

1

YEAR 2-SEMESTER 1

PRACTICAL
Version 1: December 2008

UNESCO-NIGERIA TECHNICAL &
VOCATIONAL EDUCATION

REVITALISATION PROJECT-PHASE II

NATIONAL DIPLOMA IN

COMPUTER TECHNOLOGY

(COM213)

2

Table of Contents

Objectives ... 5

What Is an Object? ... 5

What Is a Class? .. 7

What Is Inheritance? ... 7

What Is an Interface? .. 8

What Is a Package? .. 9

Exercise .. 9

Objectives ... 11

� Be introduced and understand the concept of UML and its
Importance to software development .. 11

� Mention and draw notations that are accepted as models in
other fields of specialization .. 11

DRAWING OF UML SYMBOLS/NOTATIONS USING WORD
PROCESSING APPLICATION (MS WORD) .. 12

Objectives ... 15

� Be able to identify the class symbol ... 15

� Design a sample class with sample name, attribute and method
 15

Objectives ... 20

� Be able to model a package using any two methods for a real
life application or system ... 20

� Design an interface model for at least two classes 20

Objectives ... 24

� Be able to design a composite structure of a named classifier. 24

� Understand the functional component of a composite diagram 24

COMPOSITE DIAGRAM... 24

Objectives ... 26

� Understand the notation for a component diagram 26

� Use the notations to model a real life system 26

Be able to design a composite structure of a named classifier. 26

� Understand the functional component of a composite diagram 26

COMPONENT DIAGRAM .. 26

Objectives ... 29

3

� Be able to identify Object Diagram and differentiate it from class
diagram .. 29

� Be able to identify and design a deployment model 29

OBJECT DIAGRAM .. 29

Objectives ... 31

� Understand and be able to identify Nodes in a deployment
model .. 31

� Create association amongst nodes .. 31

� Model a typical life projects depicting the existing nodes and
show the contained elements. .. 31

Objectives ... 33

� Understand the concept of activity and be able to identify
activity diagram notations ... 33

� Create a simple activity diagram for a real life programming
algorithm ... 33

� Model a typical life projects or system using the activity
diagram. .. 33

Objectives ... 38

� Understand the meaning of use case and its notations 38

� Model a real life activity with a Use case diagram 38

How do you know who the actors are in a UCD? 39

Objectives ... 42

� Understand the meaning of state machines 42

� Model a real life machine operation using a state machine
diagram .. 42

1. Model a real life named machine operation using a state
machine diagram .. 43

Objectives ... 44

� Be able to create communication link between events and
objects .. 44

� Understand the uses of sequence diagram and be able to apply
to a real life system. .. 44

Objectives ... 47

� Understand and be able to create an overview diagram for a life
event. ... 47

� Understand the uses of Timing diagram. .. 47

Objectives ... 50

� Understand the basis of using software tools for UML. 50

4

� Understand the basic requirement of any standard UML tools. . 50

Objectives ... 51

� Understand the installation and usage of Altova UModel 2008
development tool. ... 51

5

WEEK One (practical)

Objectives
At the end of the practical week the students should

� Understand the concepts of OOP
� Model the concepts to real life scenario

Lab1

Object-Oriented Programming Concepts
If you've never used an object-oriented programming language

before, you'll need to learn a few basic concepts before you can

begin writing any code. This lesson will introduce you to objects,
classes, inheritance, interfaces, and packages. Each discussion

focuses on how these concepts relate to the real world.

What Is an Object?
An object is a software bundle of related state and behavior.

Software objects are often used to model the real-world objects that

you find in everyday life. Real life objects are anything that have

attribute (state) and behaviour (method). Such real world objects
are Cats, Car, Ball, table etc.

Objects are key to understanding object-oriented technology. Look

around right now and you'll find many examples of real-world

objects: your dog, your desk, your television set, your bicycle.

Real-world objects share two characteristics: They all have state

and behavior. Dogs have state (name, color, breed, hungry) and

behavior (barking, fetching, wagging tail). Bicycles also have state

(current gear, current pedal cadence, current speed) and behavior
(changing gear, changing pedal cadence, applying brakes).

Identifying the state and behavior for real-world objects is a great

way to begin thinking in terms of object-oriented programming.

Take a minute right now to observe the real-world objects that are

in your immediate area. For each object that you see, ask yourself

two questions: "What possible states can this object be in?" and

"What possible behavior can this object perform?". Make sure to

write down your observations. As you do, you'll notice that real-

world objects vary in complexity; your desktop lamp may have only

two possible states (on and off) and two possible behaviors (turn

6

on, turn off), but your desktop radio might have additional states

(on, off, current volume, current station) and behavior (turn on,
turn off, increase volume, decrease volume, seek, scan, and tune).

