UNESCO-NIGERIA TECHNICAL & e
VOCATIONAL EDUCATION N [s |: |]
REVITALISATION PROJECT -PHASE I _——

System Programming

COURSE CODE: COM 212

VERSION 1 DECMBER 200¢

Page | 1

TABLE OF CONTENTS

WEEK 1 CONCEPTS OF SYSTEM PROGRAMMING

Brief overview of System programmingcooeuies
Definition of Assembler
Types of Assemblers and loaders cooiiiiiitmeeen
Definition and examples of Assemblers

WEEK 2 Operating System: 1-pass and 2-pass

OS definition
1-pass assembler
2-pass assembler

WEEK 3: Assembly Functions

Basic Assembler Functions s

Assembler directives

WEEK 4 Basic Elements of and Assembly Program

Basic Elements

Op code
Instruction cycle

WEEK 5 Sample Program Example

Program example and solution ...
Local labels

Examples of Local labels
Symbol Table

WEEK 6 Assembler Functions

Functions of an assembler

Assembler Modules

Lexical Analysis

Pass-1 module

Pass-2 module

Main Program

Communicating between modules

.....10
A
.13

......... 17
17

............ 20

.21

Types of Instructions

Page | 2

WEEK 7 Interpretation, Translation, Compilation

Interpretation e e e ae 2. 38
Byte code Interpreter P 1 o
Compiler 40
Compiler Output P
Compiler vs Interpreter P X X
One-pass vs Multipass compiler ... e 41
Just-in-time compilation L, 42

WEEK 8 Front End and Back End

Frontend 43
Backend 44
Concepts of tokens P £

WEEK 9 Error Checking, Utilities, Libraries

Error Checking " ¥
Perror PP ¥
Assert NP k< |

Libraries in Computing e 49
Types of Libraries PP L

WEEK 10 Operating Systems: Importance, Usese3yp

OS in hierarchy P o
Functions of OS PPN o 1
OSTorPCs .56
MS Dos PPN o1 o
MS Windows PP - Y 4
WEEK 11 OS Services

OS SEIVICES 59
WEEK 12 1/O Buffering and Files

I/O Buffering 61

Files devices N o ¥ |
Spooling 60

Page | 3

WEEK 13 Interrupts

Interrupts PN o 7

Interrupts handler PP oo

WEEK 14 Multiprogramming, Multitasking, Multipcessing

BatCch processing 70
Time sharing Y 4 0
Realtime OS 70
Network OS 72
Examples of networks OS ., 74
WEEK 15 Review of Important Concepts.............coecvvevevn e d 6

Page | 4

WEEK 1

Learning Outcome for this week:

4+ The concept of system programming

4+ The differences between systems programs and apphgprograms
+ The difference between Assembler and operatingsst

+ Brief Review of Program Concepts

Teacher's Activities:

i) Define System Programming, Application Programming

i) Differentiate between System Programming and Appbey Programming
iii) Give examples of each

iv) Define Assembler and operating Systems
V) Review what a program is.

Page | 5

DEFINITION

System programming(or systems programming is the activity of programmingystem
software The primary distinguishing characteristic of gyss programming when compared to
application programmings that application programming aims at produgofjware which
provides services to the user (e.g. word proceSgomeadsheets, databases, Accounting
packages)

Systems programming aims at producing software lwprovides services to the computer
hardware (e.g. disk defragmenter, Operating Syste)nk also requires a greater degree of
hardware awareness that is to say it is machinerdkgnt and the programmer needs to know the
hardware within which the software will operate

BRIEF OVERVIEW OF SYSTEM PROGRAMMING
In system programming more specifically:

- The_programmewill make assumptions about the hardware and qiregrerties of the
system that the program runs on, and will often@kthose properties (for example by
using an algorithnthat is known to be efficient when used with sped¢iardware)

« Usually a low-level programming language or progranyg language dialect is used and
does the following:

o Operate in resource-constrained environments

o Is very efficient and has little runtimeverhead

o Has a small runtime librayyr none at all

o Allows for direct and "raw" control over memory ass and control flow

o Letthe programmer write parts of the program diyao assembly language

- Debuggingcan be difficult if it is not possible to run tpeogram in a debugger due to
resource constraints. Running the program _in alsited environmentan be used to
reduce this problem.

« Note: All underlined words concepts will be disedss the study progresses.

Systems programming is sufficiently different framplication programming that programmers
tend to specialize in one or the other.

In system programming, often limited programmingjlfaes are available. The use of automatic
garbage collectiors not common and debuggirggsometimes hard to do. The runtime librafy
available at all, is usually far less powerful, awks less error checking. Because of those
limitations, monitoringand_loggingare often used; operating systemay have extremely
elaborate logging subsystems.

Implementing certain parts in operating system ragtavorking requires systems programming

For historical reasons, some organizations useetihesystems programmer to describe a job
function which would be more accurately termed esyst administratofThis is particularly true

Page | 6

in organizations whose computer resources haverlually been dominated by mainframes,
although the term is even used to describe jobtimme which do not involve mainframes.

DEFINITION OF ASSEMBLER

Computer science is not as precise a field as nratties, so most definitions are not

rigorous. An attempt to define Assembler can benftdated as follows: An assembler is a
translator that translates source instructionsymbolic language) into target instructions (in
machine language), on a one to one basis.

This means that each source instruction is tragdliaito exactly one target instruction.

This definition has the advantage of clearly ddsig the translation process of an assembiler. It
is not a precise definition, however, because aarabler can do (and usually does) much more
than just translation. It off.ers a lot of helpth@ programmer in many aspects of writing the
program. The many types of help offered by therabser are grouped under the general term
directives (or pseudo-instructions).

Another good definition of assemblers is can ldgred thus: An assembler is a translator that
translates a machine-oriented language into madangiage.

This definition distinguishes between assembledscaampilers. Compilers being translators of
problem-oriented languages or of machine-indeperidaguages.

This definition, however, says nothing about the-tmone nature of the translation, and thus
ignores a most important operating feature of sembler.

One reason for studying assemblers is that theatiparof an assembler reflects the architecture
of the computer. The assembler language dependgyhea the internal organization of the
computer. Architectural features such as memorydwsare, number formats, internal character
codes, index registers, and general purpose regjigiifect the way assembler instructions are
written and the way the assembler handles instmstand directives. This fact explains why
there is an interest in assemblers today and wdouese on assembler language is still required
for many, perhaps even most, computer science eggre

Today, assemblers are translators and they wodaerprogram at a time. The tasks of locating,
loading, and linking (as well as many other tasks)performed by a loader.

A modern assembler has two inputs and two outfins first input is short,

typically a single line typed at a keyboard. Itieates the assembler and specifies

the name of a source .le (the .le containing tlhecgocode to be assembled). It

may contain other information that the assembleukhhave before it starts. This

includes commands and specifications such as:

) The names of the object file and listing file. D&sp(or do not display)the
listing on the screen while it is being generated.

i) Display all error messages but do not stop foremngr.

iii) Save the listing file and do not print it (see figielow).

This program does not use macros. The symbol talideger (or smaller) than usual
and needs a certain amount of memory. All thesedevill be explained elsewhere.

Page | 7

Pass ,
Location counter

® indicator
\\ Error

prod.

Sonree line Main
buffer Program
_ Object /
b
¢ codle

assembly

AlA

Lexical scan

rontine Table search procedures

4

Opeode Directive Symbol

table tahle table

Figure: 1.1 Main Components and Operations of alssembler

TYPES OF ASSEMBLERS AND LOADERS

1) A One-pass Assembler: One that performs all itstions by reading the source file
once.

2) A Two-Pass Assembler: One that reads the soueénite.

3) A Resident Assembler: One that is permanently Idadenemory.
Typically such an assembler resides in ROM, is &&mple (supports only a few
directives and no macros), and is a one-pass assemb

4) A Macro-Assembler: One that supports macros

5) A Cross-Assembler: An assembler that runs on ongater and assembles programs for
another. Many cross-assemblers are written in laghitevel language to make them
portable. They run on a large machine and prodbgerbcode for a small machine.

6) A Meta-Assembler: One that can handle many diffeirgstruction sets.

7) A Disassembler: This, in a sense, is the oppos$iéen@ssembler. It translates machine
code into a source program in assembler language.

We shall later discuss (1) and (2) in this course

Page | 8

WHAT IS A PROGRAM?

Depending on who you talk to, you will get veryfdient answers. In operating systems, when a
program is running, it is called a process. Thegmm itself can be in many forms, i.e. machine
code, assembly code, C code, C++ or Fortran, &wa,

Processors execute machine code ONLY. Machine isagigtten with binary machine words
composed of op codes and operands. The op codeseap different instructions, for instance
an arithmetic addition. Operands are operated ahédynstruction. A machine word may look
like:

10001000110101001010101101101011

In this case10001000 encodes the op code10101001010 and 101101101011 are the
two operands. Most people don’'t want to write codihis format. Naturally, our forerunners
sought a way out, using mnemonics to represethadle binary streams. Then the line above
may become:

ADD AX, BX

These mnemonics and some other directive commaadHectively called assembly
language. The assembly program now looks more béadad maintainable:

0000000000000100 MOV BX, VALUElL
0000000000001000 MOV AX, FACTOR
0000000000001100 MJL AX, BX

This is how CPU goes about to scale VALUE1 by FARIOALUEL x FACTOR doesn’t
make any sense to the processor. 04, 08 and Otermin HEX numbers, are memory addresses
where corresponding lines in the program are stored

Things became easier, but not easy enough andonihe: write a lot of programs using these
commands But if one has a life away from a keythotrere are problems:
1. The mnemonics in assembly language are in one#azorrespondence with machine
codes, which are processor dependent. If you mmave Intel x86 to Motorola 68k, a
new program has to be written. Here is a real asbepnogram that runs on 68k:

ORG $1000

N EQU 5

CNT1 DC.B O

CNT2 DC.B 0

ARRAY DC.B 2,7,1,6,3
ORG $1500

MAI N LEA ARRAY, A2
MOVE. B #N, D1
CLR D6
CLR D7

Page | 9

JSR SORT
STOP #$2700

SORT MOVE. B #0, D6
MOVE. B #1, D7
LOOP MOVE. B $0(A2, D6. W, D2
MOVE. B $0(A2, D7. W, D3
CW.B D2, D3
BGT EXCHANGE
ADD. B #1, D7
CWP. B #5, D7
BLT LOOP
JMP CHECK1
EXCHANGE MOVE. B D2, $0(A2, D7. W
MOVE. B D3, (A2, D6. W

ADD. B #1, D7
CWP. B #5, D7
BLS LOOP
CHECK1 ADD. B #1, D6
MOVE. B D6, D7
CWP. B #4, Do
BLT LOOP
RTS
END $1500

Note, although assembly code are very close to wmiaghine code is, they are still
different. A n assembler converts assembly codetimie machine code as we have seen
earlier (the realm of binary!).

. In the above program, the addresses are physide¢sges, which correspond to
individual bytes on your memory banks. If you hévaed coded these addresses, you
better only run one program on your processor et éee!

. How tedious it is to program in assembly langudgelay take 30 lines of code to just
put a character on your console, provided thatareunot making system calls. As an
anecdote, while WordPerfect and Word look very Embne is written in assembly and
the other in C.

Page | 10

WEEK TWO

Learning Outcome for this we

#+ An insight into the concept of Operating Sys
+ The meaning and work of-pass Assembler.
4+ The meaning of a pass Assembl

Teacher’s Activities:

Go through the program example and give a linkngyexplanation of the working of
1-pass assembler and-gpass assembler

ASSEMBLER

We have seen that a typically modassemblercreates object codby translating assemb
instruction mnemonics into ogode:, and by resolving symbolic namis memory location:
and other entities. The use of symbolic refereicaskey feature of assemblers, saving tec
calculations and manual address updates aftergrogrodifications. Most assemblers &
include_macrdacilities for performing textual substituti—e.g.,to generate common sh
sequences of instructions to rinline, instead of in a subroutine

OPERATING SYSTEM

Application

Operating System

Hardware

Figure 2.1 Location of Operating System

An operating system(commonly abbreviateOS andO/S) is the software component o
computersystem that is responsible for the management amdlination of activities and tt
sharing of the limited resources of the computée dperating system acts as a hos
applicationghat are run on the machine. As a host, one gbtinposes of an operating systen

Page | 11

to handle the details of the operation of the har@wT his relieves application programs from
having to manage these details and makes it dasretite applications. Almost all computers,
including handheld computerdesktop computersupercomputersand even video game
consolesuse an operating system of some type. Some afitlest models may however use an
embedded operating systethat may be contained on a compact diskther data storage
device

Common contemporary operating systems include MaftdNindows Mac OS Linux and
Solaris Microsoft Windows has a significant majority ofirket share in the desktop and
notebook computer markets, while servers genermatyon Linux or other Unix-like systems.
Embedded device markets are split amongst seveesating system<! 12

We will now discuss a 1-pass and 2-pass asseminliesee how they works,
THE ONE-PASS ASSEMBLER

As its name implies, this assembler reads the sdileconce. During that single pass, the
assembler handles both label definitions and aslgefitie only problem is future symbols and,
to understand the solution Let ’s consider theofeihg example:

LC

36 BEQ AB ;BRANCH ON EQUAL

67 BNE AB ;BRANCH ON NOT EQUAL
89 JMP AB ;UNCONDITIONALLY

i26 AB anything

Symbol AB is used three times as a future symboltl@ first reference, when

The LC happens to stand at 36, the assembler ssaifod symbol table for AB , does

not find it, and therefore assumes that it is aritsymbol. It then inserts AB into

the symbol table but, since AB has no value yeajeit a special type. Its type is

U (underlined). Even though it is still underlinédaow occupies an entry in the

Symbol table, an entry that will be used to keepkrof AB as long as it is a future

symbol. The next step is to set the ‘value 'fiefdhat entry to 36 (the current

value of the LC).This means that the symbol tableyefor AB is now pointing

to the instruction in which AB is needed. The "altield is an ideal place for the pointer since
it is the right size, it is currently empty, andsitassociated with AB .The BEQ instruction itself
is only partly assembled and is stored, incomplateyemory location 36.The field in the
instruction were the value of AB should be storiba @ddress field),remains empty.

