
dlclose and dlsym. Some development systems automate this process.

� REMOTE LIBRARIES

Another solution to the library issue is to use completely separate executables (often in some
lightweight form) and call them using a remote procedure call (RPC) over a network to another
computer. This approach maximizes operating system re-use: the code needed to support the
library is the same code being used to provide application support and security for every other
program. Additionally, such systems do not require the library to exist on the same machine, but
can forward the requests over the network.

The downside to such an approach is that every library call requires a considerable amount of
overhead. RPC calls are much more expensive than calling a shared library which has already
been loaded on the same machine..

Page | 55

� OBJECT LIBRARIES

Although dynamic linking was originally developed in the 1960s, it did not reach consumer
operating systems until the late 1980s; it was generally available in some form in most operating
systems by the early 1990s. It was during this same period that object-oriented programming
(OOP) was becoming a significant part of the programming landscape. OOP with runtime
binding requires additional information that traditional libraries don't supply; in addition to the
names and entry points of the code located within, they also require a list of the objects on which
they depend. This is a side-effect of one of OOP's main advantages, inheritance, which means
that the complete definition of any method may be defined in a number of places. This is more
than simply listing that one library requires the services of another; in a true OOP system, the
libraries themselves may not be known at compile time, and vary from system to system.

It was not long before the majority of the minicomputer and mainframe vendors were working
on projects to combine the two, producing an OOP library format that could be used anywhere.
Such systems were known as object libraries, or distributed objects if they supported remote
access (not all did). Microsoft's COM is an example of such a system for local use, DCOM a
modified version that support remote access.

Page | 56

WEEK TEN

Learning Outcome for this week

 The historical development of operating system.
 The importance and uses of operating system
 The system commands of MS-DOS, Unix, Windows operating systems.

OPERATING SYSTEMS
When a brand new computer comes off the factory assembly line, it can do nothing. The
hardware needs software to make it work.

Figure 10.2 : System Software

An application software package does not communicate directly with the hardware. As shown in
the Figure above between the applications software and the hardware is a software interface - an
operating system.

Figure10.1 : The Operating System in a Hierarchy

Page | 57

Definition : An operating system is a set of programs that lies between applications software and
the computer hardware. Conceptually the operating system software is an intermediary between
the hardware and the applications software. Incidentally, the term system software is sometimes
used interchangeably with operating system, but system software means all programs related to
coordinating computer operations. System software does include the operating system, but it also
includes the BIOS software , drivers, and service programs, which we will discuss briefly in this
chapter (see Figure above).

� Note that we said that an operating system is a set of programs. The most important
program in the operating system, the program that manages the operating system, is the
supervisor program, most of which remains in memory and is thus referred to as resident.
The supervisor controls the entire operating system and loads into memory other
operating system programs (called nonresident) from disk storage only as needed.

FUNCTIONS OF AN OPERATING SYSTEM

An operating system has three main functions:

� To manage the computer's resources, such as the central processing unit, memory, disk
drives, and printers,

� To establish a user interface
� To execute and provide services for applications software.

However, that much of the work of an operating system is hidden from the user; many necessary
tasks are performed behind the scenes. In particular, the first listed function, managing the
computer's resources, is taken care of without the user being aware of the details. Furthermore,
all input and output operations, although invoked by an applications program, are actually
carried out by the operating system. Although much of the operating system functions are hidden
from view, you will know when you are using an applications software package, and this
requires that you invoke-call into action-the operating system. Thus you both establish a user
interface and execute software.

Operating systems for mainframe and other large computers are even more complex because
they must keep track of several programs from several users all running in the same time frame.
Although some personal computer operating systems (most often found in business or learning
environments) can support multiple programs and users, most are concerned only with a single
user. We begin by focusing on the interaction between a single user and a personal computer
operating system.

OPERATING SYSTEMS FOR PERSONAL COMPUTERS

If you peruse software sold at a retail store, you will generally find the software grouped
according to the computer, probably IBM (that is, IBM compatible) or Macintosh, on which the
software can be used. But the distinction is actually finer than the differences among computers:
Applications software-word processing, spreadsheets, games, whatever-are really distinguished

Page | 58

by the operating system on which the software can run.