You may also notice that some objects, in turn, will also contain

other objects. These real-world observations all translate into the

world of object-oriented programming.

A software object.

Software objects are conceptually similar to real-world objects: they

too consist of state and related behavior. An object stores its state
in fields (variables in some programming languages) and exposes

its behavior through methods (functions in some programming

languages). Methods operate on an object's internal state and serve

as the primary mechanism for object-to-object communication.
Hiding internal state and requiring all interaction to be performed

through an object's methods is known as data encapsulation — a

fundamental principle of object-oriented programming.

Consider a bicycle, for example:

A bicycle modeled as a software object.

7

By attributing state (current speed, current pedal cadence, and

current gear) and providing methods for changing that state, the
object remains in control of how the outside world is allowed to use

it. For example, if the bicycle only has 6 gears, a method to change

gears could reject any value that is less than 1 or greater than 6.

Bundling code into individual software objects provides a number of
benefits, including:

1. Modularity: The source code for an object can be written and
maintained independently of the source code for other
objects. Once created, an object can be easily passed around

inside the system.

2. Information-hiding: By interacting only with an object's
methods, the details of its internal implementation remain
hidden from the outside world.

3. Code re-use: If an object already exists (perhaps written by
another software developer), you can use that object in your

program. This allows specialists to implement/test/debug

complex, task-specific objects, which you can then trust to

run in your own code.

4. Pluggability and debugging ease: If a particular object turns
out to be problematic, you can simply remove it from your

application and plug in a different object as its replacement.

This is analogous to fixing mechanical problems in the real

world. If a bolt breaks, you replace it, not the entire machine.

What Is a Class?

A class is a blueprint or prototype from which objects are created.

In the real world, you'll often find many individual objects all of the

same kind. There may be thousands of other bicycles in existence,
all of the same make and model. Each bicycle was built from the

same set of blueprints and therefore contains the same

components. In object-oriented terms, we say that your bicycle is

an instance of the class of objects known as bicycles. A class is the

blueprint from which individual objects are created.

What Is Inheritance?
Inheritance provides a powerful and natural mechanism for

organizing and structuring your software.

Different kinds of objects often have a certain amount in

common with each other. Mountain bikes, road bikes, and

tandem bikes, for example, all share the characteristics of

8

bicycles (current speed, current pedal cadence, current

gear). Yet each also defines additional features that make
them different: tandem bicycles have two seats and two

sets of handlebars; road bikes have drop handlebars; some

mountain bikes have an additional chain ring, giving them a

lower gear ratio.

Object-oriented programming allows classes to inherit commonly

used state and behavior from other classes. In this example, Bicycle

now becomes the superclass of MountainBike, RoadBike, and

TandemBike.

1.

A hierarchy of bicycle classes.

What Is an Interface?

An interface is a contract between a class and the outside world.

When a class implements an interface, it promises to provide the

behavior published by that interface.

As you've already learned, objects define their interaction

with the outside world through the methods that they

expose. Methods form the object's interface with the outside
world; the buttons on the front of your television set, for

example, are the interface between you and the electrical

wiring on the other side of its plastic casing. You press the

"power" button to turn the television on and off.

9

In its most common form, an interface is a group of related

methods with empty bodies.

What Is a Package?

A package is a namespace for organizing classes and interfaces in a

logical manner. Placing your code into packages makes large
software projects easier to manage.

A package is a namespace that organizes a set of related

classes and interfaces. Conceptually you can think of

packages as being similar to different folders on your

computer. You might keep HTML pages in one folder, images

in another, and scripts or applications in yet another.

Because software written in the Java programming language

can be composed of hundreds or thousands of individual
classes, it makes sense to keep things organized by placing

related classes and interfaces into packages.

The Java platform provides an enormous class library (a set of

packages) suitable for use in your own applications. This library is
known as the "Application Programming Interface", or "API" for

short. Its packages represent the tasks most commonly associated

with general-purpose programming. For example, a String object

contains state and behavior for character strings; a File object allows

a programmer to easily create, delete, inspect, compare, or modify

a file on the filesystem; a Socket object allows for the creation and

use of network sockets; various GUI objects control buttons and

checkboxes and anything else related to graphical user interfaces.

There are literally thousands of classes to choose from. This allows

you, the programmer, to focus on the design of your particular

application, rather than the infrastructure required to make it work.

Exercise

1. Real-world objects contain ___ and ___.
2. A software object's state is stored in ___.
3. A software object's behavior is exposed through ___.
4. Hiding internal data from the outside world, and accessing it
only through publicly exposed methods is known as data ___.

5. A blueprint for a software object is called a ___.
6. Common behavior can be defined in a ___ and inherited into
a ___ using the ___ keyword.