Page | 12

When the assembler gets to the BNE instructiowfath point the LC stands at 67), it searches
the symbol table for AB , and fi.nds it. HoweveB Aas a type of U , which means that it is a
future symbol and thus its ‘value ‘field (=36) istra value but a pointer .It should be noted that,
at this point, a type of U does not necessarilymregaunderlined symbol. While the assembler is
performing its single pass, any underlined symbulst be considered future symbols. Only at
the end of the pass can the assembler identifyrlinele symbols (see below).The assembler
handles the BNE instruction by:
i) Partly assembling it and storing it in memory lecatc7.
i) Copying the pointer 36 from the symbol table tophetly assembled instruction
in location 67. The instruction has an empty figldhere the value of AB should have
been), where the pointer is now stored. There neagalses where this field

0 @-‘— enker namese,
pointer &
| @ tovpee of 1
read line
fromm
SOUTCR @
@-_— CHFEY perinber
from s.h. b

instruction

being

asserm bled

#

place 1O in

5.1 Lo peoint
Lo Current
instruction

beinge

assembled

@.—— assemble line
loac in memory
search
vkl o
table

print. LO3, source

& object oodes

b

Figure 2.2 A 1-Pass Assembler

Page | 13

TWO 2-PASS ASSEMBLER

A two-pass assembler is easier to understand .&ualssembler performs two passes over the
source file. In the fi.rst pass it reads the erdoarce file, looking only for label definitionslIA
labels are collected, assigned values, and placgtkisymbol table in this pass. No instructions
are assembled and, at the end of the pass, theostabe should contain all the labels defined
in the program. In the second pass, the instrustima again read and are assembled,

using the symbol table.

ExerciseWhat if a certain symbol is needed in pass 2ssemble an instruction, and is not
found in the symbol table?

To assign values to labels in pass 1, the assetndreto maintain the LC. This in turn means
that the assembler has to determine the size bfiaatruction (in words), even though the
instructions themselves are not assembled. In masgs it is easy to figure out the size of an
instruction. On the IBM 360 for example, the mnemaletermines the size uniquely. An
assembler for this machine keeps the size of eethuction in the Op-Code table together with
the mnemonic and the Op-Code . On the DEC PDmMd ize is determined both by the type of
the instruction and by the addressing mode(s)ithees. Most instructions are one word (16-
bits) long. However, if they use either the indexnalex deferred modes, one more word is
added to the instruction. If the instruction has twperands (source and destination) both using
those modes, its size will be 3 words. On most modacroprocessors, instructions are between
1 and 4 bytes long and the size is determined &¥ih-Code and the specific operands used.
This means that, in many cases, the assembleoasrk hard in the first pass just to determine
the size of an instruction. It has to look at theemonic and, sometimes, at the operands and the
modes, even though it does not assemble the itistnua the first pass. All the information
about the mnemonic and the operand collected bggkembler in the first pass is extremely
useful in the second pass, when instructions aenalsled. This is why many assemblers save all
the information collected during the first pass &maghsmit it to the second pass through an
intermediate file .Each record on the intermedi#gecontains a copy of a source line plus all the
information that has been collected about thatilinie first pass. At the end of the fi.rst pass
the original source .le is closed and is no longed. The intermediate .le is reopened and is
read by the second pass as its input file.
A record in a typical intermediate file contains:

i) The record type. It can be an instruction, a dive¢ia comment, or an

invalid line.
1)) The LC value fitre line.
1)) A pointer to aecific entry in the Op-Code table or the directiable.

The second pass uses this pointer to locate tbemattion necessary to assemble or execute the
line.

Page | 14

More sophisticated high-level assemblersvide language abstractions such as:

« Advanced control structures

- High-level procedure/function declarations and ratmons

« High-level abstract data types, including strucsinexords, unions, classes, and sets
- Sophisticated macro processing

« Object-Oriented features such as encapsulatiognmmphism, inheritance, interfaces

Note In normal professional usage, the texssembleris often used ambiguously: It is
frequently used to refer to an assembly languagéf irather than to the assembler utility. Thus:
"CP/CMS was written in S/368ssembler” as opposed to "ASM-H was a widely-.&8d0
assembler.”

* A copy of the source line.

Notice that a label, if any, is not used by passi?must be included in the intermediate

file since it is needed in the final listing.
There can be two problems with labels in the fiesds; multiply-defined labels and invalid labels
Before a label is inserted into the symbol talile,thble has to be searched for that label. If the
label is already in the table, it is doubly (or eveultiply-) defined. The assembler should treat
this label as an error and the best way of doirggishby inserting a special code in the type .eld
in the symbol table.
Thus a situation such as:
AB ADD 5,X

AB SUB 6,Y

JMP AB

will generate the entry:

name value type

AB .MTDF

in the symbol table.

Labels normally have a maximum size (typically @arharacters), must start with a letter, and
may only consist of letters, digits, and a few ottigaracters. Labels that do not conform to these
rules are invalid labels and are normally consideréatal error. However, some assemblers will
truncate a long label to the maximum size andigsllie just a warning, not an error, in such a
case.

Exercise What is the advantage of allowing characters dtinen letters and digits in a label?

The only problem with symbols in the second pasmdsymbols .These are either multiply-
defined or underlined symbols. When a source Iseswa symbol in the operand field, the
assembler looks it up in the symbol table. If thimbol is found but has a type of MTDF ,or if

the symbol is not found in the symbol table (iitehas not been defined), the assembler responds
as follows.

Page | 15

* It flags the instruction in the listing .le. It @ssbles the instruction as far as possible, and
writes it on the object file.

* It flags the entire object file. The flag instruthe loader not to start execution of the
program. The object .le is still generated andahaeer will read and load it, but not start
it. Loading such a .le may be useful if the usentwd@o see a memory map assemblers.

This point is the reason why a one-pass asseménheorly produce an absolute object .le (which
has only limited use), whereas a two-pass asseréteproduce a re-locatable object file, which
is much more general.

Exercise What would be good Pascal declarationsuoh a future symbol

list: a. Using absolute pointers.
b. Housed in an array.

resd next line from

intermexliate file

assemble
instruction

|

write object instrction

onta object fle

r

write source & object

lines onto listing Ale

Page | 16

Error!

founed
search e 1 labielis
5.t dounbly
defined

- =R
enter follow pointer *

AT in value field. @
|

complete all
type=1H

mn s.t.

instr. wall mg

for value of

the symbaol

!

store LT in

value field of

a.t., change
typse to [

Error!

nndefined

symbenl{s)

Figure: 2.3 Operations of a 2-pass assembler

Page | 17

WEEK THREE

Learning outcome for this week:

+ Review the work of a 2-pass assembler
+ Basic Assembly Functions

4+ Assembler directives

+ An Assembler example program

Teacher’s Activities:

Outline
i) Basic assembler functions

i) A simple SIC assembler example

Page | 18

BASIC ASSEMBLER FUNCTIONS

1) Translating mnemonic operation codes to their nreckanguage equivalents
2) Assigning machine addresses to symbolic labels

Source Program
+ Mnemonic opcode - ‘Assemuer - Object code
+ Symbol

& L

bBig 3.1 Basic Assembler Functions
OTHER FUNCTIONS INCLUDE:

» Converting mnemonic operation codes to their maekanguage equivalents
e Converting symbolic operands to their equivaleathmne addresses

* Deciding the proper instruction format

» Converting the data constants to internal macrepessentations

* Writing the object program and the assembly Igstin

ASSEMBLER DIRECTIVES

Assembler directives are pseudo instructions

They provide instructions to the assembler itself
They are not translated into machine operation €ode
Example for SIC assembler directive

. START : specify name & starting address

. END : end of source program, specify thst faxecution instruction
. BYTE, WORD, RESB, RESW

. End of record : a null char (00)

. End of file : a zero- length record

NOTE: This program example will be theoretically explained in the class and further used
in a lab as practical example.

Page | 19

PROGRAM EXAMPLE

5 COPY START 1000 COPY FILE FROM INPUT TO OUTPUT
10 FIRST STL SAVE RETURN ADDRESS
15 CLOOP JSUB /RDREC READ INPUT RECORD
20 IDA / LENGTH TEST FOR HOF (LENGTH = 0)
25 COMP [ZERO
30 JEQ / ENDFIL EXIT IF EOF FOUND
35 JSUR / WRREC WRITE OUTPUT RECORD
40 J 4 cioop T.OOP
45 ENDFIL LDA/ EOF INSERT END OF FILE MARKER
50 STA BUFFER
55 LTA THREE SET LENGTH = 3
60 STA LENGTH
65 Forward jsus WRREC WRITE EOF
70 reference /1oL RETADR GET RETURN ADDRESS
75 / RsUB RETURN TO CALLER
80 EOF / BYIE C'ECF
85 THREE / WORD 3
90 ZERO $ WORD 0
95 [RETADR| RESW 1
100 LENGTH RESW 1 LENGTH OF RECORD
105 BUFFFR RESB 4096 4096-BYTE BUFFER AREA
110 ;
115 ; SUBROUTINE TO READ RECORD INTO BUFFER
120 1
125 RDREC LDX ZERO CLEAR LOOP COUNTER
130 LDA ZERO CLEAR A TO ZERO
135 RLOOP TD INFUT TEST INPUT DEVICE
140 JEQ RLOOP LOOP UNTIL READY
145 RD INPUT READ CHARACTER INTO REGISTER &
150 COMP ZERO TEST FOR END OF RECORD (X'00’)
155 JEQ EXIT EXIT LOOP IF ECR
160 STCH BUFFER, X STORE CHARACTER IN BUFFER
165 TIX MAXLFN LOOP UNLESS MAX LENGTH
170 JLT RLOOP HAS BEEN REACHED
175 EXIT STX LENGTH SAVE RECORD LENGTH
180 RSUB RETURN TO CALLER
185 INFUT EYTE el CODE FOR INPUT DEVICE
190 MAXLEN WORD 4096
195

Page | 20

PURPOSE OF EXAMPLE PROGRAM

* Reads records from input device (code F1)

e Copies them to output device (code 05)

* At the end of the file, writes EOF on the outputide, then RSUB to the operating
system

» Data transfer (RD, WD)

« A buffer is used to store record. Buffering is @&gary for different I/ O rates

e The end of each record is marked with a null chtarg©0) 16

e The end of the file is indicated by a zero- lengttord

e Subroutines (JSUB, RSUB) RDREC, WRREC

» Save link register first before nested jump

Page | 21

WEEK FOUR

| Learning outcome for this week

+ The general format of an Assembly program statémen

4+ The purpose of each field of Assembly languagestant

+ The meaning of symbolic operations, types of ojp@nat program counter
+ Registers, Instruction cycle

+ Types of Instructions

TEACHER'S ACTIVITIES

» Describe the general format of an Assembly Langirrggram Statement (label, op-
code, Addresses, operands, pseudo-operationadgsestructions)

* Explain the purpose of each field of assembly |aggustatement

» Example of a list of op-code to write a simple parg

BASIC ELEMENTS OF AN ASSEMBLY PROGRAM

Instructions (statements) in assembly languaggemerally very simple, unlike those_in high-
level languagesEach instruction typically consists of @peration or op-code plus zero or more
operands. Most instructions refer to a single value, oa& pf values.

Generally, an op-code is a symbolic name for alsiagecutable machine language instruction.
Operands can be either immediate (typically one kgtues, coded in the instruction itself) or
the addresses of data located elsewhere in storageis determined by the underlying
processor architecture: the assembler merely teflemw this architecture works.

Most modern assemblers also suppsetido-operations, which are directives obeyed by the
assembler at assembly time instead of the CPUnaime. (For example, pseudo-ops would be
used to reserve storage areas and optionally sietititial contents.) The names of pseudo-ops
often start with a dot to distinguish them from tmae instructions.

Some assemblers also suppgmdudo-instructions, which generate two or more machine
instructions.

Symbolic assemblers allow programmers to assoaréigrary names |débels or symbols) with
memory locations. Usually, every constant and wéeiés given a name so instructions can
reference those locations by name, thus promottigdecumenting coddn executable code,

Page | 22

the name of each subroutine is associated wigniiy point, so any calls to a subroutine can use
its name. Inside subroutines, GO@@stinations are given labels. Some assemblepo=upcal
symbols which are lexically distinct from normal symboésd., the use of "10$" as a GOTO
destination).

Most assemblers provide flexible symbol managenaloyving programmers to manage
different name spaceautomatically calculate offsets within data stewes and assign labels
that refer to literal values or the result of simpbmputations performed by the assembler.
Labels can also be used to initialize constantsvandbles with re-locatable addresses.