Generally, an application program can run on just one operating system. Just as you cannot place
a Nissan engine in a Luxurious bus as we call it . You cannot take a version of WordPerfect
designed to run on an IBM machine and run it on an Apple Macintosh. The reason is that IBM
personal computers and others like them have Intel-compatible microprocessors and usually use
Microsoft's operating system, called MS-DOS (for Microsoft disk operating system) on older
computers, and Windows98 , Windows XP … on more modern computers. Computers that have
come out since the year 2000 often come with Windows ME (Millennium Edition), or
Windows2000. Macintoshes use an entirely different operating system, called the Macintosh
operating system, which is produced by Apple. Over 75 percent of personal computers use a
versions of Windows as their operating systems. Macintosh comprises about 15 percent of the
market, with other operating systems such as Linux comprising the rest.

Users do not set out to buy operating systems; they want computers and the applications software
to make them useful. However, since the operating system determines what software is available
for a given computer, many users observe the high volume of software available for MS-DOS
machines and make their computer purchases accordingly. Others prefer the user-friendly style
of the Macintosh operating system and choose Macs for that reason.

Although operating systems differ, many of their basic functions are similar. We will show some
of the basic functions of operating systems by examining MS-DOS.

 MS-DOS

� Most users today have a computer with a hard disk drive. When the computer is turned
on, the operating system will be loaded from the hard drive into the computer's memory,
thus making it available for use. The process of loading the operating system into
memory is called bootstrapping, or booting the system. The word booting is used
because, figuratively speaking, the operating system pulls itself up by its own bootstraps.
When the computer is switched on, a small program (in ROM-read-only memory)
automatically pulls up the basic components of the operating system from the hard disk.
From now on, we will refer to MS-DOS by its commonly used abbreviated name, DOS,
pronounced to rhyme with boss.

� The net observable result of booting DOS is that the characters C> (or possibly C:\>)
appear on the screen. The C refers to the disk drive; the > is a prompt, a signal that the
system is prompting you to do something. At this point you must give some instruction to
the computer. Perhaps all you need to do is key certain letters to make the application
software take the lead. But it could be more complicated than that because C> is actually
a signal for direct communication between the user and the operating system.

Page | 59

� Although the prompt is the only visible result of booting the system, DOS also provides
the basic software that coordinates the computer's hardware components and a set of
programs that lets you perform the many computer system tasks you need to do. To
execute a given DOS program, a user must issue a command, a name that invokes a
specific DOS program. Whole books have been written about DOS commands, but we
will consider just a few that people use for ordinary activities. Some typical tasks you can
do with DOS commands are:

o To prepare (format) new diskettes for use,
o list the files on a disk,
o copy files from one disk to another,
o erase files from a disk.

� Microsoft Windows
Microsoft Windows started out as a shell. Windows uses a colorful graphics interface
that, among other things, eases access to the operating system. The feature that makes
Windows so easy to use is a graphical user interface (GUI-pronounced "goo-ee"), in
which users work with on-screen pictures called icons and with menus rather than with
keyed-in. They are called pull-down menus because they appear to pull down like a
window shade from the original selection. Some menus, in contrast, called pop-up menus
originate from a selection on the bottom of the screen. Furthermore, icons and menus
encourage pointing and clicking with a mouse, an approach that can make computer use
both fast and easy.

To enhance ease of use, Windows is usually set up so that the colorful Windows display
is the first thing a user sees when the computer is turned on. DOS is still there, under
Windows, but a user need never see C> during routine activities. The user points and
clicks among a series of narrowing choices until arriving at the desired software.

Although the screen presentation and user interaction are the most visible evidence of
change, Windows offers changes that are even more fundamental. To understand these
changes more fully, it is helpful at this point to make a comparison between traditional
operating systems for large computers and Windows.

