

Pg 1

YEAR 2-SEMESTER 1
THEORY

Version 1: December 2008

UNESCO-NIGERIA TECHNICAL &
VOCATIONAL EDUCATION

REVITALISATION PROJECT-PHASE II

NATIONAL DIPLOMA IN

COMPUTER TECHNOLOGY

(COM213)

Pg 2

TABLE OF CONTENTS

Table of Contents

OJECT ORIENTED TECHNIQUE ... 3

Overview .. 3

Fundamental concepts .. 4

History .. 7

UNIFIED MODELLING LANGUAGE (UML) – The General Overview 12

History .. 12

Before UML 1.x .. 13

UML 1.x .. 13

Development toward UML 2.0... 14

Unified Modeling Language topics ... 14

Methods .. 14

Modelling .. 15

Diagrams overview ... 15

THE STRUCTURE DIAGRAM – ... 21

COMPOSITE DIAGRAM... 42

THE COMPONENT DIAGRAM .. 48

OBJECT AND PACKAGE DIAGRAM .. 56

THE BEHAVIOUR DIAGRAM ... 64

THE USE CASE MODEL .. 73

THE STATE MACHINE MODEL ... 79

THE INTERACTION DIAGRAM ... 89

THE INTERACTION OVERVIEW DIAGRAM An interaction overview
diagram is a form of activity diagram in which the nodes represent
interaction diagrams. ... 101

THE UML TOOLS .. 106

Features in UML Tools ... 106

Popular UML Tools ... 109

Integration of UML Tools with Integrated Development
Environments (IDEs) ... 111

CASE TOOL APPLICATION ... 112

WEEK 1

WEEK 2

WEEK 3-4

WEEK 5

WEEK 6

WEEK 7

WEEK 8 DEPLOYMENT .. 60

WEEK 9

WEEK 10

WEEK 11

WEEK 12

WEEK 13

WEEK 14

WEEK 15

Pg 3

WEEK One

OJECT ORIENTED TECHNIQUE

Introduction

Overview

Object-oriented programming can trace its roots to the 1960s. As
hardware and software became increasingly complex, quality was
often compromised. Researchers studied ways in which software
quality could be maintained. Object-oriented programming was
deployed in part as an attempt to address this problem by strongly
emphasizing discrete units of programming logic and re-usability in
software. The computer programming methodology focuses on data
rather than processes, with programs composed of self-sufficient
modules (objects) containing all the information needed within its
own data structure for manipulation.

The Simula programming language was the first to introduce the
concepts underlying object-oriented programming (objects, classes,
subclasses, virtual methods, coroutines, garbage collection, and
discrete event simulation) as a superset of Algol. Simula was used
for physical modeling, such as models to study and improve the
movement of ships and their content through cargo ports. Smalltalk
was the first programming language to be called "object-oriented".

Object-oriented programming may be seen as a collection of
cooperating objects, as opposed to a traditional view in which a
program may be seen as a group of tasks to compute
("subroutines"). In OOP, each object is capable of receiving
messages, processing data, and sending messages to other objects.

Each object can be viewed as an independent little machine with a
distinct role or responsibility. The actions or "operators" on the
objects are closely associated with the object. For example, in
object oriented programming, the data structures tend to carry their
own operators around with them (or at least "inherit" them from a
similar object or "class"). The traditional approach tends to view
and consider data and behavior separately.

Pg 4

Fundamental concepts

A survey by Deborah J. Armstrong of nearly 40 years of computing
literature identified a number of ‘quarks’, or fundamental concepts,
found in the strong majority of definitions of OOP. They are the
following:

Class
Defines the abstract characteristics of a thing (object),
including the thing's characteristics (its attributes, fields or
properties) and the thing's behaviors (the things it can do,
or methods, operations or features). One might say that a
class is a blueprint or factory that describes the nature of
something. For example, the class Dog would consist of traits
shared by all dogs, such as breed and fur color
(characteristics), and the ability to bark and sit (behaviors).
Classes provide modularity and structure in an object-oriented
computer program. A class should typically be recognizable to
a non-programmer familiar with the problem domain,
meaning that the characteristics of the class should make
sense in context. Also, the code for a class should be
relatively self-contained (generally using encapsulation).
Collectively, the properties and methods defined by a class
are called members.

Object
A pattern (exemplar) of a class. The class of Dog defines all
possible dogs by listing the characteristics and behaviors they
can have; the object Lassie is one particular dog, with
particular versions of the characteristics. A Dog has fur; Lassie
has brown-and-white fur.

Instance
One can have an instance of a class or a particular object. The
instance is the actual object created at runtime. In
programmer jargon, the Lassie object is an instance of the
Dog class. The set of values of the attributes of a particular
object is called its state. The object consists of state and the
behaviour that's defined in the object's class.

Method
An object's abilities. In language, methods are verbs. Lassie,
being a Dog, has the ability to bark. So bark() is one of Lassie's
methods. She may have other methods as well, for example
sit() or eat() or walk() or save_timmy(). Within the program, using
a method usually affects only one particular object; all Dogs
can bark, but you need only one particular dog to do the
barking.