Assembly languages, like most other computer laggsiaallow comments to be added to
assembly source codleat are ignored by the assembler. Good use ofremts is even more
important with assembly code than with higher-ldaaguages, as the meaning of a sequence of
instructions is harder to decipher from the codelit

Wise use of these facilities can greatly simplifg problems of coding and maintaining low-
level code Raw assembly source code as generated by compilelis-assemblers — code
without any comments, meaningful symbols, or datfandions — is quite difficult to read when
changes must be made.

Op-code

In computer technology, ap-code(operationcode is the portion of a machine language
instructionthat specifies the operation to be performed. T$ecification and format are laid
out in the_instruction set architectwkthe processor in question (which may be a gergPU
or a more specialized processing unit). Apart ftbmop-code itself, an instruction normally
also has one or more specifiers for opergndsdata) on which the operation should act,
although some operations may hawglicit operands, or none at all. There are instructité se
with nearly uniform fields for op-code and operapecifiers, as well as others (the x86
architecture for instance) with a more complicatedied length structuré

Depending on architecture, tbperandsmay be registevalues, values in the staaither
memoryvalues, I/Oports, etc, specified and accessed using momrssrdomplex addressing
modes The types obperationsinclude_arithmeticdata copying, logical operatigremd
program control, as well as special instructionglisas CPUIDand others).

Assembly language commands have the following symtd -digit op code followed by a 2-digit
memory address or operand. Each command is stoedeparate memory block. For example:
20 0 68 means that in memory block 20, we haverantand with the op code 0 which executes
on memory block 68.

Finally, theprogram counter keeps track of the memory block that containgise command
to be executed. By default the program counterdeeimented by 1 after each command
execution because we typically store commands msecutive memory blocks. However, the
program counter can jump to any memory block dejpegnoin the program’s sequence of
execution.

Page | 23

+ IR -- The instruction register. It holds the instrantcurrently being executed.
- CSR-- The control status register. It contains infation pertaining to the execution of
the current and previous instructions.

THE INSTRUCTION CYCLE

The computer's operation consists of running icsibas repetitively. This is known as the
instruction cycle. The instruction cycle consistgl @eneral phases:

« 1. Decode instruction (ilR)

« 2. Execute instruction

« 3. Determine next instruction

« 4. Load next instruction into tH&

What is an instruction? Like everything else,at'sequence of 0's and 1's. Instructions are
stored as part of a program's memory, and theuictsdn that is pointed to by thge register is
the one that gets loaded into tRefor execution.

In other words, if th@gc contains the valu@x204Q then thdR is executing the instruction
contained in the 4 bytes starting at memory addir264Q

An assembler converts assembly code into the proper 0's anthdtsompose the program. If
you callgccwith the-Sflag, it will produce asfile containing the assembler for that program in
C language for instance. Without ti&flag, it produces the instructions directly.

TYPES OF INSTRUCTIONS

1. Memory <-> Register instructions:
Ild mem -> %reg Load the value of ibgister from memory.

st %reg -> mem Store the value ofrdggster into memory.
There are a few ways to address memory:
st %r0 -> | Store the value of régis0 into the memory
location of global vaia i.

st %r0 ->[rl] Treat the value of reégrsrl as a pointer
to a memory locationgdatore the
value of r0 in that memcation.

st %r0 -> [fp+4] Treat the value of tliarhe pointer as a
pointer to a memory lica, and store the
value of r0 in the memtcation 4 bytes
after that location. 0recan use any value,
positive or negativet just 4.

However, you cannot agegister (i.e.

Page | 24

you can't do st %r0 fHr2]).
This only works with tframe pointer. It does
not work with any othregister.

st %r0 -> [sp]-- Treat the value of régissp as a
pointer to a memory liea, store the
value of r0 into thatmmary location, and then
subtract 4 to the vabdisp.

st %r0 -> ++[sp] Treat the value of régisp as a
pointer to a memory lioca. First, add 4 to
that value, then stdre t
value of r0 into thatmary location.

2. Register <-> Register instructions:
mov %reg -> %reg Copy a register's vatuanother
mov #val -> %reg register, or set itanealo a constant.
All arithmetic goes from register to register:
add %regl, %reg2 -> %reg3 Add regl & rag@ put the sum in reg3.
sub %regl, %reg2 -> %reg3 Subtract reg@ fregl.
mul %regl, %reg2 -> %reg3 Multiply regIr&g2.
idiv %regl, %reg2 -> %reg3 Do integer dmmsof reg2 into regl.
imod %regl, %reg2 -> %reg3 Do regl mod reg?2
There are two special instructions that let yodqrer addition and subtraction on the stack
pointer:

push %reg This subtracts the valfugtack pointer
push #val by value contained igp oe the constant defined in val.
pop %reg This adds the value cé@wor #val
pop #val to the stack pointer.
3. Control instructions
jsra Call the subroutine staytat instruction a.
ret Return from a subroutine.

There are also "compare" and "branch" instructi@risch is how you implement for and if
statements, but | won't go over them yet.

Finally, there are also "directives" which are reslly code, but specify that memory must be
allocated for variables. For example:

.globl i Allocate 4 bytes in thiblgals segment
for the variable i.

The program counter points to where the instruategister must go to load its value. On normal
instructions, thec is incremented by 4 so that the next instructiam lse loaded. On control
instructions, thgc gets a new value, allowing the machine to calfsutines, perform "if-then"
statements, etc.

Page | 25

Here is the list of the op codes we will be usimgdnstruct assembly language programs.

Op Function Task
Code | Abbreviation

0 INP Stores the next value from the input streaim the
specified memory block. Every time this op codealied
the next value in the list is read and stored.eés@mple,
001 means store the next value in the input stieam
memory block 01.

1 CLA Clears the accumulator (reset content ton@d) &dds the
content of the specified memory location to the
accumulator.

2 ADD Adds the content of the specified memory taoato the
accumulator without clearing the accumulator first.

3 TAC Tests the value in the accumulator, if ihégative it jumps
to the specified memory block. For example, 325msea
check the content of the accumulator, if it is riegaset the
program counter to 25, go to memory block 25, aretete
the command stored in it.

4 SFT This op code is followed by two 1-digit op=sdta. The first
indicates the number of places to shift the condétite
accumulator to the left and the second indicatesitimber
of places to shift the content of the accumuladahe right.
The left shift is implemented before the right sHifote that
you do not have to have non-zero shifts in botadions.
You could set the value to 0 for the direction inieir you
do not wish to shift.

For example consider the instruction 401 and thaevim
the accumulator is 2121. We see that the amoushitifto
the left is 0 so no shift to the left. The amounslaift to the
right is 1 so we move all digits of the accumuldtothe
right one place dropping the rightmost digitve get 212.
Shifting 1 place to the right is analogous to gettihe

Page | 26

quotient of the division of the accumulator’s caritby 10.

Let’s try another example, 420. The accumulatoiraga
contains 2121 initially. The amount of shift to tleé is 2

so we move all digits of the accumulator’s conterthe

left two places and add a zero to the right forgyéace we
shift [1 we get 2100. The first 2 digits are truncated beeé
the accumulator is only four positions in lengtBhifting 1
place to the left is like multiplying the accumulgs
content by 10.

ouT Outputs the content of the specified memdogh For
example, 501 means output the content of memoigkblo
01.

STO Stores the content of the accumulator irsgeeified
memory block. For example, 601 means store thecobiof
the accumulator into memory block 01.

SUB Subtracts the content of the specified merbtogk from
the content of the accumulator. For example, 70anse
subtract the content of memory block 01 from theteot of
the accumulator.

JMP Jumps to the specified memory block uncomtily. For
example, 825 means set the program counter tod?t®, g
memory block 25, and execute the command storéd in

HRS Halts or ends the program. We always use 900.

Rules & Assumptions:

You may always assume that memory block 00 conthimsalue 1 at the start of the
program. It remains 1 unless you specifically ovéenit.

You cannot output directly from the accumulatoru¥uoust store the accumulator
content first to a memory block and then outpuirfitthe memory block.

It is a good rule of thumb to always use op codéhén you want to add the first number
in your program to the accumulator. That way yosuee that you are not computing
based on a previous value stored in the accumulator

You may start your program in any empty memory blpau want. You may also use
any empty memory block to store data.

Page | 27

WEEK FIVE

| Learning Outcome for this week:

4+ Write a program with no input but output
+ Symbol table and Local labels

TEACHER'S ACTIVITIES
* Explain step by step the following program to stoid
Explain the meaning and uses of local labels

Note: There will be further practice of this program in a lab class

Sample Program

Write a program that has no input and outputs a@imaous string of numbers, starting with 1,
and counting by one. In other words, your outpuiusthbe 123456

Solution

Step 1: 1 00We clear the accumulator resetting it to zero dweth toad the content of memory
block 00 into the accumulator. The accumulator wowtains 001.

Program Counter 25 Accumulator 1
Memory Block Block Content Memory Block Block Content
00 1 30 827
01 31

02 32

...... 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Output Stream:

Page | 28

Step 2: 5 00We output the contents of memory block 00. We dellecause we need a 1 as the
first number in our output stream. Memory blockad@ady contains a 1 so we can output
directly from it.

Program Counter 26 Accumulator 1
Memory Block Block Content Memory Block Block Content
00 1 30 827
01 31

02 32

...... 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Output Stream: 1

Step 3: 2 00To construct the rest of the output stream we ne@tcrement each output value
by 1 to create the next value in the stream. Sivedave 1 in the accumulator we need to add
another 1 to it to get the next output value, 8Qin this instruction we add the content of
memory block 00, a 1, to the contents of the acdatouwithout resetting it first. The
accumulator content is now 2.

Program Counter 27 Accumulator 2
Memory Block Block Content Memory Block Block Content
00 1 30 827
01 31

02 32

...... 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Step 4: 6 02Ve want to output the next number of the outpwastr, 2, which is now in the
accumulator. Remember that we cannot output dyéaiim the accumulator so we first need to
store its content to a memory block. In this insti@n, we select memory block 02 for this
purpose. You could have chosen any empty blocknd@omemory block 02 contains a 2.

Page | 29

Program Counter 28 Accumulator 2

Memory Block Block Content Memory Block Block Content
00 1 30 827

01 31

02 2 32

...... 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Step 5: 5 02We can now output the next number of the outpessirfrom memory block 02.

Program Counter 29 Accumulator 2
Memory Block Block Content Memory Block Block Content
00 1 30 827
01 31

02 2 32

...... 33

25 100 34

26 500 35

27 200 36

28 602 37

29 502 38

Output Stream: 1 2

Step 6: 8 27Since we need to increments again by 1 to getélkeoutput value we can just
repeat the increment (block 27)-store (block 28pati(block 29) sequence of instructions
infinitely to construct the rest of the output stme The first instruction in this sequence,
increment by 1, resides in memory block 27. Theeefthat's the location to which we need to
jump to repeat the sequence.

Page | 30

Program Counter 30 Accumulator 2

Memory Block Block Content ~ Memory Block Block Content
00 1 o 82z
01 | 31 |

02 2 32 |

. | 33 |

25 1100 34 |

26 1500 '35 |

27 1200 36 |

28 1602 37 |

29 502 38 |

Follow the changes in the next few steps of thgrm. Note the pattern that develops. | have
only shown the increment and store steps (lumpdane figure) to emphasize how the
contents of the accumulator and memory block O2gédor every execution of the increment-
store-output sequence.

Steps 7 & 8

Program Counter 27 Accumulator 3

Memory Block Block Content ~ Memory Block Block Content
00 1 30 827

01 | 31 |
s 32

e, | 33
25 1100 34

27 R0 36
8. k237

29 1502 38

|
|
|
26 1500 '35 |
|
|
|

Output Stream (after step 9):1 2 3

...... Steps 11 & 12

Page | 31

Program Counter 27 Accumulator 4

Memory Block Block Content ~ Memory Block Block Content
00 |1 130 827

01 31 |
__|32

|
. | 33 |
25 1100 34 |
26 1500 '35 |
27 0 36 |
28 k2 37 |
29 502 38 |

Output Stream (after step 13):12 3 4

...... Steps 15 & 16

Program Counter 27 Accumulator 5
Memory Block Block Content ~ Memory Block Block Content
00 1 130 827
ot | B |
02 B 32 |
. | 33 |

25 1100 34 |

26 1500 '35 |
2z 0 36 |
8 k02 37 |

29 502 38 |

Output Stream (after step 17):12345
The sequence keeps repeating infinitely.
LOCAL LABELS

In principle, a label may have any name that oltlegsimple syntax rules of the assembler. In
practice, though, label names should be descripiaenes such as DATE,MORE,LOSS,RED
are preferable to AO01,A002,...

There are exceptions, however. The use of the esorgbtive label Al in the following
example:

Page | 32

JMP Al
DDCT DS 12 reserve 12 locations for array DDCT
Al.

is justified since it is only used to jump over treay DDCT .(Note that the array ’s

name is descriptive, possibly meaning deductiorgoable-dictionary) We say that Al is used
only locally, to serve a limited purpose.

As a result, many assemblers support a featukeddalcal labels. .The main idea is that if a
label is used locally and does not require a detee name, why not give it a name that will
signify this fact. Names such as 1H ,2H for thealdabels were used. The name of a local label
in our examples is a single decimal digit. Wherhsai¢abel is referred to (in the operand field),
the digit is followed by either B or F (for Backvdaor Forward).