In addition to adding a friendly GUI, Windows operating systems added another
important feature to DOS - multi-tasking. Multi-tasking occurs when the computer has
several programs executing at one time. PCs that ran under DOS could only run one
program at a time. Windows-based computers can have multiple programs (e.g. a
browser, a word processor, and several Instant Messaging instances) running at the same
time. When programs are executing at the same time, they are said to be executing
concurrently.

As we learned, personal computers have only one CPU that handles just one instruction at a time.
Computers using the MS-DOS operating system without a shell are limited not only to just one
user at a time but also to just one program at a time. If, for example, a user were using a word
processing program to write a financial report and wanted to access some spreadsheet figures, he
or she would have to perform a series of arcane steps: exit the word processing program, enter

Page | 60

and use and then exit the spreadsheet program, and then re-enter the word processing program to
complete the report. This is wasteful in two ways:

(1) The CPU is often idle because only one program is executing at a time, and

(2) The user is required to move inconveniently from program to program.

Multi-tasking allows several programs to be active at the same time, although at an instant in
time the CPU is doing only one instruction for one of the active programs. The Operating System
manages which instructions to send to the CPU. Since computers are so fast, the operating
system can switch the program that gets to execute on the CPU so quickly, the user can not tell.
This is what allows your computer to be "listening" for incoming instant messages, for instance,
while you use a word processor to write a paper.

Page | 61

WEEK ELEVEN

Learning Outcome for this week

 Services provided by Operating System

Operating Systems Services

Following are the five services provided by an operating systems to the convenience of the users.

Program Execution

The purpose of a computer systems is to allow the user to execute programs. So the operating
systems provides an environment where the user can conveniently run programs. The user does
not have to worry about the memory allocation or multitasking or anything. These things are
taken care of by the operating systems.

Running a program involves the allocating and de-allocating memory, CPU scheduling in case of
multi-process. These functions cannot be given to the user-level programs. So user-level
programs cannot help the user to run programs independently without the help from operating
systems.

I/O Operations

Each program requires an input and produces output. This involves the use of I/O. The operating
systems hides the user the details of underlying hardware for the I/O. All the user sees is that the
I/O has been performed without any details. So the operating systems by providing I/O makes it
convenient for the users to run programs.

For efficiently and protection users cannot control I/O so this service cannot be provided by user-
level programs.

File System Manipulation

The output of a program may need to be written into new files or input taken from some files.
The operating systems provides this service. The user does not have to worry about secondary
storage management. User gives a command for reading or writing to a file and sees his her task
accomplished. Thus operating systems makes it easier for user programs to accomplished their
task.

Page | 62

 This service involves secondary storage management. The speed of I/O that depends on
secondary storage management is critical to the speed of many programs and hence I
think it is best relegated to the operating systems to manage it than giving individual
users the control of it. It is not difficult for the user-level programs to Batch processing,
multiprogramming, multiprocessing, time-sharing.

 Batch, real-time, timesharing and network operating system.

provide these services but for above mentioned reasons it is best if this service s left with
operating system.

Communications

There are instances where processes need to communicate with each other to exchange
information. It may be between processes running on the same computer or running on the
different computers. By providing this service the operating system relieves the user of the worry
of passing messages between processes. In case where the messages need to be passed to
processes on the other computers through a network it can be done by the user programs. The
user program may be customized to the specifics of the hardware through which the message
transits and provides the service interface to the operating system.

Error Detection

An error is one part of the system may cause malfunctioning of the complete system. To avoid
such a situation the operating system constantly monitors the system for detecting the errors.
This relieves the user of the worry of errors propagating to various part of the system and
causing malfunctioning.

This service cannot allowed to be handled by user programs because it involves monitoring and
in cases altering area of memory or deallocation of memory for a faulty process. Or may be
relinquishing the CPU of a process that goes into an infinite loop. These tasks are too critical to
be handed over to the user programs. A user program if given these privileges can interfere with
the correct (normal) operation of the operating systems.