10

7. A collection of methods with no implementation is called an
___.

8. A namespace that organizes classes and interfaces by
functionality is called a ___.

9. The term API stands for ___?

Answers to Exercises: Object-Oriented Programming
Concepts

1. Real-world objects contain state and behavior.
2. A software object's state is stored in fields.
3. A software object's behavior is exposed through methods.

4. Hiding internal data from the outside world, and accessing it
only through publicly exposed methods is known as data

encapsulation.
5. A blueprint for a software object is called a class.
6. Common behavior can be defined in a superclass and
inherited into a subclass using the extends keyword.

7. A collection of methods with no implementation is called an
interface.

8. A namespace that organizes classes and interfaces by
functionality is called a package.

9. The term API stands for Application Programming

Interface.

11

WEEK Two (practical)

Objectives
At the end of the practical week the students should

� Be introduced and understand the concept of UML and its
Importance to software development

� Identify and load applications such as MS-Word that aids in
drawing symbols

� Mention and draw notations that are accepted as models in
other fields of specialization

Concept of UML

UML stands for Unified Modelling Language whose purposes is to

provide the development community with a stable and common
design language that could be used to develop and build computer

applications. UML brought forth a unified standard modelling

notation that IT professionals had been wanting for years. The idea

is to create standardization for the building and defining software

engineering just like every other field of specialization. Various

Symbols are generally accepted as notations to represent major

events.

Standardization

UML is officially defined by the Object Management Group (OMG) as
the UML metamodel, a Meta-Object Facility metamodel (MOF). Like

other MOF-based specifications, UML has allowed software

developers to concentrate more on design and architecture.

UML models may be automatically transformed to other

representations (e.g. Java) by means of QVT-like transformation

languages, supported by the OMG.

UML diagrams

UML recognizes 13 different symbols which are subgroup to three of

structure, behaviour and interaction models;

Structure Model

• Class diagram

• Composite structure diagram:

• Component diagram:
• Deployment diagram:
• Object diagram:
• Package diagram:

12

Behaviour Mode
• Activity diagram:

• State diagram:

• Use case diagram:

 Interaction diagrams
• Communication diagram:
• Interaction overview diagram:

• Sequence diagram:

• Timing diagrams:

DRAWING OF UML SYMBOLS/NOTATIONS USING WORD

PROCESSING APPLICATION (MS WORD)

Procedure

Step 1: Insert Object
(i) Load MS-Word (Microsoft Office 2007)

13

(ii) Click on the Insert Menu to get the basic shapes

(iii) Pick any of the objects and draw using your mouse on the

text area of your document.

Step 2: Edit Object

Once an object is inserted it can be edited through the format

menu.

Use the step 1 above to insert a rectangular object as below

14

The Format menu is displayed for all the edit required. For other
common operations follow below;

Insert Text

- Right-click the object
- Click add text

- Type the text

Group Object
Objects can be bounded together as one using Grouping properties

- Select all the object using select tool or Shift + mouse click

- Right-Click selection

- Click Grouping

- Click Group

For more on drawing tools with Word 2007, get help from the MS-

word 2007 application or from online (www.Microsoft.com)

PRACTICAL EXERCISE

1. Using MS-Word as a tool, draw objects that are related to at
least five (5) different fields of specialization.

2. Using the appropriate mathematical notations, derive a

formula that can be modelled to a live picture or diagram.

15

WEEK Three (practical)

Objectives
At the end of the practical week the students should

� Be able to identify the class symbol
� Design a sample class with sample name, attribute and
method

Class Diagram

The Class diagram describes the structure of a system by showing

the system's classes, their attributes, and the relationships among
the classes. In dealing with objects and classes the followings are

important,

(1) object and object identifier: Any real world entity is
uniformly modeled as an object (associated with a unique id: used
to pinpoint an object to retrieve).

(2) attributes and methods: every object has a state (the set of

values for the attributes of the object) and a behavior (the set of

methods - program code - which operate on the state of the

object). The state and behavior encapsulated in an object are

accessed or invoked from outside the object only through explicit

message passing.

 (3) class: a means of grouping all the objects which share the

same set of attributes and methods. An object must belong to only

one class as an instance of that class (instance-of relationship). A

class is similar to an abstract data type. A class may also be

primitive (no attributes), e.g., integer, string, Boolean.

Lab 1: Present a sample class diagram symbol

Result:

Class name

Class attribute

Class methods

16

A sample class diagram

Lab 2: Automobile is a class of Transportation object which can

posses several attributes and behaviours. Among those attributes
are;

- Model
- Engine No.#
- Color
- Weight
- Registration No
- Etc

The Automobile class can posses many behaviours as well; such as

Speeding, Stopping, ignition, etc.