LC

13 1:..

i? JMP 1F jump to 24

24 1:LOD R2,1B 1B here means address 13
él 1:ADD R1,2F 2F is address 102

102 2:DC 1206,-17

115 SUB R3,2B-1 102-1=101

EXAMPLE.LOCAL LABELS.

The example shows that local labels is a simplefulisconcept that is easy to implement. In a
two-pass assembler, each local label is enteredhetsymbol table as any other symbol, in pass
1.Thus the symbol table in our example contains:

Symbol Table

nv

113

124

131

2102

The order of the labels in the symbol table is ingat. If the symbol table is sorted between the
two passes, all occurrences of each octal labelldlremain sorted by value. In pass 2,when an

Page | 33

instruction uses a octal label such as 1F , thenalsker identifies the specific occurrence of label
1 by comparing all local labels 1 to the currertieaof the LC. The first such instruction in our
example is the ‘JMP 1F 'at LC=17.Clearly,the asslem&hould look for a octal label with the
name ‘1 'and a value .17.The smallest such labeMalue 24.In the second case, LC=24 and the
assembler is looking for a 1B .It needs the lakb#i wame ‘1’ and a value which is the largest
among all values <24.It therefore identifies theeleas the ‘1 'at 13.

EXERCISE

If we modify the instruction at 24 above to readQDb R2,1F would the 1F refer to address 31
or 247

In a one-pass assembler, again the labels aremeeaigand put into the symbol table in the
single pass. An instruction using a octal labeisiBo problem, since is needs the most recent
occurrence of the local label ‘1 ’in the table. lstruction using an iF is handled like any other
future symbol case. An entry is opened in the syrtdiile with the name iF ,a type of U ,and a
value which is a pointer to the instruction.

In the example above, a snapshot of the symbat @thlC=32 is:

SYMBOL TABLE

nvt

113D

124D

1 31 D 31 is the value of the third 1

2 31 U 31 is a pointer to the ADD instruction

An advantage of this feature is that the local lmbee easy to identify as such,

since their names start with a digit. Most assershbiequire regular label names

to start with a letter. In modern assemblers, Itata¢ls sometimes use a syntax different from
the one shown here.

The LC as a local symbol

Virtually all assemblers allow a notation suchBBL *+6 'where *'stands

for the current value of the LC. The operand is tase is located at a point 6

locations following the BPL instruction.

The LC symbol can be part of any address expressidns, of course, re-locatable. Thus *+A is
valid if A is absolute, while *-A is always okayr(d is absolute if A is relative, relative if A is
absolute).This feature is easy to implement. Tiiress expression involving the *'is
calculated, using the current value of the LC, #edvalue is used to assemble the instruction, or
execute the directive, on the current source lNething is stored in the symbol table.

Some assemblers use the asterisk for multiplicatiod may designate the

period ‘.’or the ‘$’for the LC symbol. On the PDR-1he notation ‘X:.=.+8 'is used to increment
the LC by 8,and thus to reserve eight ocations famthis to the DS directive).

EXERCISE

What is the meaning of IMP * JMP *-*?

Page | 34

WEEK SIX

Learning Outcome for this week:

% The Assembler Functions
4+ Assembler modules

ASSEMBLER FUNCTIONS

Two important steps are involved in designing safev dividing the software into smaller, more
manageable components or modules, and determiowghe modules will communicate. For
both of these steps, the designer needs to keepdjwe kinds of software functionality in mind.
The following are the primary functions of an asb&ars.

Generate machine code output

This is the primary purpose of an assembler. Teerabler usually generates a file copy
of data and machine instructions that will lateddmeded into a computer in preparation
for execution. The file copy must also containatstg address - the address of the first
instruction to be executed.

Provide program error information for the programme

Assembly language programming is difficult. Asseyriahguage programmers make
mistakes. Some of these mistakes can be caughtessembler. The ease of assembly
language programming is dependent to a large eatetiie quality of assembler error
messages.

Provide machine code information for the programmer

The assembler cannot catch all programmer errorseXan only be detected by
executing the assembled program. Then assemblehoaever, provide information
about the machine code that aids the programmagbagging runtime errors. For
difficult debugging problems, the programmer magd know what code was
generated and where data and instructions areslaatmemory.

Assign memory for data and instructions

Early assemblers force programmers to assign meatuesses for all data and keep
track of addresses assigned for instructions. Modssembler allow programmers to use
symbols (usually statement labels) to representesdds for data or branch or jump
targets. This makes the programmer's life much lemplowever, addresses are required
for machine code generation. Thus the assemblerr pizksup the responsibity of
assigning addresses to program symbols. Thesenassimgs must be remembered for use
when the symbols appear in instruction operands.

Page | 35

DEALING WITH CHARACTERS

The input to an assembler consists of a strearharfcters which represent assembly
information in several different ways: integersalreumbers, labels, quoted characters and
strings, register names, and various kinds of puaiin. If character processing is mixed in with
algorithms for building symbol tables or algorithfos code generation, the result is a complex
mess that would challenge even the best programifieesproblem is that this organization (or
disorganization) forces programmers to deal with tistinct kinds of abstraction

simultaneously. The result is difficult algorithrevatlopment, a large number of errors, and
difficulty in debugging. These problems are maguifif the assembler requires maintenance at a
later time.

A good general design principle is to assign resfmlity for different kinds of abstractions to
different program modules. This principle is crlidéta large designs, but is a good practice for
smaller designs as well. Dividing responsibiliies different kinds of abstractions into different
modules allows programmers to focus their attentiormne aspect of the problem at a time.

For an assembler, the implication is that theraighbe a module dedicated to handling text at
the level of characters. This module is calledxéckd analyser or scanner.

ASSEMBLER MODULES
Thus an assembler has four main modules,

e A scanner,

* A pass 1 module,

* A pass 2 module, and

* A main program module.

The responsibilities of these modules are desciiibetbre detail in the following
sections.

LEXICAL ANALYSIS: THE SCANNER

The primary purpose of the scanner module is psdgsharacters into higher level units that
are more meaningful for the pass 1 and pass 2 reediihese units are calleskens. The

process of forming these groups is caliedcal analysis. The need for a scanner arises in most
programs that deal with complex input.

Part of the design of a scanner involves decidnegipely what a token is; that is, deciding the
level of the units that the scanner delivers topags modules. Some possibilities are discussed
in Options for Scanner Interfaces

Page | 36

BUILDING THE SYMBOL TABLE: PASS 1

During pass 1, the input is read and memory addses® assigned to program labels. Memory
is allocated sequentially so that the pass 1 mochrleuse a location counter. For each input
statement, this counter is incremented by theaizeemory allocated. Whenever a label is
encountered, it is recorded in the symbol table dtidress assigned is the value of the location
counter at the beginning of the statement.

Most assemblers need to do some processing of bkseirectives to determine the size of the
data involved. Modern RISC processors have fixsttuction lengths, so machine instructions
require very little processing during pass 1.

Some assemblers keep data and instructions inaepagions of memory. If this is done then
two separate location counters are used, one farata one for instructions.

The symbol table could be treated as a sub-modutegass 1 module. This choice has little if
any effect on the complexity of coding, but a sapely compiled sub-module does facilitate
separate testing.

GENERATING OUTPUT: PASS 2

The primary effort in pass 2 is translating instimes into machine code. If the assembler is
mixing data and instructions in the same area gharg then translation of data must be done in
pass 2. For assemblers that use separate areasmarynfor data and instructions, translation of
data could be moved into pass 1. This is somewhatrdageous in that it results in a better
balance of the complexities of the two pass modules

Most of the error reports generated by an assemabdegenerated during pass 2. These reports
can be interleaved with assembler listing outpuhst the assembly language programmer can
readily associate an error report with the codechased it.

While pass 2 is running, machine code is savedayt@ array (two arrays if data and

instructions are kept separate). If there are mrgthen at the end of pass 2 the array(s) is
written to a file in binary form and it can also displayed as a hexadecimal dump for the
assembly language programmer. The Assembler Outplifpage describes C programming
techniques for saving binary data in an array anting the array to a file. There is enough
complexity involved in handling the binary datass that a separate sub-module could be used.

For large instruction sets, a Table-Driven Desgyuaseful. In this approach, instructions are
classified according to their operand types. Thassification information, along with other
coding information, is stored in a table. In a laage like C that allows initialization of arrays,
the table does not require any runtime code fazatsstruction. It is just an initialized array. The
pass 2 module uses the information in the tabtketermine the kind of information it seeks
from the scanner, and the order of that information

Page | 37

A table driven design could also be used for hawgddiirectives. This could be used in pass 1 as
well as pass 2. However, if the number of assentdectives is small then it is not as important
as for the handling of machine instructions.

THE MAIN PROGRAM

The main program in an assembler is not compleg.grimary work is providing file
parameters for function calls to the other modales passing an error boolean from pass 1 to
pass 2 so that an executable output is not gewendten there is an error in the assembly
language source.

COMMUNICATION BETWEEN MODULES

The diagram below indicates the communication patfsibetween the modules of an
assembler. For each arrow in the diagram, the neaaluthe tail of the arrow plays the role of a
client and the module at the head of the arrowsthg role of a server. This means that the
client calls functions provided by the server.

Figure 6.1 Module Communication

The communication between the main program antitbgass modules is quite simple - the
main program just calls pass 1 or 2 functions diimgahem to do their work in the proper order.
The functions do not return any data except fosjdg an error indication.

The communication between the main program anddhener is also simple. The name of the
file to be assembled is known directly in the maiagram. The main program either passes the
name to the scanner or opens the file and paskethié scanner. This could be done indirectly
through the pass 1 and pass 2 modules.

The communication between pass 1 and pass 2 irsselirabol table information. Pass 2 needs

to get addresses for labels and values of definadtants from the symbol table. Although there
is a fair amount of communication, the interfaceimple. It can be a standard table interface.

Page | 38

The scanner is the communication focal point oassembler. All of the other modules
communicate with the scanner. The communicatiowden the pass modules and the scanner is
more complex than the communication along othdmays. For this reason, the best place to
start working on assembler communication is th@seaclient interface. This is an important
aspect of assembler design. It cannot be taketiyligh

Page | 39

WEEK SEVEN

| Learning Outcome for this week

+ The meaning of translation and compilation
+ The types of compiler
+ The stages compilation

TEACHER'’S ACTIVITIES
* Define interpretation, translation and compilation

» Differentiate between interpretation translation aompilation
» Describe various types of compilers

» Describe types of tables generated in the prodessnapilation
* Explain code generation and optimization

» Describe error handling

THE INTERPRETER

In computer scienganinterpreter normally means a computer progrémat executes.e.
performs, instructions written in a programming languag#hile interpretation and compilation
are the two principal means by which programmimgleages are implemented, these are not
fully distinct categories, one of the reasons beiva most interpreting systems also perform
some translation work, just like compilers.

An interpreter may be a program that either

1. Executes the source codeectly

2. Translates source code into some efficient interatedepresentation (code) and
immediately executes this

3. Explicitly executes stored precompiled code mada bgmpiler which is part of the
interpreter system

Perl Python MATLAB, and_Rubyare examples of type 2, while UCSD, Pascal Javare

type 3: Source programs are compiled ahead ofdimdestored as machine independent code,
which is then linkedt run-time and executed by an interpreter arctorpiler (for JIT
systems). Some systems, such as Smalkalé others, may also combine 2 and 3.

The termgnterpreted language or compiled language merely mean that the canonical
implementation of that language is an interpretea compiler; a high level language is basically
an abstraction which is (ideally) independent atipalar implementations.

Page | 40

EFFICIENCY, ADVANTAGES AND DISADVANTAGES

The main disadvantage of interpreters is that wehprogram is interpreted, it typically runs
slower than if it had been compiled. The differemcepeeds could be tiny or great; often an
order of magnitude and sometimes more. It genetallgs longer to run a program under an
interpreter than to run the compiled code butiit tzke less time to interpret it than the totalktim
required to compile and run it. This is especiatiportant when prototyping and testing code
when an edit-interpret-debug cycle can often bemslorter than an edit-compile-run-debug
cycle.

Interpreting code is slower than running the coetpitode because the interpreter must analyze
each statement in the program each time it is égdcand then perform the desired action,
whereas the compiled code just performs the aetitnn a fixed context determined by the
compilation. This run-time analysis is known agémpretive overhead". Access to variables is
also slower in an interpreter because the mapdirggatifiers to storage locations must be done
repeatedly at run-time rather than at compile time.

There are various compromises between the develapspeed when using an interpreter and
the execution speed when using a compiler. Sonteragge.g., some LISPallow interpreted
and compiled code to call each other and to shamahles. This means that once a routine has
been tested and debugged under the interpreten ibe compiled and thus benefit from faster
execution while other routines are being develophy interpreters do not execute the source
code as it stands but convert it into some morepamtninternal form. For example, some
BASIC interpreters replace keywordsth single byte tokens which can be used to firel
instruction in a jump tabléAn interpreter might well use the same lexicallgperand_parseas
the compiler and then interpret the resulting aostsyntax tree

BYTECODE INTERPRETERS

There is a spectrum of possibilities between intgtippg and compiling, depending on the
amount of analysis performed before the prograexecuted. For example, Emacs Lisp
compiled to_byte codevhich is a highly compressed and optimized regtdion of the Lisp
source, but is not machine code (and thereforéieato any particular hardware). This
"compiled” code is then interpreted by a byte cadkerpreter(itself written in_g. The compiled
code in this case is machine code for a virtuallmmes which is implemented not in hardware,
but in the byte code interpreter. The same appr@aobed with the Fortbode used in Open
Firmwaresystems: the source language is compiled intadet(a byte code), which is then
interpreted by a virtual machine.