Page | 63

WEEK TWELVE

L earning Outcome for this week

 I/O Buffering
 Dealing with files stored in I/O devices
 Spooling: its advantages and disadvantages

INPUT/OUTPUT BUFFERING
Often a user process generates requests for output(say) much faster than the device can handle.
Instead of having a process waiting for ‘request-serviced', introduce a buffer to store all requests,
then process can go onto do other things. This is buffering. Similarly for input, a buffer can be
filled from a device; a user process takes its input from buffer; it is forced to wait only when the
buffer becomes empty. When this occurs the operating system refills the buffer and the process
continues. Double buffering: is the case when two buffers are used. In a producer/consumer
situation, mutual exclusion prevents both processes accessing the buffer at the same time thus,
possibly, causing delays. Giving each process its own buffer will reduce the probability of this
delay;- transfers between buffers takes place when neither is being accessed by its process.
Note: buffering smoothes out the peaks

FILE DEVICES
How do we deal with files stored in I/O devices?
 Only some I/O devices can support files (i.e. read/write on particular area of the medium,
e.g. disc, magnetic tape, but not printer, keyboard, vdu), these devices are called file devices.
- File: a data area of an arbitrary size which can exist on a medium controlled by the device.
- A file has a unique name which is used by the op sys to find the location of the file on the
appropriate medium, . . in a directory of files
- Directing a data stream to/from a file device: associate a stream with a file name, not device
name; typical job description: Input1 = 'testdata' i.e. stream 1 data is to come from file 'testdata'

OPENING A FILE

Stream is opened, op sys looks up file name in directory to get device number & file location.
 A file descriptor is created to hold info for subsequent accesses to the file to include:
 Address of device descriptor
 Location of file on that device
 Whether read/write
 File internal organization
 A pointer to the file descriptor is put in stream descriptor.

Page | 64

SPOOLING

Spooling is a higher level buffering to even out demand for unshareable resources: e.g. printers.
During periods of high demand several processes are held up waiting for use of scarce resources.
During other periods these same devices may be lying unused.
Spool all I/O to these devices, i.e. instead of I/O directly to device, do it on intermediate medium,
disc. ‘Spooler’ then moves data between disc and device.

Line printer example: A process wanting to use printer is given disc file to store all its output, i.e.
file is virtual line printer. When stream is closed, file is added to queue. Spooler takes files from
queue & sends them to printer.

repeat indefinitely

begin wait (something to spool);

 pick file from queue;
 open file;
 repeat until end of file;

begin DOIO (parameters for disc read);
 wait (disc request serviced);
 DOIO(parameters for line printer output);
 wait (printer request serviced);

end
end;

Notes
1. A buffer is used between disc & printer.
2. Semaphore ‘something to spool’ is signaled (incremented) by any process which closes a line
 printer stream, i.e. completes a file for output.
3. Output is often dealt with in favour of short files first.

ADVANTAGES OF SPOOLING

1. Evens out pressure on heavily used devices.
2. Reduces possibility of deadlock caused by injudicious peripheral allocation.
3. Easier to produce several copies without re-running jobs.

DISADVANTAGES

1. Need large amount of disc space.
2. Heavy traffic on the disc channel.
3. Not feasible for real-time I/O.

Page | 65

Let us summarize our discussion:

Separating I/O into user process, I/O process and device handler makes it easier to achieve
the 3 objectives:

• character code independence
• Device independence
• Uniformity of device treatment

However, Because of their general nature, these routines can sometimes be slower to execute
than special pieces of code tailor-made for specific I/O operations and devices. Careful attention
must therefore be paid to optimizing the efficiency of these routines. Sometimes, for the sake of
efficiency, I/O procedures & device handlers are put together and optimized for specific
applications of known operations & devices.

Page | 66

WEEK THIRTEEN

Learning Outcome for this week

 Interrupt handling process
 The concept of interrupts and traps.
 The CPU activity in interrupt mode and pooling and the CPU status.

Interrupts

Interrupt hardware was invented to eliminate the need for explicit calls to a polling procedure
from within applications code. Essentially all computers on the market today, from the smallest
microcontrollers to the highest performance supercomputers include such hardware. In effect,
what the basic interrupt mechanism does is check all of the relevant device status bits just after
executing each and every machine instruction, inserting a call to an interrupt handler, analogous
to our poll routine whenever some device is ready. So long as no devices need service, this
allows the computer to execute instructions at full speed.