Develop a sample Automobile class named Motor with appropriate

attributes and values as well as the automobile methods.

Steps to obtain Results

1. Identify the class name
 Name: Motor

2. Identify the attributes required with data types
Model No: String

Engine No: String

Color: string

Weight: Real
 Date manufactured: Date

 Chassis No: String

 Amount: Currency

3. Identify the necessary behaviour that it is expected to exhibit

Speed (kilometre/hour: integer)

Break ()

Horn ()

4. Use the UML tool to implement the class by feeding in the
above information appropriately or use any of the drawing

tools such as the MS-word drawing objects as earlier

discussed to draw the diagram following the steps below.

- Open MS-word
- Click insert menu
- Click on the object tools and pick the rectangular object and
draw appropriately on drawing area.

17

- Pick line object too to demarcate the rectangular object to
form the three compartment required of the class diagram.
(In order to duplicate, click on the drawn object, hold the

CRTL key and drag the mouse. When you reach the required

place release and a duplicate of the selected object is made).

Use this to actually make the two lines needed from the first
one drawn.

- Add the appropriate text in the rectangular object taking
cognisance of the three compartments.

- Group the object together as one

The case is as displayed below.

A sample Auto class

INHERITANCE

Lab 3: Using the motor class above, create two subclasses (the two
subclasses could be CAR subclass and MOTORCYCLE subclass) that

can be inherited from the motor class and allow each to add one or

more attributes to the general attributes of the Superclass (motor).

Steps to obtain result

1. Create elements of Car Subclass mentioning any additional
functionality such as; No-of-Doors; Air-Conditioner; as below

MOTOR

Model No: String

Engine No: String

Color: string

Weight: Real

 Date manufactured: Date

 Chassis No: String

 Amount: Currency

Speed (kilometre/hour: integer)

Break ()

Horn ()

MOTOR

Model No: String

Engine No: String

Color: string

Weight: Real

 Date manufactured: Date

 Chassis No: String

 Amount: Currency

Speed (kilometre/hour: integer)

Break ()

Horn ()

CAR

No-of-Doors: Integer

Air-Conditioner: Yes/No

Speed (km/hour: integer)

Break ()

Horn ()

18

2. Create elements of MortorCycle subclass mentioning any
additional functionality such as; Size-of-Chain as shown

below.

3. Link the two subclasses to their mother class (Motor)

MOTOR

Model No: String

Engine No: String

Color: string
Weight: Real

Date manufactured: Date

Chassis No: String

Amount: Currency

Speed (km/hour: integer)

Break ()

Horn ()

CAR
No-of-Doors: Integer

Air-Conditioner: Yes/No

Speed (km/hour: integer)

Break ()

Horn ()

MOTORCYCLE

Size-of-Chain: Decimal

Speed (km/hour: integer)

Break ()

Horn ()

MOTORCYCLE

Size-of-Chain: Decimal

Speed (km/hour: integer)

Break ()

Horn ()

19

Association

Lab 4: Create a Bi-directional association diagram between

products and supplier of products to a company given that for every
product there is only one supplier but a supplier can supply more

than one product.

Result

Practical Exercises

1. Create a unidirectional association diagram for any real life
event

2. Create a basic aggregation relationship diagram to depict any
named real life subclass and superclass.

3. Create a composition aggregation relationship diagram to
depict any named real life subclass and superclass.

4. Draw a sample reflexive association diagram of a given class

Product

ProdCode: String
ProdName: String
Quantity: Integer
UnitPrice: Currency

Supplier

SupID: String
SupName: String
Addres: String

Product

Supplier

1 0..*

20

WEEK Four (practical)

Objectives

At the end of the practical week the students should

� Be able to model a package using any two methods for a real
life application or system

� Design an interface model for at least two classes
� Understand visibility and be able to identify all its marks
� Understand Instance and design instance diagram for a real
world scenario

� Model a class role diagrammatically
� Understand class internal structure representation in UML

Package

Think of a package as compartment for grouping classes or similar
classes. In a structured format it is in form of a module that house

codes capable of maintaining a unit of a project. In a filing system,

it can be taught of as a folder that contains similar files and the
combination of these folders make up the file structure.

Lab1: Develop a package using any two methods for a given
system.

Result

21

 A package element that shows its members inside the package's

rectangle boundaries

Interface
An interface is a contract between a class and the outside world.

Methods form the object's interface with the outside world;
for example the buttons on the front of your television set,

for example, are the interface between you and the

electrical wiring on the other side of its plastic casing. You
press the "power" button to turn the television on and off.