Page | 41

THE COMPILER

Language 1 source code

Sl frens-ard for nguage 1
e Zal AralyZor | Scar nor

Language 2 source Sodo

Compilar ‘rori-pnn {or languace 2

Lexical snalyTer [=oaaren

Syntas SeEmAntic
Aalyzee (Farsor)

SymanSemanic
Mnalyzen (Marser)

Iate e ate-code
SFereratcr
Mar-opti-nized ivtemedinte coce

= ler ediale cade
Ghenar=tar

Mon-aptimized mignmediale code

[1mrermediate cona cotirize- |

Oplimmeced bz med e o

Targetl 1 Targel 2
Codr Gensralor Tnde Gensrarnes

lTa'get-l MAchi I Cacs l'l'arget-? machir e cods

L] Ln]

Figure: 7.1 A diagram of the operation of ypical multi-language, multiarget compile

A compiler is acomputer progra (or set of programs) that translates text writteacomputer
languaggthe source language) into another computer language (target language). The
original sequence is usually called source code and the output callegbject code. Commonly
the output has a form suitable for processing bgoprograms (e.g.,linker), but it may be
human-readable text file

The most common reason for wanting to translatecgotode is to create executabl
program. The name "compiler" is primarily used foograms that translate source code frc
highdevel programming langua to a lower level language (e.gssembly langua or machine
language A program that translates from a low level laage to a higher level one is
decompiler. A program that translates between -level languges is usually calledlanguage
translator, source to source translator, orlanguage converter. A language rewriter is usually a
program that translates the form of expressionsawmit achange of language.

A compiler is likely to perform many or all of thellowing operationslexical analysi,
preprocessingparsing semantic analysicode generatigrandcode optimizatio.

Page | 42

COMPILER OUTPUT

One classification of compilers is by the platfoomwhich their generated code executes. This is
known as thearget platform.

A native or hosted compiler is one whose output is intended to diyetin on the same type of
computer and operating system as the compilef rise$ on. The output of a cross compiker
designed to run on a different platform. Cross cibenpare often used when developing
software for embedded systethat are not intended to support a software devedént
environment.

The output of a compiler that produces code foirtaal machingVM) may or may not be
executed on the same platform as the compilemttzatuced it. For this reason such compilers
are not usually classified as native or cross ctergpi

COMPILED VERSUS INTERPRETED LANGUAGES

Higher-level programming languages are generalhddd for convenience into compiled
languagesnd_interpreted languagdsowever, there is rarely anything about a languhagt
requires it to be exclusively compiled, or exclusively irgested. The categorization usually
reflects the most popular or widespread implemantatof a language — for instance, BASIC is
sometimes called an interpreted language, anddnpited one, despite the existence of BASIC
compilers and C interpreters.

In a senseall languages are interpreted, with "execution" benggely a special case of
interpretation performed by transist@witching on a CPIUModern trends toward just-in-time
compilationand_byte code interpretati@hso blur the traditional categorizations.

There are exceptions. Some language specificasipels out that implementatiomaust include

a compilation facility; for example, Common Ligpther languages have features that are very
easy to implement in an interpreter, but make mgita compiler much harder; for example,

APL, SNOBOL4 and many scripting languages allow programs testract arbitrary source
code at runtime with regular string operations, #eh execute that code by passing it to a
special evaluation function. To implement theséuess in a compiled language, programs must
usually be shipped with a runtime librahat includes a version of the compiler itself.

ONE-PASS VERSUS MULTI-PASS COMPILERS

Classifying compilers by number of passes hasatkground in the hardware resource
limitations of computers. Compiling involves perfang lots of work and early computers did

not have enough memory to contain one programdiladll of this work. So compilers were

split up into smaller programs which each madess paer the source (or some representation of
it) performing some of the required analysis amadgtations.

Page | 43

The ability to compile in a single passoften seen as a benefit because it simplifiegdb of
writing a compiler and one pass compilers are galydiaster than multi-pass compileMany
languages were designed so that they could be ¢edripia single pass (e.qg., Pajcal

In some cases the design of a language featuregegaye a compiler to perform more than one
pass over the source. For instance, consider ardéion appearing on line 20 of the source
which affects the translation of a statement appgam line 10. In this case, the first pass needs
to gather information about declarations appeaaitgy statements that they affect, with the
actual translation happening during a subsequest pa

The disadvantage of compiling in a single paskasit is not possible to perform many of the
sophisticated optimizationseeded to generate high quality code. It can thewlt to count
exactly how many passes an optimizing compiler rmaker instance, different phases of
optimization may analyse one expression many tinse®nly analyse another expression once.

Splitting a compiler up into small programs is ehteique used by researchers interested in
producing provably correct compilers. Proving tbherectness of a set of small programs often
requires less effort than proving the correctnésslarger, single, equivalent program.

While the typical multi-pass compiler outputs maehcode from its final pass, there are several
other types:

« A "source-to-source compileis a type of compiler that takes a high levellaage as its
input and outputs a high level language. For exapgi automatic parallelizing compiler
will frequently take in a high level language praxgras an input and then transform the
code and annotate it with parallel code annotat{ergs_OpenMPor language constructs
(e.g. Fortran'e®0ALL statements).

- Stage compilethat compiles to assembly language of a theotetieghine, like some
Prologimplementations

o This Prolog machine is also known as the WarrertrabsMachinglor WAM).
Byte code compilers for Java, Pyth@md many more are also a subtype of this.

« Just-in-time compilerused by Smalltalk and Java systems, and alsoibosbft .Net's

Common Intermediate Languaf@elL)

JUST-IN-TIME COMPILATION

Further blurring the distinction between interprsjdyte-code interpreters and compilation is
just-in-time compilatior(or JIT), a technique in which the intermediagresentation is
compiled to native machine coderuntime. This confers the efficiency of runnimative code,
at the cost of startup time and increased memayinen the byte code or AST is first
compiled._ Adaptive optimizatiors a complementary technique in which the integgrprofiles
the running program and compiles its most freqyestecuted parts into native code. Both
techniques are a few decades old, appearing inéaes such as Smalltatkthe 1980s.

Just-in-time compilation has gained mainstreanmtitie amongst language implementors in
recent years, with JayRythonand the .NET Framewoil now including JITSs.

Page | 44

WEEK EIGHT

| Learning Outcome for this week:

+ Front end compilation and its stages
+ Back end compilation and its stages

FRONT END

The front end analyzes the source code to builidtannal representation of the program, called
the_ intermediate representationiR. It also manages the symbol tgldedata structure mapping

each symbol in the source code to associated irfitomsuch as location, type and scope. This
is done over several phases, which includes sortteedbllowing:

1.

Line reconstruction. Languages which strdpeir keywords or allow arbitrary spaces
within identifiers require a phase before parsimlgich converts the input character
sequence to a canonical form ready for the paf$ertop-downrecursive-descent
table-driven parsers used in the 1960s typicabyl e source one character at a time
and did not require a separate tokenizing phadas Autocodeand_Imp(and some
implementations of Algoand_Coral6pare examples of stropped languages whose
compilers would have kine Reconstruction phase.

. Lexical analysisbreaks the source code text into small piecesdtakens. Each token

is a single atomic unit of the language, for instaa_keywordidentifieror symbol nhame
The token syntax is typically a regular languagrea finite state automateonstructed
from a_regular expressiaran be used to recognize it. This phase is aléeddaxing or
scanning, and the software doing lexical analysisalled a lexical analyzer scanner.
Preprocessing Some languages, e.g., @quire a preprocessing phase which supports
macrosubstitution and conditional compilation. Typigaihe preprocessing phase occurs
before syntactic or semantic analysis; e.g. incee of C, the preprocessor manipulates
lexical tokens rather than syntactic forms. Howggeme languages such_as Scheme
support macro substitutions based on syntacticgorm

Syntax analysisinvolves_parsinghe token sequence to identify the syntactic stinecof
the program. This phase typically builds a parse twhich replaces the linear sequence
of tokens with a tree structure built accordinghe rules of a formal grammaihich
define the language's syntax. The parse treeas aftalyzed, augmented, and
transformed by later phases in the compiler.

Semantic analysiss the phase in which the compiler adds semanfizmation to the
parse treand builds the symbol table. This phase perfomnsastic checks such as type
checking(checking for type errors), or object bindi@ssociating variable and function
references with their definitions), definite assignment(requiring all local variables to
be initialized before use), rejecting incorrectgrams or issuing warnings. Semantic
analysis usually requires a complete parse treanmg that this phase logically follows
the parsingphase, and logically proceeds the code generphase, though it is often
possible to fold multiple phases into one pass tweicode in a compiler
implementation.

Page | 45

BACK END

The termback end is sometimes confused witlhde generator because of the overlapped
functionality of generating assembly code. Sonezdiiure usesiddle end to distinguish the
generic analysis and optimization phases in th& bad from the machine-dependent code
generators.

The main phases of the back end include the foligwi

1. Analysis: This is the gathering of program information frdme intermediate
representation derived from the input. Typical gea$ are data flow analysis build
use-define chainglependence analysalias analysigointer analysisescape analysis
etc. Accurate analysis is the basis for any compi¢imization. The call grapand
control flow graphare usually also built during the analysis phase.

2. Optimization: the intermediate language representation is tramsfo into functionally
equivalent but faster (or smaller) forms. Populatiraizations are inline expansipdead
code eliminationconstant propagatipfoop transformatiorregister allocatioor even
automatic parallelizatian

3. Code generatiarthe transformed intermediate language is tragdlatto the output
language, usually the native machine languzgbe system. This involves resource and
storage decisions, such as deciding which variablésinto registers and memory and
the selection and scheduling of appropriate madnisteuctions along with their
associated addressing modes

Compiler analysis is the prerequisite for any cdarmptimization, and they tightly work
together. For example, dependence analgsisucial for_loop transformation

In addition, the scope of compiler analysis andmiziations vary greatly, from as small as a
basic blocko the procedure/function level, or even oventiwle program_(interprocedural

optimizatior). Obviously, a compiler can potentially do a biefpd using a broader view. But
that broad view is not free: large scope analysts@timizations are very costly in terms of
compilation time and memory space; this is esplgdiale for interprocedural analysis and
optimizations.

Due to the extra time and space needed for comguil@lysis and optimizations, some compilers
skip them by default. Users have to use compiladiations to explicitly tell the compiler which
optimizations should be enabled.

Lexical analysis

In computer sciengéexical analysisis the process of converting a sequence of charsatto a
sequence of tokens. Programs performing lexicdlyaisaare calledexical analyzersor lexers
A lexer is often organized as separstannerandtokenizer functions, though the boundaries
may not be clearly defined.

Page | 46

Lexical grammar

The specification of a programming languag# include a set of rules, often expressed
syntactically, specifying the set of possible chtasequences that can form a toketexeme
The whitespaceharacters are often ignored during lexical analys

Tokens

A token is a categorized block of text. The blotkext corresponding to the token is known as a
lexeme A lexical analyzer processksemes to categorize them according to function, giving
them meaning. This assignment of meaning is knawolkenization. A token can look like
anything; it just needs to be a useful part ofgfnactured text.

Consider this expression in the C programming laggu

SUNE3+2;

Tokenized in the following table:

lexeme token type

sum IDENT

= ASSIGN_OP
3 NUMBER

+ ADD_OP

2 NUMBER

; SEMICOLON

Tokens are frequently defined by reqular expressiwhich are understood by a lexical analyzer
generator such as leXhe lexical analyzer (either generated automiéyity a tool like lex, or
hand-crafted) reads in a stream of characterstifeenthe lexemes in the stream, and
categorizes them into tokens. This is called "takieg." If the lexer finds an invalid token, it

will report an error.

Page | 47

Following tokenizing is parsindg-rom there, the interpreted data may be loadeddata
structures, for general use, interpretation, ormiting.

Consider a text describing a calculation:

46 - nunber of (cows);

The lexemes here might b&s™, "- ", "number _of "," (", "cows", ") " and" ". The lexical

analyzer will denote lexemesgeé™ as 'number’,-™ as 'character' anchlimber _of " as a separate
token. Even the lexeme™in some languages (such as C) has some specaainge

The Scanner

The first stage, thecanner, is usually based on_a finite state machlbbas encoded within it
information on the possible sequences of charatitatan be contained within any of the
tokens it handles (individual instances of thessratier sequences are known as lexgnies
instance, amteger token may contain any sequence of numerical digaracters. In many
cases, the first non-whitespace character candsttosdeduce the kind of token that follows and
subsequent input characters are then processeat arteme until reaching a character that is not
in the set of characters acceptable for that t¢gites is known as the maximal munalkie). In

some languages the lexeme creation rules are marplicated and may involve backtracking
over previously read characters.

The Tokenizer
Tokenization is the process of demarcating and possibly ciasgifsections of a string of input

characters. The resulting tokens are then passémlsome other form of processing. The
process can be considered a sub-task of pairgnug.