In general, an interrupt can be viewed as a hardware-initiated call to a procedure, the interrupt
handler or interrupt service routine. In effect, the instruction execution loop of the central
processor has been made to serve as the main polling loop of our application! Although the
abstract description of an interrupt as a hardware initiated procedure call applies to most interrupt
hardware, the details vary considerably from machine to machine. The address of the interrupt
service routine is frequently stored in a special register or dedicated memory location, called the
interrupt vector. On some machines, calls to interrupt service routines parallel procedure calls to
the extent that the normal procedure return can be used to return to the code which was running
at the time of the interrupt, while on others, special return-from-interrupt instructions must be
used.

An assembly language stub is a bit of code that masks over the incompatibility between one
model of control transfer and another; in this case, allowing the use of an interrupt to call a
normal function compiled by a compiler that knew nothing about interrupt service routines.

Once an interrupt service routine has been called, it is essential that the hardware request for that
service be disabled or withdrawn. If it were not, an infinite (and possibly recursive) loop would
result in which, after executing the first instruction of the interrupt service routine, the hardware
would force a control transfer to the start of the same interrupt service routine. On some systems,
the interrupt is automatically disabled by the actions of the central processor hardware when it
responds to the interrupt, while on others, the first instruction of each interrupt service routine
must disable the interrupt.

In the examples presented here, it will be assumed that the hardware automatically disables
interrupts as it calls the interrupt service routine.

Page | 67

Even if the hardware can disable interrupts, the software must also be able to enable or disable
them. For example, on return from an interrupt service routine, after the software has done
whatever the interrupt requested, the software must re-enable the interrupt as it returns to the
code which was interrupted. Furthermore, if the output queue is empty, there is no point in
responding to an interrupt from the output device when it is ready to transfer more data; a similar
argument can be made when the input queue is full. On most machines, there are special
instructions to enable and disable interrupts; on some, these instructions apply to all interrupts at
the same time, while other machines allow groups of devices to be enabled or disabled as a
group.

 In addition, it is usual to include, in each device's control register, one or more interrupt enable
bits corresponding to each condition the device can sense that might be cause for an interrupt
request. If the interrupt enable bit for a condition is set, then when that condition is detected,
there will be an interrupt request.

It should be noted that the disabling an output device's ability to request interrupts when the
output queue is empty and enabling that device when data is put in the queue is a special purpose
solution to a general problem, the producer-consumer problem. The device is the consumer, and
the application is the producer, and the general problem is to prevent the consumer from
attempting to use data that has not yet been produced. In any producer-consumer system,
whether the system is all in hardware, all in software, or mixed between the two, there must be
some synchronization mechanism to make the consumer wait until data is available!

Interrupt handlers and the scheduler

Since an interrupt handler blocks the highest priority task from running, and since real time
operating systems are designed to keep thread latency to a minimum, interrupt handlers are
typically kept as short as possible. The interrupt handler defers all interaction with the hardware
as long as possible; typically all that is necessary is to acknowledge or disable the interrupt (so
that it won't occur again when the interrupt handler returns). The interrupt handler then queues
work to be done at a lower priority level, often by unblocking a driver task (through releasing a
semaphore or sending a message). The scheduler often provides the ability to unblock a task
from interrupt handler context.

 Real-time operating systems (RTOS) LynxOS, Embedded Linux, Prex, Tron, WindowsCE,
 RTLinux, THEOS, OSE…

Page | 68

WEEK FOURTEEN

 Learning Outcome for this week

 Explain batch modes with respect to compilation and library
 Batch Processing, Time sharing, Real time, and network operating systems
 Multiprogramming, Multitasking and Multiprocessing systems