Message passing

Pg 5

“The process by which an object sends data to another object
or asks the other object to invoke a method.” [1] Also known
to some programming languages as interfacing. E.g. the
object called Breeder may tell the Lassie object to sit by passing
a 'sit' message which invokes Lassie's 'sit' method. The syntax
varies between languages, for example: [Lassie sit] in
Objective-C. In Java code-level message passing corresponds
to "method calling". Some dynamic languages use double-
dispatch or multi-dispatch to find and pass messages.

Inheritance
‘Subclasses’ are more specialized versions of a class, which
inherit attributes and behaviors from their parent classes, and
can introduce their own.
For example, the class Dog might have sub-classes called
Collie, Chihuahua, and GoldenRetriever. In this case, Lassie would
be an instance of the Collie subclass. Suppose the Dog class
defines a method called bark() and a property called furColor.
Each of its sub-classes (Collie, Chihuahua, and GoldenRetriever)
will inherit these members, meaning that the programmer
only needs to write the code for them once.
Each subclass can alter its inherited traits. For example, the
Collie class might specify that the default furColor for a collie is
brown-and-white. The Chihuahua subclass might specify that
the bark() method produces a high pitch by default. Subclasses
can also add new members. The Chihuahua subclass could add
a method called tremble(). So an individual chihuahua instance
would use a high-pitched bark() from the Chihuahua subclass,
which in turn inherited the usual bark() from Dog. The
chihuahua object would also have the tremble() method, but
Lassie would not, because she is a Collie, not a Chihuahua. In
fact, inheritance is an ‘is-a’ relationship: Lassie is a Collie. A
Collie is a Dog. Thus, Lassie inherits the methods of both Collies
and Dogs.
Multiple inheritance is inheritance from more than one
ancestor class, neither of these ancestors being an ancestor of
the other. For example, independent classes could define Dogs
and Cats, and a Chimera object could be created from these
two which inherits all the (multiple) behavior of cats and
dogs. This is not always supported, as it can be hard both to
implement and to use well.

Abstraction
Abstraction is simplifying complex reality by modelling classes
appropriate to the problem, and working at the most
appropriate level of inheritance for a given aspect of the
problem.
For example, Lassie the Dog may be treated as a Dog much of
the time, a Collie when necessary to access Collie-specific

Pg 6

attributes or behaviors, and as an Animal (perhaps the parent
class of Dog) when counting Timmy's pets.
Abstraction is also achieved through Composition. For
example, a class Car would be made up of an Engine,
Gearbox, Steering objects, and many more components. To
build the Car class, one does not need to know how the
different components work internally, but only how to
interface with them, i.e., send messages to them, receive
messages from them, and perhaps make the different objects
composing the class interact with each other.

Encapsulation
Encapsulation conceals the functional details of a class from
objects that send messages to it.
For example, the Dog class has a bark() method. The code for
the bark() method defines exactly how a bark happens (e.g.,
by inhale() and then exhale(), at a particular pitch and volume).
Timmy, Lassie's friend, however, does not need to know
exactly how she barks. Encapsulation is achieved by
specifying which classes may use the members of an object.
The result is that each object exposes to any class a certain
interface — those members accessible to that class. The
reason for encapsulation is to prevent clients of an interface
from depending on those parts of the implementation that are
likely to change in future, thereby allowing those changes to
be made more easily, that is, without changes to clients. For
example, an interface can ensure that puppies can only be
added to an object of the class Dog by code in that class.
Members are often specified as public, protected or
private, determining whether they are available to all
classes, sub-classes or only the defining class. Some
languages go further: Java uses the default access modifier
to restrict access also to classes in the same package, C# and
VB.NET reserve some members to classes in the same
assembly using keywords internal (C#) or Friend (VB.NET),
and Eiffel and C++ allow one to specify which classes may
access any member.

Polymorphism
Polymorphism allows the programmer to treat derived class
members just like their parent class' members. More
precisely, Polymorphism in object-oriented programming is
the ability of objects belonging to different data types to
respond to method calls of methods of the same name, each
one according to an appropriate type-specific behavior. One
method, or an operator such as +, -, or *, can be abstractly
applied in many different situations. If a Dog is commanded to
speak(), this may elicit a bark(). However, if a Pig is commanded
to speak(), this may elicit an oink(). They both inherit speak()

Pg 7

from Animal, but their derived class methods override the
methods of the parent class; this is Overriding Polymorphism.
Overloading Polymorphism is the use of one method
signature, or one operator such as ‘+’, to perform several
different functions depending on the implementation. The ‘+’
operator, for example, may be used to perform integer
addition, float addition, list concatenation, or string
concatenation. Any two subclasses of Number, such as Integer
and Double, are expected to add together properly in an OOP
language. The language must therefore overload the addition
operator, ‘+’, to work this way. This helps improve code
readability. How this is implemented varies from language to
language, but most OOP languages support at least some
level of overloading polymorphism. Many OOP languages also
support Parametric Polymorphism, where code is written
without mention of any specific type and thus can be used
transparently with any number of new types. Pointers are an
example of a simple polymorphic routine that can be used
with many different types of objects.[2]

Decoupling
Decoupling allows for the separation of object interactions
from classes and inheritance into distinct layers of
abstraction. A common use of decoupling is to polymorphically
decouple the encapsulation, which is the practice of using
reusable code to prevent discrete code modules from
interacting with each other.