In its most common form, an interface is a group of related

methods with empty bodies. In the real programming sense the

Vehicle

MOTOR

Model No: String

Engine No: String

Color: string

Weight: Real

Date manufactured: Date
Chassis No: String

Amount: Currency

Speed (km/hour: integer)

Break ()
Horn ()

CAR
No-of-Doors: Integer

Air-Conditioner: Yes/No

Speed (km/hour: integer)

Break ()

Horn ()

MOTORCYCLE

Size-of-Chain: Decimal

Speed (km/hour: integer)

Break ()

Horn ()

22

command button object is interfacing between the user and the

actual code which is encapsulated within it. Note that an interface
must have at least one class to implement it.

Lab2: Develop an interface for a real life class.

Result

A class diagram in which the Professor and Student classes implement

the Person interface

Visibility

In object-oriented design, there is a notation of visibility for

attributes and operations. UML identifies four types of visibility:

public, protected, private, and package.

Instances
When modelling a system's structure it is sometimes useful to show

example instances of the classes. To model this, UML 2 provides the

instance specification element, which shows interesting information
using example (or real) instances in the system.

The notation of an instance is the same as a class, but instead of

the top compartment merely having the class's name, the name is

an underlined concatenation of Instance Name and Class Name.

23

Practical Exercises

1. Develop a package element showing its membership via
connected lines

2. Develop a class diagram where the four visibility type is
implemented for a real life object.

3. Develop a class diagram of Honda car depicting the instance
of the particular model.

4. Design a model that display the internal structure of a real life
system such as a named Polytechnic.

24

WEEK Five (practical)

Objectives

At the end of the practical week the students should

� Be able to design a composite structure of a named classifier.
� Understand the functional component of a composite diagram

COMPOSITE DIAGRAM
A composite structure diagram is a diagram that shows the internal

structure of a classifier, including its interaction points to other parts of

the system. It shows the configuration and relationship of parts, that
together, perform the behavior of the containing classifier.

Lab1: Develop a sample composite diagram of computer
system class.

Results

Lab2: Design a collaboration system composing a Computer

and some mentioned units such as Input, CPU and Output
units.

Computer System

Computer Parts
e.g. HardDisk

Ports

Provided
interface

Required
interface

25

collaboration

Practical Exercises

Create a Role Binding, Represents, and Occurrence connector

scenario of the collaboration model above.

Computer

INPUT unit CPU OUTPUT unit

26

WEEK Six (practical)

Objectives

At the end of the practical week the students should

� Understand the notation for a component diagram
� Use the notations to model a real life system
Be able to design a composite structure of a named classifier.

� Understand the functional component of a composite diagram

COMPONENT DIAGRAM
The component diagram's main purpose is to show the structural

relationships between the components of a system. Component

diagrams allow an architect to verify that a system's required

functionality is being implemented by components, thus ensuring

that the eventual system will be acceptable.

Developers find the component diagram useful because it provides

them with a high-level, architectural view of the system that they

will be building, which helps developers begin formalizing a

roadmap for the implementation, and make decisions about task
assignments and/or needed skill enhancements. System

administrators find component diagrams useful because they get an

early view of the logical software components that will be running

on their systems. Although system administrators will not be able to
identify the physical machines or the physical executables from the

diagram, a component diagram will nevertheless be welcomed

because it provides early information about the components and

their relationships (which allows sys-admins to loosely plan ahead).

COMPONENT NOTATION
In UML 2, a component is drawn as a rectangle with optional

compartments stacked vertically. A high-level, abstracted view of a

component in UML 2 can be modelled as just a rectangle with the

component's name and the component stereotype text and/or icon.

The component stereotype's text is «component»" and the

component stereotype icon is a rectangle with two smaller

rectangles protruding on its left side (the UML 1.4 notation element
for a component). Figure 5.2 shows three different ways a

component can be drawn using the UML 2 specification.

27

Figure 2: The different ways to draw a component's name compartment

When drawing a component on a diagram, it is important that you

always include the component stereotype text (the word

"component" inside double angle brackets, as shown in Figure 5.2)

and/or icon. The reason? In UML, a rectangle without any
stereotype classifier is interpreted as a class element. The

component stereotype and/or icon distinguishes this rectangle as a

component element.

Lab1:Design a component model of a computer system
showing the interfaces that the object provides and required.

Result

Lab2: Model a component relationship diagram of a printer
requiring data from a computer system. Design a component

model of a computer system showing the interfaces that the
object provides and required.

Result

<<component>>

Computer

Drivers Peripheral
ports

28

Practical Exercises
1. Develop a subsystem classifier for any subunit of the
computer system.

2. Model a component relationship of a real life scenario

<<component>>

Computer

Send
outputs

Needs information
to print

<<component>>

Printer

29

WEEK Seven (practical)

Objectives

At the end of the practical week the students should

� Be able to identify Object Diagram and differentiate it from
class diagram

� Be able to identify and design a deployment model

OBJECT DIAGRAM

An object diagram may be considered a special case of a class diagram.