BATCH PROCESSING

BATCH Processing can be defined as executing a series of non interactive jobs all at one time.
The term originated in the days when users entered programs on punch cards. They would give a
batch of these programmed cards to the system operator, who would feed them into the computer.
Batch jobs can be stored up during working hours and then executed during the evening or
whenever the computer is idle. Batch processing is particularly useful for operations that require the
computer or a peripheral device for an extended period of time. Once a batch job begins, it
continues until it is done or until an error occurs. Note that batch processing implies that there is no
interaction with the user while the program is being executed.
An example of batch processing is the way that credit card companies process billing or Power
Holding Company processes their bills . The customer does not receive a bill for each separate
credit card purchase or meter reading but one monthly bill for all of that month. The bill is created
through batch processing, where all of the data are collected and held until the bill is processed as a
batch at the end of the billing cycle.
The opposite of batch processing is transaction processing or interactive processing. In interactive
processing, the application responds to commands as soon as you enter them.

 TIME SHARING
 This involves the CPU allocating individual slices of time to a number of users on the computer
 system. As the number of users increases the response time for each terminal declines. The speed
 of the CPU compared to that of the VDU and terminal is so much faster that it gives the user the
 impression that they are the sole user of the system

MULTIPROGRAMMING MULTITASKING AND MULTIPROCESSING SYSTEMS
 Multiprograming: In multiprogramming systems, the running task keeps running until it performs
an operation that requires waiting for an external event (e.g. reading from a tape) or until the computer's
scheduler forcibly swaps the running task out of the CPU. Multiprogramming systems are designed to
maximize CPU usage.

Multitasking: In computing, multitasking is a method by which multiple tasks, also known as processes,
share common processing resources such as a CPU. In the case of a computer with a single CPU, only
one task is said to be running at any point in time, meaning that the CPU is actively executing instructions
for that task. Multitasking solves the problem by scheduling which task may be the one running at any
given time, and when another waiting task gets a turn. The act of reassigning a CPU from one task to
another one is called a context switch.

Page | 69

Multiprocessing: Multiprocessing is a generic term for the use of two or more central processing units
(CPUs) within a single computer system. There are many variations on this basic theme, and the
definition of multiprocessing can vary with context, mostly as a function of how CPUs are defined
(multiple cores on one die, multiple chips in one package, multiple packages in one system unit, etc.).

Multiprocessing sometimes refers to the execution of multiple concurrent software processes in a system
as opposed to a single process at any one instant.

REAL TIME OPERATING SYSTEM
Real-Time Operating System (RTOS; generally pronounced as "R-toss") is a multitasking operating
system intended for real-time applications. Such applications include embedded systems (programmable
thermostats, household appliance controllers), industrial robots, spacecraft, industrial control and
scientific research equipment.
A RTOS facilitates the creation of a real-time system, but does not guarantee the final result will be real-
time; this requires correct development of the software. An RTOS does not necessarily have high
throughput; rather, an RTOS provides facilities which, if used properly, guarantee deadlines can be met
generally (soft real-time) or deterministically (hard real-time). An RTOS will typically use specialized
scheduling algorithms in order to provide the real-time developer with the tools necessary to produce
deterministic behavior in the final system. An RTOS is valued more for how quickly and/or predictably it
can respond to a particular event than for the given amount of work it can perform over time. Key factors
in an RTOS are therefore a minimal interrupt latency and a minimal thread switching latency.
An early example of a large-scale real-time operating system can be identified in the some Airline
reservation operating in Nigeria and overseas such as Transaction Processing Facility developed by
American Airlines and IBM for the Sabre Airline Reservations System. Others may be found in some
communication companies

.
 NETWORK OPERATING SYSTEM

What is a Network Operating System?

Unlike operating systems, such as DOS and Windows, that are designed for single users to
control one computer, network operating systems (NOS) coordinate the activities of multiple
computers across a network. The network operating system acts as a director to keep the network
running smoothly.