Page | 48

WEEK NINE

| Learning Outcome for this week
+ Describe error checking and handling
+ Explain utilities and give some examples
+ Discuss the types of libraries

ERROR CHECKING

One of the major differences between systems pnogiag and application programming is that
error checking is not something nice to have bgssential that one cannot live without. Very
commonly, you can see people do "printf" to ouguor messages to the console. Although
better than not having any error checking, howetvés,is not enough even when not doing
systems programming.

NOTE:

WE SHALL BASED OUR EXAMPLES HERE ONC PROGRAMMING LANGUAGE

When each program runs and becomes a processatiedieee files opened for it by default,
stdin, stdout andstderr. The first two obviously are the input and outpansoles and the third,
stderr, is where the error messages are supposed to giditbandstdout may be redirected,
while stderr cannot. Therefore the error messages are besttagmg:

fprintf(stderr,"your error message");
It should also be known to you thaintf andfprintf(stdout,”...") do the same task.

Besides usingprintf, there are two other important tools for use norecheckingperror and
assert both are ANSI C standard and available on alratoeg systems that claim to support
ANSI C'1987.

PERROR

When a computer is turned on, the program thateyetsuted first is called theoperating

system.” It controls pretty much all activity in the cpuoter. This includes who logs in, how disks
are used, how memory is used, how the CPU is asethow you talk with other computers. In
the following discussions, our study Operating 8ysexample will be "Unix".

The way that programs talk to the operating systewia ~systemcalls.” A system call looks

like a procedure call (see below), but it's diffdre it is a request to the operating system to
perform some activity.

Page | 49

System calls are expensive. While a procedurecaallusually be performed in a few machine
instructions, a system call requires the computeiat/e its state, let the operating system take
control of the CPU, have the operating system perfgome function, have the operating system
save its state, and then have the operating sygitentontrol of the CPU back to you.

Usually when an error occurs in a system or libialy, a special return value comes back, and a
global variable &rrno" is set to say what the error is. For examplepssp you try to open a file
that does not exist:

#include < stdio.h >
#include < errno.h >

main()

{
inti;
FILE *f;

f = fopen("~huangj/nonexist”, "r");
if (f == NULL) {
printf("f = null. errno = %d\n", errno);
perror("f1");
}
}

chla.ctries to open the filehuangj/nonexistfor reading. That file doesn't exist. Thigpen
returnsNULL (read the man page ftopen), and seterrno to flag the error. When you run the
program, you'll see tharrno was set to 2. To see what that means, you came@fatwo

things:

« 1. Look up theerrno value infusr/include/errno.h (You will have to eventually look at
/usr/include/sys/errono.h on UNIX flavor machine®s on that type of system, the C
standard errno.h does hdwénclude < syslerrno.h >" in it.). You'll see the line:

. #define ENOENT 2 /* Nach file or directory */

« 2. Use the procedurg@érror() " -- again, read the man page. It prints out whaterrno

means. Thus, the output of f1 is

f=null. errno=2
. f1: No such file or directory
This is the standard interface for errors.

ASSERT

Most of the time, there is a need to make assumgtidhen you write code. Everybody does it.
But what if the assumption is wrong? Is there adgway to check it? The answer is to use
assert.

The most typical use of tlessert (very likely implemented as a macro on most ojegat
systems you can find) is to identify program ermusing development. The argument given to

Page | 50

assert should be chosen so that it holds true only ifghegram is operating as intended. The
macro evaluates thassert argument and, if the argument expression is f@lsealerts the user
and halts program execution. No action is takéhafargument is true (nonzero).

When an assertion fails, an output message witfotleving text is generated:

assertion failed in filemame in line num
wherename is the name of the source file amam is the line number of the assertion that failed.

The liberal use of assertions throughout your @y can catch errors during development. A
good rule of thumb is that you should write assedifor any assumptions you make. For
example, if you assume that an argument is not NUllsk an assertion statement to check for
that condition.

void checkerror_strcpy(char * src, char *dst)
{
assert(src!=dst);
assert(src!'=NULL);
assert(dst'=NULL);
}
Here we check that some assumptions we madsrfqny are true. After we are sure there are no
errors in the software, we can easily disablesdkdaion checks addiri¢gtddefine NDEBUG"
before wheré#include < assert.h >" appears in the source code.

LIBRARY IN COMPUTING
>

In computer sciencealibrary is a collection of subroutines classesised to develop software
Libraries contain code and data that provide sesvto independent programs. This allows code
and data to be shared and changed in a mofadhion. Some executablase both standalone
programs and libraries, but most libraries areexaeicutables. Executables and libraries make
references known dsks to each other through the process knowhrdsng, which is typically
done by a linker

Most modern operating systerf@S) provide libraries that implement the majoofysystem
services. Such libraries have commodititieel services a modern application expects an OS to
provide. As such, most code used by modern apgitais provided in these libraries.

TYPES OF LIBRARIES
» STATIC LIBRARIES

Historically, libraries could only bsiatic. A static library, also known as anchive, consists of
a set of routinewvhich are copied into a target application bydbmpiler, linker, or binder,
producing object filegnd a stand-alone executable file. This procesbile stand-alone
executable file, are known as a static boildhe target application.

Page | 51

The linker resolves all of the unresolved addresgesfixed or relocatable addresses (from a
common base) by loading all code and libraries attmal runtime memory locations.

A linker may work on specific types of object files, andghequire specific (compatible) types
of libraries. The linking proces®solves references by searching the libraries in the ogdean.
Usually, it is not considered an error if a name lba found multiple times in a given set of
libraries.

» DYNAMIC LINKING

Dynamic linking means that the subroutines of ealip are loaded into an application program
at runtime rather than being linked in at compile tinaed remain as separate fitas disk Only
a minimum amount of work is done at compile timettogy linker it only records what library
routines the program needs and the index namesnobérs of the routines in the library. The
majority of the work of linking is done at the tirttee application is loaded (load tijnar during
execution (runtime). The necessary linking codéedan loaderis actually part of the
underlying_operating systerAt the appropriate time the loader finds thevatfd libraries on
disk and adds the relevant data from the librandbe processisiemory space.

Some operating systems can only link in a librarpad time, before the process starts
executing; others may be able to wait until after process has started to execute and link in the
library just when it is actually referenced (i@uring runtim@. The latter is often called "delay
loading” or "deferred loading". In either case,lsadibrary is called dynamically linked

library.

RELOCATION

One wrinkle that the loader must handle is thattteal location in memory of the library data
cannot be known until after the executable andylamically linked libraries have been loaded
into memory. This is because the memory locatiaesiwepend on which specific dynamic
libraries have been loaded. It is not possibleeoethd on the absolute location of the data in the
executable, nor even in the library, since cordlla¢tween different libraries would result: if two
of them specified the same or overlapping addreg#isesuld be impossible to use both in the
same program.

However, in practice, the shared libraries on nsgstems do not change often. Therefore, it is
possible to compute a likely load address for egbigred library on the system before it is
needed, and store that information in the librasies executables. If every shared library that is
loaded has undergone this process, then eachoadldt their predetermined addresses, which
speeds up the process of dynamic linking. Thisnoigaition is known as pre-binding Mac OS

X and pre-linkingin Linux. Disadvantages of this technique incltioke time required to pre-
compute these addresses every time the shareddibchange, the inability to use address space
layout randomizationand the requirement of sufficient virtual addrggace for use (a problem
that will be alleviated by the adoption of 64-arthitectures, at least for the time being).

Page | 52

» LOCATING LIBRARIES AT RUNTIME

Dynamic linkers/loaders vary widely in functiongliSome depend on explicit paths to the
libraries being stored in the executable. Any cleatiogthe library naming or layout of the file
system will cause these systems to fail. More comiym@nly the name of the library (and not
the path) is stored in the executable, with theatpeg system supplying a system to find the
library on-disk based on some algorithm.

One of the biggest disadvantages of dynamic linisrtgat the executables depend on the
separately stored libraries in order to functiooparly. If the library is deleted, moved, or

renamed, or if an incompatible version of the Dklcopied to a place that is earlier in the
search, the executable would fail to load. On WAmslthis is commonly known as DLL hell

Unix-like systems

Most Unix-like systems have a "search path" specifying file syst@ectoriesn which to look
for dynamic libraries. On some systems, the defaath is specified in a configuration filie
others, it is hard coded into the dynamic loadem& executable fileormats can specify
additional directories in which to search for libes for a particular program.

Microsoft Windows

Microsoft Windows will check the reqistitp determine the proper place to find_an ActiveX
DLL, but for other DLLs it will check the directompat the program was loaded from; the
current working directory; any directories set lajling the SetDIIDirectory() function;

AmigaOS

Under AmigaO3yeneric system libraries are stored in a direati@fyned by thé IBS: path
assignment and application-specific libraries carstored in the same directory as the
application's executable. AmigaOS will search tHesations when an executable attempts to
launch a shared library. An application may alsogpdyian explicit path when attempting to
launch a library.

» SHARED LIBRARIES

In addition to being loaded statically or dynamigdibraries are also often classified according
to how they are shared among programs. Dynamiarlgs almost always offer some form of
sharing, allowing the same library to be used b¥tipla programs at the same time. Static
libraries, by definition, cannot be shared. Thetélinker" comes from the process of copying
procedures or subroutines which may come from teghible" libraries and adjusting or
"linking" the machine address to the final locai@f each module.

Theshared library term is slightly ambiguous, because it covergastl two different concepts.

First, it is the sharing of code located on diskubyelated programs. The second concept is the
sharing of code in memory, when programs exec@esdme physical page of RAM, mapped

Page | 53

into different address spaces. It would seem tieatdtter would be preferable, and indeed it has
a number of advantages. For instance on the Opes$téem, applications were often only a
few hundred kilobytes in size and loaded almogtimdy; thevast majority of their code was
located in libraries that had already been loadedther purposes by the operating system.
There is a cost, however; shared code must befgadlgi written to run in a multitasking
environment.

In most modern operating systershared libraries can be of the same format a4 égelar”
executables. This allows two main advantages; fireequires making only one loader for both
of them, rather than two (having the single loadaonsidered well worth its added
complexity). Secondly, it allows the executablesodb be used as DLLs, if they have a symbol
table.

The term DLL is mostly used on Windows and Of/@ducts. On Unix and Unix-likelatforms,
the termshared library or shared object is more commonly used; consequently, the most
common filename extensidar shared library files is .so, usually followbd another dot and a
version number. This is technically justified irewi of the different semantics.

» DYNAMIC LOADING

Dynamic loading is a subset of dynamic linking whardynamically linked library loads and
unloads at run-timen request. Such a request may be made implatittpmpile-timeor
explicitly at run-time Implicit requests are made at compile-time whéinker adds library
references that include file paths or simply filemres. Explicit requests are made when
applications make direct calls to an operatingesy& API at runtime.

Most operating systems that support dynamicallgddlibraries also support dynamically
loading such libraries via a run-tinieker API. For instance, Microsoft Windowsses the API
functionsLoadLibrary, LoadLibraryEx FreeLibraryandGetProcAddressvith Microsoft Dynamic Link
Libraries POSIXbased systems, including most UNIX and UNIX-likstems, uselopen
dicloseanddisym Some development systems automate this process.

» REMOTE LIBRARIES

Another solution to the library issue is to use ptetely separate executables (often in some
lightweight form) and call them using a remote gahare cal(RPC) over a network to another
computer. This approach maximizes operating syséeunse: the code needed to support the
library is the same code being used to provideiegipbn support and security for every other
program. Additionally, such systems do not reqtheslibrary to exist on the same machine, but
can forward the requests over the network.

The downside to such an approach is that evergrijzall requires a considerable amount of
overhead. RPC calls are much more expensive thiamgca shared library which has already
been loaded on the same machine..

Page | 54

» OBJECT LIBRARIES

Although dynamic linking was originally developedthe 1960s, it did not reach consumer
operating systems until the late 1980s; it was g@lyeavailable in some form in most operating
systems by the early 1990s. It was during this saened that object-oriented programming
(OOP) was becoming a significant part of the prograng landscape. OOP with runtime
binding requires additional information that tramfial libraries don't supply; in addition to the
names and entry points of the code located withiey also require a list of the objects on which
they depend. This is a side-effect of one of O@Rim advantages, inheritance, which means
that the complete definition of any method may b&ned in a number of places. This is more
than simply listing that one library requires tleesces of another; in a true OOP system, the
libraries themselves may not be known at compifetand vary from system to system.

It was not long before the majority of the minicamgr and mainframe vendors were working
on projects to combine the two, producing an O®Ritly format that could be used anywhere.
Such systems were known@gject libraries, or distributed objects if they supported remote
access (not all did). Microsoft's COM is an exangdlsuch a system for local use, DCOM a
modified version that support remote access.

Page | 55

WEEK TEN

| Learning Outcome for this week

+ The historical development of operating system.

+ The importance and uses of operating system

+ The system commands of MS-DOS, Unix, Windows ojregatystems.

OPERATING SYSTEMS

When a brand new computer comes off the factorgrably line, it can do nothing. The
hardware needs software to make it work.

\1; Appllcatlon

O perating System

I T P

Hardware
Keyboard

Frinter

Figurel0.1 : The Operating System in a Hierarchy

User Interface
{Graphical or text)

m e L

Operating System {(O5)

The Operating System Drivers
J L b 4L J L
Hardware

(with BIOS) Hardware

Figure 10.2 : System Software

An application software package does not commuaidaectly with the hardware. As shown in
the Figure above between the applications soft@adethe hardware is a software interface - an
operating system.