Object diagrams use a subset of the elements of a class diagram in order

to emphasize the relationship between instances of classes at some point

in time. Object elements don’t have compartments. The display of names

is also different: object names are underlined and may show the name of

the classifier from which the object is instantiated.

Lab1:Design a sample object diagram of a named object.

Result

A typical dog object diagram. Note that the Dog object is an instance of

an animal Class

Lab1: Develop the dog object in lab1 above with some run
time property values

Result

Dog: Animal

Dog: Animal
Color = “Black”
Weight = 3.5
Category = “Security”

30

PACKAGE DIAGRAMS

Package diagrams are used to reflect the organization of packages and

their elements. Elements contained in a package share the same

namespace. Therefore, the elements contained in a specific

namespace must have unique names.

Practical Exercises

3. Develop an object diagram for any chosen object
4. Create an object from a class and develop both the class
diagram and the object diagram for them

5. Create a package model for a complete system

31

WEEK Eight (practical)

Objectives

At the end of the practical week the students should

� Understand and be able to identify Nodes in a deployment
model

� Create association amongst nodes
� Model a typical life projects depicting the existing nodes and
show the contained elements.

Deployment Diagrams

A deployment diagram models the run-time architecture of a

system. It shows the configuration of the hardware elements

(nodes) and shows how software elements and artifacts are mapped

onto those nodes.

Lab1: Model a deployment diagram for a typical small office
Local Area Network (LAN) setup via a Router.

Result

:Local Server

<<documents>>

:Router

:Client

:File Server

:Client

32

Lab2: Design a deployment diagram that captures the

distinct number of computers required for a typical computer
communication setup.

Result

Lab3: Embed a component diagram into the deployment

model above

Result

33

WEEK Nine (practical)

Objectives

At the end of the practical week the students should

� Understand the concept of activity and be able to identify
activity diagram notations

� Create a simple activity diagram for a real life programming
algorithm

� Model a typical life projects or system using the activity
diagram.

Activity Diagrams

Activity is defined as an ongoing non-atomic execution within a

state machine. A structure that has a duration with possible

interruption points. Activities can be modelled by nested states, by

a submachine reference, or by an activity expression.

Activity state represents the execution of a pure computation with

substructure. The normal use of an activity state is to model a step

in the execution of a procedure or algorithm.

An activity can represent a fairly large procedure (with some

substructure), as well as something relatively small.

Lab1: Draw a flowchart for a program that accepts two none
negative values, compare them, display the smaller and

store the bigger.

34

Result:

Start

Accepts
Value1, Value2

Values <
0 ?

Print Value1

Store
Value2

Value1 <
Value2 ?

Stop

Y

N

N

Y

35

Lab2: Draw an activity diagram for the program represented
in the above flowchart.

Result:

An activity diagram for a program flow

<<precondition>>
{Values not zero}

Accepts Value1,
Value2

Disk

Store Value

Display
Value

Close
Operation

Compare values

36

Lab2: Develop an activity diagram for an operation of ATM
machine.

Result:

37

EXERCISE

1. Develop and activity diagram for a simple program flow
2. Develop and activity diagram for any real life event

38

WEEK Ten (practical)

Objectives

At the end of the practical week the students should

� Understand the meaning of use case and its notations
� Model a real life activity with a Use case diagram

Use Cases
A use case is a single unit of meaningful work. It provides a high-level

view of behavior observable to someone or something outside the system.

UML Use Case Diagrams can be used to describe the functionality of

a system in a horizontal way. That is, rather than merely

representing the details of individual features of your system, UCDs

can be used to show all of its available functionality. It is important

to note, though, that UCDs are fundamentally different from

sequence diagrams or flow charts because they do not make any

attempt to represent the order or number of times that the systems
actions and sub-actions should be executed.

UCDs have only 4 major elements: The actors that the system you
are describing interacts with, the system itself, the use cases, or
services, that the system knows how to perform, and the lines that

represent relationships between these elements.

You should use UCDs to represent the functionality of your system

from a top-down perspective (that is, at a glance the system's

functionality is obvious, but all descriptions are at a very high level.
Further detail can later be added to the diagram to elucidate

interesting points in the system's behavior.)

Example: A UCD is well suited to the task of describing all of the

things that can be done with a database system, by all of the people

who might use it (administrators, developers, data entry

personnel.)

You should NOT use UCDs to represent exception behavior (when

errors happen) or to try to illustrate the sequence of steps that

must be performed in order to complete a task. Use Sequence

diagrams to show these design features.