The two major types of network operating systems are:

• Peer-to-Peer
• Client/Server

Page | 70

Peer-to-Peer

Peer-to-peer network operating systems allow users to share resources and files located on their
computers and to access shared resources found on other computers. However, they do not have
a file server or a centralized management source (See fig. below). In a peer-to-peer network, all
computers are considered equal; they all have the same abilities to use the resources available on

the network. Peer-to-peer networks are designed primarily for small to medium local area
networks. AppleShare and Windows for Workgroups are examples of

s.
Fig 14.1 . Peer-to-peer network

programs that can function as peer-to-peer network operating system

Advantages of a peer-to-peer network:

• Less initial expense - No need for a dedicated server.
• Setup - An operating system (such as Windows XP) already in place may only need to be

reconfigured for peer-to-peer operations.

Disadvantages of a peer-to-peer network:

• Decentralized - No central repository for files and applications.
• Security - Does not provide the security available on a client/server network.

CLIENT/SERVER

Client/server network operating systems allow the network to centralize functions and
applications in one or more dedicated file servers (See fig. below). The file servers become the
heart of the system, providing access to resources and providing security. Individual
workstations (clients) have access to the resources available on the file servers. The network
operating system provides the mechanism to integrate all the components of the network and
allow multiple users to simultaneously share the same resources irrespective of physical location.
Novell Netware and Windows 2000 Server are examples of client/server network operating
systems.

Page | 71

Fig. 14.2 . Client/server network

Advantages of a client/server network:

• Centralized - Resources and data security are controlled through the server.
• Scalability - Any or all elements can be replaced individually as needs increase.
• Flexibility - New technology can be easily integrated into system.
• Interoperability - All components (client/network/server) work together.
• Accessibility - Server can be accessed remotely and across multiple platforms.

Disadvantages of a client/server network:

• Expense - Requires initial investment in dedicated server.
• Maintenance - Large networks will require a staff to ensure efficient operation.
• Dependence - When server goes down, operations will cease across the network.

Examples of network operating systems

The following list includes some of the more popular peer-to-peer and client/server network
operating systems.

• AppleShare
• Microsoft Windows Server
• Novell Netware

Page | 72

WEEK FIFTEEN

 Learning Outcome this Week: Revision of CONCEPTS LEARNT DURING THE
COURSE:

 Basic Assembler ‘s functions
 Differentiate between Assembler, Interpreter and Compiler
 Make argument on which one is preferable for a given task
 Understand Front end and back end
 Describe tools for error checking
 Discuss the functions of an Operating System
 Identify the features of Ms Dos against Ms Windows
 The meaning and work of 1-pass assembler, 2-pass assembler.

Teacher’s Activities:

• The teacher is expected to revise the above areas with students
• Identify areas where difficulties in understanding appear.

• Attempts should be made at assessing knowledge and understanding .
• At least two tests, one hour each , should be conducted as assessment before a final

exam.

• Home work should also be given for additional materials that the student may need to
increase his understanding of some of the concepts covered.

REVIEW QUESTIONS
1. What is the general format of an assembler instruction? What is the meaning

of each field ?
2. What is the difference between a label and a symbol?
3. List some typical zero-operand instructions.
4. In old assemblers the source .le was punched on cards, one line per card. Why

was it important to punch a sequence number on each card?
5. Use your knowledge of data structures; what are good data structures for an

Op-Code table? The table is static (no insertions or deletions) and is searched very
often.

HOME ASSIGNMENT QUESTIONS
1. For each of the questions below, if the project describes a 2-pass assembler, design

a format for the intermediate .le. What information should each record contain?
2 Look at several textbooks on assembler language programming for different computers.

What are the rules for:
a. Symbol names. b. The syntax of a source line.

8. The asterisk ‘*’is a favorite character of assembler writers and has been mentioned in this
 lecture many times, in connection with several different assembler features. What are
 those features?
9. Compare and contrast literals and the immediate mode. What are the advantages and
 Disadvantages of each?

	Cover
	Table of Contents
	WEEK 1
	WEEK TWO
	WEEK THREE
	WEEK FOUR
	WEEK FIVE
	WEEK SIX
	WEEK SEVEN
	WEEK EIGHT
	WEEK NINE
	WEEK TEN
	WEEK ELEVEN
	WEEK TWELVE
	WEEK THIRTEEN
	WEEK FOURTEEN
	WEEK FIFTEEN
	Return to Table