Page | 56

Definition: An operating system is a set of programs thatbetween applications software and
the computer hardware. Conceptually the operatystem software is an intermediary between
the hardware and the applications software. Incallgn the term system software is sometimes
used interchangeably with operating system, buesysoftware means all programs related to
coordinating computer operations. System softwaesdnclude the operating system, but it also
includes the BIOS software , drivers, and servicgrams, which we will discuss briefly in this
chapter (see Figure above).

> Note that we said that an operating system is afqgibbgrams. The most important
program in the operating system, the program tlaatages the operating system, is the
supervisor program, most of which remains in menamy is thus referred to as resident.
The supervisor controls the entire operating systathloads into memory other
operating system programs (called nonresident) fileak storage only as needed.

FUNCTIONS OF AN OPERATING SYSTEM
An operating system has three main functions:

» To manage the computer's resources, such as thralgaocessing unit, memory, disk
drives, and printers,

» To establish a user interface

» To execute and provide services for applicatioritsvsoe.

However, that much of the work of an operatingeysts hidden from the user; many necessary
tasks are performed behind the scenes. In partjchkafirst listed function, managing the
computer's resources, is taken care of withoutitfee being aware of the details. Furthermore,
all input and output operations, although invokgdb applications program, are actually
carried out by the operating system. Although maicthe operating system functions are hidden
from view, you will know when you are using an apalions software package, and this
requires that you invoke-call into action-the opi@gasystem. Thus you both establish a user
interface and execute software.

Operating systems for mainframe and other largepcens are even more complex because
they must keep track of several programs from séwesers all running in the same time frame.
Although some personal computer operating systemost(often found in business or learning
environments) can support multiple programs andsyuseost are concerned only with a single
user. We begin by focusing on the interaction betwe single user and a personal computer
operating system.

OPERATING SYSTEMS FOR PERSONAL COMPUTERS
If you peruse software sold at a retail store, wdugenerally find the software grouped
according to the computer, probably IBM (that BIMI compatible) or Macintosh, on which the

software can be used. But the distinction is attdeler than the differences among computers:
Applications software-word processing, spreadshegatses, whatever-are really distinguished

Page | 57

by the operating system on which the software can r

Generally, an application program can run on jugt operating system. Just as you cannot place
a Nissan engine in a Luxurious bus as we calMbu cannot take a version of WordPerfect
designed to run on an IBM machine and run it olpple Macintosh. The reason is that IBM
personal computers and others like them have taelpatible microprocessors and usually use
Microsoft's operating system, called MS-DOS (forcMsoft disk operating system) on older
computers, and Windows98 , Windows XP ... on moreeno computers. Computers that have
come out since the year 2000 often come with Wirglbii (Millennium Edition), or
Windows2000. Macintoshes use an entirely diffecgrdrating system, called the Macintosh
operating system, which is produced by Apple. Qiepercent of personal computers use a
versions of Windows as their operating systems.iMash comprises about 15 percent of the
market, with other operating systems such as Loamprising the rest.

Users do not set out to buy operating systems;way computers and the applications software
to make them useful. However, since the operatystesn determines what software is available
for a given computer, many users observe the higlmve of software available for MS-DOS
machines and make their computer purchases acgbyd®thers prefer the user-friendly style

of the Macintosh operating system and choose Marchét reason.

Although operating systems differ, many of theisibdunctions are similar. We will show some
of the basic functions of operating systems by exang MS-DOS.

MS-DOS

» Most users today have a computer with a hard diste dWhen the computer is turned
on, the operating system will be loaded from thel ltlive into the computer's memory,
thus making it available for use. The process afling the operating system into
memory is called bootstrapping, or booting theeystThe word booting is used
because, figuratively speaking, the operating sysiells itself up by its own bootstraps.
When the computer is switched on, a small progiarRQM-read-only memory)
automatically pulls up the basic components ofgperating system from the hard disk.
From now on, we will refer to MS-DOS by its commpunked abbreviated name, DOS,
pronounced to rhyme with boss.

» The net observable result of booting DOS is thatdmaracters C> (or possibly C:\>)
appear on the screen. The C refers to the disk;dine > is a prompt, a signal that the
system is prompting you to do something. At thisipgou must give some instruction to
the computer. Perhaps all you need to do is ketpioeetters to make the application
software take the lead. But it could be more coogpéid than that because C> is actually
a signal for direct communication between the aserthe operating system.

Page | 58

» Although the prompt is the only visible result @fdting the system, DOS also provides
the basic software that coordinates the computargware components and a set of
programs that lets you perform the many computstesy tasks you need to do. To
execute a given DOS program, a user must issuemenaod, a name that invokes a
specific DOS program. Whole books have been writsout DOS commands, but we
will consider just a few that people use for ordynactivities. Some typical tasks you can
do with DOS commands are:

o To prepare (format) new diskettes for use,
o list the files on a disk,

o copy files from one disk to another,

0 erase files from a disk.

» Microsoft Windows
Microsoft Windows started out as a shell. Windowssua colorful graphics interface
that, among other things, eases access to thetimgesgstem. The feature that makes
Windows so easy to use is a graphical user interf@tJI-pronounced "goo-ee"), in
which users work with on-screen pictures callechgcand with menus rather than with
keyed-in. They are callgalll-down menus because they appear to pull down like a
window shade from the original selection. Some msemucontrast, called pop-up menus
originate from a selection on the bottom of theesor Furthermore, icons and menus
encourage pointing and clicking with a mouse, gor@gqch that can make computer use
both fast and easy.

To enhance ease of use, Windows is usually sed tipes$ the colorful Windows display
is the first thing a user sees when the computrriged on. DOS is still there, under
Windows, but a user need never see C> during reatttivities. The user points and
clicks among a series of narrowing choices untilvarg at the desired software.

Although the screen presentation and user intemraetie the most visible evidence of
change, Windows offers changes that are even modamental. To understand these
changes more fully, it is helpful at this pointni@ke a comparison between traditional
operating systems for large computers and Windows.

In addition to adding a friendly GUI, Windows opiing systems added another
important feature to DOSmulti-tasking. Multi-tasking occurs when the computer has
several programs executing at one time. PCs thatmder DOS could only run one
program at a time. Windows-based computers can imaNgple programs (e.g. a
browser, a word processor, and several Instant Ad@sg instances) running at the same
time. When programs are executing at the same theg,are said to be executing
concurrently.

As we learned, personal computers have only one tiRiLhandles just one instruction at a time.
Computers using the MS-DOS operating system withaltell are limited not only to just one
user at a time but also to just one program ana.tif, for example, a user were using a word
processing program to write a financial report saahted to access some spreadsheet figures, he
or she would have to perform a series of arcarpssexit the word processing program, enter

Page | 59

and use and then exit the spreadsheet progranthande-enter the word processing program to
complete the report. This is wasteful in two ways:

(1) The CPU is often idle because only one progsaexecuting at a time, and
(2) The user is required to move inconvenientlyrfperogram to program.

Multi-tasking allows several programs to be acavéhe same time, although at an instant in
time the CPU is doing only one instruction for ari¢he active programs. The Operating System
manages which instructions to send to the CPU .eStomputers are so fast, the operating
system can switch the program that gets to exemutbe CPU so quickly, the user can not tell.
This is what allows your computer to be "listenifigl' incoming instant messages, for instance,
while you use a word processor to write a paper.

Page | 60

WEEK ELEVEN

| Learning Outcome for this week

+ Services provided by Operating System

Operating Systems Services
Following are the five services provided by an afiag systems to the convenience of the users.

Program Execution

The purpose of a computer systems is to allow #ee 10 execute programs. So the operating
systems provides an environment where the usecaareniently run programs. The user does
not have to worry about the memory allocation oftitasking or anything. These things are
taken care of by the operating systems.

Running a program involves the allocating and decating memory, CPU scheduling in case of
multi-process. These functions cannot be giveheauser-level programs. So user-level
programs cannot help the user to run programs ertigmtly without the help from operating
systems.

I/O Operations

Each program requires an input and produces outpig.involves the use of I/O. The operating
systems hides the user the details of underlyindwere for the I/O. All the user sees is that the
I/O has been performed without any details. Smfferating systems by providing I/O makes it

convenient for the users to run programs.

For efficiently and protection users cannot contt@lso this service cannot be provided by user-
level programs.

File System Manipulation

The output of a program may need to be written ingw files or input taken from some files.
The operating systems provides this service. Tke diges not have to worry about secondary
storage management. User gives a command for igpadwriting to a file and sees his her task
accomplished. Thus operating systems makes itrfasiaser programs to accomplished their
task.

Page | 61

+ This service involves secondary storage managerbatspeed of 1/0 that depends on
secondary storage management is critical to thedspemany programs and hence |
think it is best relegated to the operating systeamanage it than giving individual
users the control of it. It is not difficult foreruser-level programs to Batch processing
multiprogramming, multiprocessing, time-sharing.

+ Batch, real-time, timesharing and network operasiygtem.

provide these services but for above mentionedreas is best if this service s left with
operating system.

Communications

There are instances where processes need to cocateiniith each other to exchange
information. It may be between processes runninthersame computer or running on the
different computers. By providing this service thperating system relieves the user of the worry
of passing messages between processes. In case twbenessages need to be passed to
processes on the other computers through a nettvcak be done by the user programs. The
user program may be customized to the specifitseohardware through which the message
transits and provides the service interface tmfterating system.

Error Detection

An error is one part of the system may cause metfioming of the complete system. To avoid
such a situation the operating system constantlyitms the system for detecting the errors.
This relieves the user of the worry of errors pgaiang to various part of the system and
causing malfunctioning.

This service cannot allowed to be handled by ussgrams because it involves monitoring and
in cases altering area of memory or deallocatiomefory for a faulty process. Or may be
relinquishing the CPU of a process that goes intmfinite loop. These tasks are too critical to
be handed over to the user programs. A user progrgiven these privileges can interfere with
the correct (normal) operation of the operatingeys.

Page | 62

WEEK TWELVE

L earning Outcome for this week

+ |/O Buffering
+ Dealing with files stored in 1/0O devices

+ Spooling: its advantages and disadvantages
+

INPUT/OUTPUT BUFFERING

Often a user process generates requests for osdglutouch faster than the device can handle.
Instead of having a process waiting for ‘requestised’, introduce a buffer to store all requests,
thenprocess can go onto do other things. This is buffering. i&rty for input, a buffer can be
filled from a device; a user process takes its fiipm buffer; it is forced to wait only when the
buffer becomes empty. When this occurs the opeyatystem refills the buffer and the process
continues. Double buffering: is the case when twiidos are used. In a producer/consumer
situation, mutual exclusion prevents both proceasesssing the buffer at the same time thus,
possibly, causing delays. Giving each processwis louffer will reduce the probability of this
delay;- transfers between buffers takes place wiegther is being accessed by its process.
Note: buffering smoothes out the peaks

FILE DEVICES

How do we deal with files stored in I/O devices?

Only some 1/O devices can support files (i.e. hevaite on particular area of the medium,

e.g. disc, magnetic tape, but not printer, keyboadd), these devices are called file devices.

- File: a data area of an arbitrary size which esist on a medium controlled by the device.

- A file has a unique name which is used by theympto find the location of the file on the
appropriate medium, . . in a directory of files

- Directing a data stream to/from a file devicesasate a stream with a file name, not device
name; typical job description: Inputl = 'testdata’stream 1 data is to come from file 'testdata’

OPENING A FILE

Stream is opened, op sys looks up file name ircttirg to get device number & file location.
A file descriptor is created to hold info for seljsient accesses to the file to include:
Address of device descriptor

Location of file on that device

Whether read/write

File internal organization

A pointer to the file descriptor is put in stredescriptor.

Page | 63

SPOOLING

Spooling is a higher level buffering to even outn@ad for unshareable resources: e.g. printers.
During periods of high demand several processebeddeup waiting for use of scarce resources.
During other periods these same devices may bg lymused.

Spool all I/0 to these devices, i.e. instead ofdif@ctly to device, do it on intermediate medium,
disc. ‘Spooler’ then moves data between disc antcde

Line printer example: A process wanting to usetprirs given disc file to store all its output,.i.e
file is virtual line printer. When stream is closéite is added to queue. Spooler takes files from
gueue & sends them to printer.

repeat indefinitely

begin wait (something to spool);
pick file from queue;
open file;
repeat until end of file;
begin DOIO (parameters for disc read);
wait (disc request serviced);
DOIO(parameters for line pemnoutput);
wait (printer request serde
end
end;

Notes

1. A buffer is used between disc & printer.

2. Semaphore ‘something to spool’ is signaled @nented) by any process which closes a line
printer stream, i.e. completes a file for owitpu

3. Output is often dealt with in favour of shote§ first.

ADVANTAGES OF SPOOLING

1. Evens out pressure on heavily used devices.

2. Reduces possibility of deadlock caused by imjodis peripheral allocation.
3. Easier to produce several copies without reingjobs.
DISADVANTAGES

1. Need large amount of disc space.

2. Heavy traffic on the disc channel.
3. Not feasible for real-time /0.

Page | 64

Let us summarize our discussion:

Separating 1/0O into user process, /O process antted handler makes it easier to achieve
the 3 objectives:

» character code independence

* Device independence

» Uniformity of device treatment
However, Because of their general nature, thesinesican sometimes be slower to execute
than special pieces of code tailor-made for speti operations and devices. Careful attention
must therefore be paid to optimizing the efficienéyhese routines. Sometimes, for the sake of
efficiency, 1/O procedures & device handlers anetpgether and optimized for specific
applications of known operations & devices.