Example: A UCD would be poorly suited to describing the TCP/IP
network protocol, because there are many exception cases,

branching behaviors, and conditional functionality (what happens

when a packet is lost or late, what about when the connection

39

dies?) The notation for a use case is an ellipse. Use cases may contain
the functionality of another use case as part of their normal processing. In

addition one use case may be used to extend the behavior of

another; this is typically used in exceptional circumstances.

How do you know who the actors are in a UCD?

When working from an Action/Response table, itentifying the actors
is easy: entities whose behavior appears in the "Actor's Actions"

column are the actors, and entities whose behavior appears in the

"System's Response" column are components in the system.

If you are working from an informal narrative, a sequence diagram,

or a scenario description, the actors are typically those entities

whose behavior cannot control or change (i.e., agents that are not

part of the system that you are building or describing.) The most

obvious candidates for actors are the humans in the system; except

in rare cases when the system you are describing is actually a

human process (such as a specific method of dealing with

customers that employees should follow) the humans that you must

interact with will all be actors. If your system interacts with other
systems (databases, servers maintained by other people, legacy

systems) you will be best to treat these as actors, also, since it is

not their behavior that you are interested in describing.

Example: When adding a new database system to manage a

company's finances, your system will probably have to interface

with their existing inventory management software. Since you didn't

write this software, don't intend to replace it, and only use the

services that it provides, it makes sense for that system to be an

actor.

Lab1: Draw an extended use case diagram for Loading a
document from a flash disk that require scanning for virus.

Result:

Use Case

40

Lab2: Present the use cases for a camera. Suppose we choose
"Open Shutter", "Flash", and "Close Shutter" as the top-level use

cases.

Note: Certainly these are all behaviors that a camera has, but no

photographer would ever pick up their camera, open the shutter,

and then put it down, satisfied with their photographic session for

the day. The crucial thing to realize is that these behaviors are not

done in isolation, but are rather a part of a more high-level use
case, "Take Picture". (Note as well that it does make sense for a

photographer to "Take Picture" just once during a session with their
camera.)

Results

Load File Run Antivirus to
scan

<<extend>>

41

EXERCISE
1. Develop an included use case diagram for the lab 1 above
2. Design a comprehensive use case that embed both include
and extend functionalities.

42

WEEK Eleven (practical)

Objectives

At the end of the practical week the students should

� Understand the meaning of state machines
� Model a real life machine operation using a state machine
diagram

STATE DIAGRAM

State diagrams are used to describe the behavior of a system. State

diagrams can describe the possible states of an object as events

occur. Each diagram usually represents objects of a single class and

track the different states of its objects through the system.

State diagram can be used to graphically represent finite state

machines.

Lab1: Create a state machine diagram for a computer system
from rest to processing state and shutting down.

Result:

 System

Desktop Boot Process

operation

Run Application

Close application

 Sleep

Hibernat
Activate

Shut Down

Create

Re-Start

43

Lab2: Create a state machine diagram showing the states that a

door goes through during its lifetime.

Result:

EXERCISE
1. Model a real life named machine operation using a state
machine diagram

2. Create a compound state machine diagram to model a
complex system containing sub systems.

44

WEEK Twelve (practical)

Objectives

At the end of the practical week the students should

� Be able to create communication link between events and
objects

� Understand the uses of sequence diagram and be able to
apply to a real life system.

COMMUNICATION MODEL

Communication diagrams show the message flow between objects

in an OO application and also imply the basic associations

(relationships) between classes.

Lab 1: Develop a simplified collaboration diagram for displaying a

seminar details screen or page.

Result:

45

Explanation

The rectangles represent the various objects involved that make up

the application. The lines between the classes represent the

relationships (associations, composition, dependencies, or

inheritance) between them. The same notation for classes and

objects used on UML sequence diagrams are used on UML

communication diagrams, another example of the consistency of the

UML. The details of your associations, such as their multiplicities,
are not modelled because this information is contained on your UML

class diagrams: remember, each UML diagram has its own specific

purpose and no single diagram is sufficient on its own. Messages

are depicted as a labelled arrow that indicates the direction of the
message, using a notation similar to that used on sequence

diagrams.

SEQUENCE DIAGRAM

The sequence diagram is used primarily to show the interactions
between objects in the sequential order that those interactions

occur. Much like the class diagram, developers typically think

sequence diagrams were meant exclusively for them. However, an

organization's business staff can find sequence diagrams useful to
communicate how the business currently works by showing how

various business objects interact. Besides documenting an

organization's current affairs, a business-level sequence diagram

can be used as a requirements document to communicate

requirements for a future system implementation. During the

requirements phase of a project, analysts can take use cases to the

next level by providing a more formal level of refinement. When

that occurs, use cases are often refined into one or more sequence

diagrams.

An organization's technical staff can find sequence diagrams useful
in documenting how a future system should behave. During the

design phase, architects and developers can use the diagram to

force out the system's object interactions, thus fleshing out overall

system design.

One of the primary uses of sequence diagrams is in the transition

from requirements expressed as use cases to the next and more

formal level of refinement. Use cases are often refined into one or

46

more sequence diagrams. In addition to their use in designing new

systems, sequence diagrams can be used to document how objects
in an existing (call it "legacy") system currently interact. This

documentation is very useful when transitioning a system to

another person or organization.

EXERCISE

1. Model a typical communication system for a local area
network using a router.

2. Create a sequence diagram for the above.

47

WEEK Thirteen (practical)

Objectives

At the end of the practical week the students should

� Understand and be able to create an overview diagram for a
life event.

� Understand the uses of Timing diagram.

INTERACTION OVERVIEW DIAGRAM

TIMING DIAGRAM
 UML timing diagrams are used to display the change in state or

value of one or more elements over time. It can also show the

interaction between timed events and the time and duration

constraints that govern them.

Timing diagrams depict the changes in state, or condition, of one or

more interacting objects over a given period of time. States, or

conditions, are displayed as timelines responding to message

events, where a lifeline represents a Classifier Instance or Classifier

Role.

A Timing diagram is a special form of a sequence diagram. The

difference is that the axes are reversed i.e. time increases from left

to right, and lifelines are shown in separate vertically stacked

compartments.

Timing diagrams are generally used when designing embedded

software or real-time systems.

TYPES OF TIMING DIAGRAM
There are two different types of timing diagram: one containing the

State/Condition timeline as shown above, and the other, the

48

General value lifeline, shown below

49

50

WEEK Fourteen (practical)

Objectives

At the end of the practical week the students should

� Understand the basis of using software tools for UML.
� Understand the basic requirement of any standard UML tools.

The UML Tool

A UML tool or UML modeling tool is a software application that

supports some or all of the notation and semantics associated with

the Unified Modeling Language (UML), which is the industry

standard general purpose modeling language for software

engineering.

UML tool is used broadly here to include application programs which

are not exclusively focused on UML, but which support some

functions of the Unified Modeling Language, either as an add-on, as

a component or as a part of their overall functionality.

Practical exercise
1. Research on at least two UML modelling tool and compare
their functionalities, interface, simplicity, acquisition, and their

requirements.

2. Adopt an UML tool and state it relevance to the computer
society

51

WEEK Fifteen (practical)

Objectives

At the end of the practical week the students should

� Understand the installation and usage of Altova UModel 2008
development tool.

Starting UModel

 Having installed UModel on your computer:

Start UModel by double-clicking the UModel icon on your desktop,

or use the Start | All Programs menu to access the UModel
program.

UModel is started with a default project "NewProject1" visible in the

interface.

Note the major parts of the user interface: the three panes on the

left hand side and the empty diagram pane at right.

Two default packages are visible in the Model Tree tab, "Root" and
"Component View". These two packages cannot be deleted or

renamed in a project.

52

To open the BankView-start project:

1. Select the menu option File | Open and navigate to the
...\UModelExamples folder of UModel.

2. Open the BankView-start.ump project file.
The project file is now loaded into UModel. Several

predefined packages are now visible under the Root

package

The Model Tree pane
supplies you with various views of your modeling project:

�

The Model Tree tab contains and displays all modeling elements

of your UModel project. Elements can be directly manipulated in

this tab using the standard editing keys as well as drag and drop.

�

The Diagram Tree tab allows you quick access to the modeling

diagrams of you project wherever they may be in the project
structure. Diagrams are grouped according to their diagram

type.

� The Favorites tab is a user-definable repository of modeling

53

elements. Any type of modeling element can be placed in this tab

using the "Add to Favorites" command of the context menu.

The Properties pane
 supplies you with two views of specific model properties:

�

The Properties tab displays the properties of the currently
selected element in the Model Tree pane or in the Diagram tab.

Element properties can defined or updated in this tab.

�

The Styles tab displays attributes of diagrams, or elements that

are displayed in the Diagram view. These style attributes fall into

two general groups: Formatting and display settings.

The Overview pane

displays two tabs:

�

The Overview tab, which displays an outline view of the
currently active diagram

�

The Documentation tab which allows you to document your
classes on a per-class basis.

	Cover
	Table of Contents
	WEEK One
	WEEK Two
	WEEK Three
	WEEK Four
	WEEK Five
	WEEK Six
	WEEK Seven
	WEEK Eight
	WEEK Nine
	WEEK Ten
	WEEK Eleven
	WEEK Twelve
	WEEK Thirteen
	WEEK Fourteen
	WEEK Fifteen
	Return to Table