Page | 65

WEEK THIRTEEN

| Learning Outcome for this week

+ Interrupt handling process
+ The concept of interrupts and traps.
+ The CPU activity in interrupt mode and pooling dnel CPU status.

Interrupts

Interrupt hardware was invented to eliminate thednfer explicit calls to a polling procedure
from within applications code. Essentially all camgrs on the market today, from the smallest
microcontrollers to the highest performance supamaers include such hardware. In effect,
what the basic interrupt mechanism does is chda¥ #ie relevant device status bits just after
executing each and every machine instruction, iimgea call to an interrupt handler, analogous
to ourpol | routine whenever some device is ready. So longatevices need service, this
allows the computer to execute instructions atdp#ed.

In general, amnterrupt can be viewed as a hardware-initiated call toogguiure, thenterrupt
handler orinterrupt service routine. In effect, the instruction execution loop of tentral
processor has been made to serve as the maingloltp of our application! Although the
abstract description of an interrupt as a hardwatiated procedure call applies to most interrupt
hardware, the details vary considerably from maehinmachine. The address of the interrupt
service routine is frequently stored in a spe@gister or dedicated memory location, called the
interrupt vector. On some machines, calls to infgrservice routines parallel procedure calls to
the extent that the normal procedure return camsled to return to the code which was running
at the time of the interrupt, while on others, sple@turn-from-interrupt instructions must be
used.

An assembly languagtub is a bit of code that masks over the incompatibbbetween one
model of control transfer and another; in this cadlewing the use of an interrupt to call a
normal function compiled by a compiler that knewiiog about interrupt service routines.

Once an interrupt service routine has been callesiessential that the hardware request for that
service be disabled or withdrawn. If it were nat,ifinite (and possibly recursive) loop would
result in which, after executing the first instioct of the interrupt service routine, the hardware
would force a control transfer to the start of laene interrupt service routine. On some systems,
the interrupt is automatically disabled by the @usi of the central processor hardware when it
responds to the interrupt, while on others, th& finstruction of each interrupt service routine
must disable the interrupt.

In the examples presented here, it will be assuimeithe hardware automatically disables
interrupts as it calls the interrupt service roetin

Page | 66

Even if the hardware can disable interrupts, thievswe must also be able to enable or disable
them. For example, on return from an interrupt iservoutine, after the software has done
whatever the interrupt requested, the software maishable the interrupt as it returns to the
code which was interrupted. Furthermore, if thgpatijueue is empty, there is no point in
responding to an interrupt from the output devitewit is ready to transfer more data; a similar
argument can be made when the input queue iSdalmost machines, there are special
instructions to enable and disable interrupts;@nes these instructions apply to all interrupts at
the same time, while other machines allow groupdeoices to be enabled or disabled as a

group.

In addition, it is usual to include, in each dexsccontrol register, one or more interrupt enable
bits corresponding to each condition the devicesgarse that might be cause for an interrupt
request. If the interrupt enable bit for a conditie set, then when that condition is detected,
there will be an interrupt request.

It should be noted that the disabling an outpuia®s ability to request interrupts when the
output queue is empty and enabling that device wdag¢a is put in the queue is a special purpose
solution to a general problem, the producer-consyrablem. The device is the consumer, and
the application is the producer, and the generlpm is to prevent the consumer from
attempting to use data that has not yet been peatdiic any producer-consumer system,
whether the system is all in hardware, all in safisy or mixed between the two, there must be
some synchronization mechanism to make the conswaieuntil data is available!

Interrupt handlers and the scheduler

Since an interrupt handler blocks the highest fiyidask from running, and since real time
operating systems are designed to keep threadtiatera minimum, interrupt handlers are
typically kept as short as possible. The interhgoidler defers all interaction with the hardware
as long as possible; typically all that is necessato acknowledge or disable the interrupt (so
that it won't occur again when the interrupt handé¢urns). The interrupt handler then queues
work to be done at a lower priority level, oftendnyblocking a driver task (through releasing a
semaphore or sending a message). The schedulermofteides the ability to unblock a task
from interrupt handler context.

Real-time operating system (RTOS) LynxOS, Embedded Linux, Prex, Tron, WindowsCE,
RTLinux, THEOS, OSE...

Page | 67

WEEK FOURTEEN

| Learning Outcome for this week
+ Explain batch modes with respect to compilation énary
+ Batch Processing, Time sharing, Real time, amdar& operating systems
+ Multiprogramming, Multitasking and Multiprocessisgstems

BATCH PROCESSING

BATCH Processing can be defined ass@itinga series of non interactiyebs all at one time.

The term originated in the days whesersenteredporogramson punch cards. They would give a
batch of these programmed cards togytemoperatoy who would feed them into thmputer
Batch jobs can bstoredup during working hours and then executed duriregevening or
whenever the computer is idle. Batch processimgrtcularly useful for operations that require the
computer or @eripheral devicéor an extended period of time. Once a batch pdprks, it
continues until it is done or until an error occiMgte that batch processing implies that thereis
interaction with the user while the program is lgeexecuted.

An example of batch processing is the way thatitoedd companies process billing or Power
Holding Company processes their bills . The custodoes not receive a bill for each separate
credit card purchase or meter reading but one rhohithfor all of that month. The bill is created
through batch processing, where all of the dataaltected and held until the bill is processe@as
batch at the end of the billing cycle.

The opposite of batch processingrensaction processirgy interactiveprocessing. In interactive
processing, thapplicationresponds teaommandsas soon as you enter them.

TIME SHARING

This involves the CPU allocating individual glgcof time to a number of users on the computer
system. As the number of users increases themssgime for each terminal declines. The speed
of the CPU compared to that of the VDU and teahis so much faster that it gives the user the
impression that they are the sole user of tiseegy

MULTIPROGRAMMING MULTITASKING AND MULTIPROCESSING ¥STEMS

Multiprograming: In multiprogramming systs, the running task keeps running until it perferm
an operation that requires waiting for an exteawvant (e.g. reading from a tape) or until the coraps
scheduler forcibly swaps the running task out ef@PU. Multiprogramming systems are designed to
maximize CPU usage.

Multitasking: In computing, multitasking is a rhetl by which multiple tasks, also known as procgsse
share common processing resources such as a Cig. ¢ase of a computer with a single CPU, only
one task is said to be running at any point in fimeaning that the CPU is actively executing ingtams
for that task. Multitasking solves the problem biieduling which task may be the one running at any
given time, and when another waiting task getgm flihe act of reassigning a CPU from one task to
another one is called a context switch.

Page | 68

Multiprocessing: Multiprocessing is a generic tdonthe use of two or more central processing units
(CPUSs) within a single computer system. There aaayvariations on this basic theme, and the
definition of multiprocessing can vary with contextostly as a function of how CPUs are defined
(multiple cores on one die, multiple chips in oekage, multiple packages in one system unit,.etc.)

Multiprocessing sometimes refers to the executiomultiple concurrent software processes in a syste
as opposed to a single process at any one instant.

REAL TIME OPERATING SYSTEM

Real-Time Operating System (RTOS; generally progedras "R-toss") is @ultitaskingoperating
systemintended foreal-timeapplications. Such applications inclugl@bedded systenfprogrammable
thermostats, household appliance controllers),stréalrobots spacecraft, industrial control and
scientific research equipment.

A RTOS facilitates the creation of a real-time swyst but does not guarantee the final result willdag-
time; this requires correct development of thevgafe. An RTOS does not necessarily have high
throughput rather, an RTOS provides facilities which, if dggoperly, guarantee deadlines can be met
generally $oft real-timé or deterministicallylfard real-timg An RTOS will typically use specialized
scheduling algorithms in order to provide the r@&ale developer with the tools necessary to produce
deterministic behavior in the final system. An RT8$alued more for how quickly and/or predictaibly
can respond to a particular event than for thergarmount of work it can perform over time. Key tast
in an RTOS are therefore a mininmaderrupt latencyand a minimathread switching latency

An early example of a large-scale real-time opegasiystem can be identified in the some Airline
reservation operating in Nigeria and overseas asciiransaction Processing Facitigveloped by
American Airlinesand_IBMfor the Sabre Airline Reservations Systédthers may be found in some
communication companies

NETWORK OPERATING SYSTEM

What is a Network Operating System?

Unlike operating systems, such as DOS and Windthas are designed for single users to
control one computer, network operating systemsgNe&ordinate the activities of multiple
computers across a network. The network operatisgs acts as a director to keep the network
running smoothly.

The two major types of network operating systemss ar

+ Peer-to-Peer
- Client/Server

Page | 69

Peer-to-Peer

Peer-to-peer network operating systems allow useshare resources and files located on their
computers and to access shared resources founth@mcomputers. However, they do not have
a file server or a centralized management souree {i§. below). In a peer-to-peer network, all
computers are considered equal; they all haveaine sbilities to use the resources available on
the network. Peer-to-peer networks are designedgpily for small to medium local area
networks. AppleShare and Windows for Workgroupsextamples of

(D (3

_—

Rescurces are shared among equals
in a peer-to-peer network.

(9 (3
— — S — — G

Fig 14.1 . Peer-to-peer network

programs that can function as peer-to-peer netwpekating system
Advantages of a peer-to-peer network:

« Less initial expense - No need for a dedicatedeserv
« Setup - An operating system (such as Windows Xtpdl in place may only need to be
reconfigured for peer-to-peer operations.

Disadvantages of a peer-to-peer network:

« Decentralized - No central repository for files applications.
« Security - Does not provide the security availabiea client/server network.

CLIENT/SERVER

Client/server network operating systems allow teevork to centralize functions and
applications in one or more dedicated file ser¢8ee fig. below). The file servers become the
heart of the system, providing access to resowedgproviding security. Individual

workstations (clients) have access to the resowaeaitable on the file servers. The network
operating system provides the mechanism to integdathe components of the network and
allow multiple users to simultaneously share theesaesources irrespective of physical location.
Novell Netware and Windows 2000 Server are exampfieient/server network operating
systems.

Page | 70

File Seruer @
@ Fesources are controlled by the file serer

— in a client/server netwaork.

Clients

Fig. 14.2 . Client/server network
Advantages of a client/server network:

- Centralized - Resources and data security areateurthrough the server.

« Scalability - Any or all elements can be replacadividually as needs increase.
- Flexibility - New technology can be easily integr@tinto system.

+ Interoperability - All components (client/networ&rser) work together.

« Accessibility - Server can be accessed remotelyaanass multiple platforms.

Disadvantages of a client/server network:
« Expense - Requires initial investment in dedicateer.
« Maintenance - Large networks will require a stafetsure efficient operation.
» Dependence - When server goes down, operationseaie across the network.

Examples of network operating systems

The following list includes some of the more popudaer-to-peer and client/server network
operating systems.

« AppleShare
« Microsoft Windows Server

« Novell Netware

Page | 71

WEEK FIFTEEN

COURSE:

Learning Outcome this Week: Revision of CONCEPOEARNT DURING THE

EFFREEEREEE

Basic Assembler ‘s functions

Differentiate between Assembler, Interpreter Godnhpiler
Make argument on which one is preferable for aemgivtask
Understand Front end and back end

Describe tools for error checking

Discuss the functions of an Operating System

Identify the features of Ms Dos against Ms Windows

The meaning and work of 1-pass assembler, 2gssssnbler.

Teacher’s Activities:

The teacher is expected to revise the above angastudents

Identify areas where difficulties in understandappear.

Attempts should be made at assessing knowledgeradetstanding .

At least two tests, one hour each , should be cdedias assessment before a final
exam.

Home work should also be given for additional matsrithat the student may need to
increase his understanding of some of the conoeptsred.

REVIEW QUESTIONS

1.

What is the general format of an assembgtruction? What is the meaning

of each field ?

What is the difference between a label @ symbol?

List some typical zero-operand instructions.

In old assemblers the source .le was puncheduwas, one line per card. Why

was it important to punch a sequence number om emaa?

Use your knowledge of data structures; whagaw data structures for an
Op-Code table? The table is static (no insertardeletions) and is searched very
often.

HOME ASSIGNMENT QUESTIONS

1.

2

For each of the questions below, ifghgect describes a 2-pass assembler, design
a format for the intermediate .le. What informatgould each record contain?
Look at several textbooks on assembler langueggrgamming for different computers.
What are the rules for:
a. Symbol names. b. The syntax of a source line

The asterisk **’is a favorite character of asb&mwriters and has been mentioned in this
lecture many times, in connection with severded#nt assembler features. What are
those features?

Compare and contrast literals and the immedetee. What are the advantages and
Disadvantages of each?

Page | 72

	Cover
	Table of Contents
	WEEK 1
	WEEK TWO
	WEEK THREE
	WEEK FOUR
	WEEK FIVE
	WEEK SIX
	WEEK SEVEN
	WEEK EIGHT
	WEEK NINE
	WEEK TEN
	WEEK ELEVEN
	WEEK TWELVE
	WEEK THIRTEEN
	WEEK FOURTEEN
	WEEK FIFTEEN
	Return to Table