Not all of the above concepts are to be found in all object-oriented
programming languages, and so object-oriented programming that
uses classes is called sometimes class-based programming. In
particular, prototype-based programming does not typically use
classes. As a result, a significantly different yet analogous
terminology is used to define the concepts of object and instance.

History

The concept of objects and instances in computing had its first
major breakthrough with the PDP-1 system at MIT which was
probably the earliest example of capability based architecture.
Another early example was Sketchpad made by Ivan Sutherland in
1963; however, this was an application and not a programming
paradigm. Objects as programming entities were introduced in the
1960s in Simula 67, a programming language designed for making
simulations, created by Ole-Johan Dahl and Kristen Nygaard of the
Norwegian Computing Center in Oslo. (Reportedly, the story is that
they were working on ship simulations, and were confounded by the

Pg 8

combinatorial explosion of how the different attributes from
different ships could affect one another. The idea occurred to group
the different types of ships into different classes of objects, each
class of objects being responsible for defining its own data and
behavior.)[citation needed] Such an approach was a simple extrapolation
of concepts earlier used in analog programming. On analog
computers, mapping from real-world phenomena/objects to analog
phenomena/objects (and conversely), was (and is) called
'simulation'. Simula not only introduced the notion of classes, but
also of instances of classes, which is probably the first explicit use
of those notions. The ideas of Simula 67 influenced many later
languages, especially Smalltalk and derivatives of Lisp and Pascal.

The Smalltalk language, which was developed at Xerox PARC in the
1970s, introduced the term Object-oriented programming to
represent the pervasive use of objects and messages as the basis
for computation. Smalltalk creators were influenced by the ideas
introduced in Simula 67, but Smalltalk was designed to be a fully
dynamic system in which classes could be created and modified
dynamically rather than statically as in Simula 67[3]. Smalltalk and
with it OOP were introduced to a wider audience by the August
1981 issue of Byte magazine.

In the 1970s, Kay's Smalltalk work had influenced the Lisp
community to incorporate object-based techniques which were
introduced to developers via the Lisp machine. In the 1980s, there
were a few attempts to design processor architectures which
included hardware support for objects in memory but these were
not successful. Examples include the Intel iAPX 432 and the Linn
Smart Rekursiv.

Object-oriented programming developed as the dominant
programming methodology during the mid-1990s, largely due to the
influence of C++[citation needed]. Its dominance was further enhanced
by the rising popularity of graphical user interfaces, for which
object-oriented programming seems to be well-suited. An example
of a closely related dynamic GUI library and OOP language can be
found in the Cocoa frameworks on Mac OS X, written in Objective C,
an object-oriented, dynamic messaging extension to C based on
Smalltalk. OOP toolkits also enhanced the popularity of event-driven
programming (although this concept is not limited to OOP). Some
feel that association with GUIs (real or perceived) was what
propelled OOP into the programming mainstream.

At ETH Zürich, Niklaus Wirth and his colleagues had also been
investigating such topics as data abstraction and modular
programming. Modula-2 included both, and their succeeding design,
Oberon, included a distinctive approach to object orientation,

Pg 9

classes, and such. The approach is unlike Smalltalk, and very unlike
C++.

Object-oriented features have been added to many existing
languages during that time, including Ada, BASIC, Fortran, Pascal,
and others. Adding these features to languages that were not
initially designed for them often led to problems with compatibility
and maintainability of code.

In the past decade Java has emerged in wide use partially because
of its similarity to C and to C++, but perhaps more importantly
because of its implementation using a virtual machine that is
intended to run code unchanged on many different platforms. This
last feature has made it very attractive to larger development shops
with heterogeneous environments. Microsoft's .NET initiative has a
similar objective and includes/supports several new languages, or
variants of older ones with the important caveat that it is, of course,
restricted to the Microsoft platform.

More recently, a number of languages have emerged that are
primarily object-oriented yet compatible with procedural
methodology, such as Python and Ruby. Besides Java, probably the
most commercially important recent object-oriented languages are
Visual Basic .NET (VB.NET) and C#, both designed for Microsoft's
.NET platform. VB.NET and C# both support cross-language
inheritance, allowing classes defined in one language to subclass
classes defined in the other language.

Recently many universities have begun to teach Object-oriented
design in introductory computer science classes.

Just as procedural programming led to refinements of techniques
such as structured programming, modern object-oriented software
design methods include refinements such as the use of design
patterns, design by contract, and modeling languages (such as
UML).

PROCEDURAL, STRUCTURED, AND OBJECT-ORIENTED
PROGRAMMING

Until recently, programs were thought of as a series of procedures
that acted upon data. A Procedure, or function, is a set of specific
instructions executed one after the other. The data was quite
separate from the procedures, and the trick in programming was to

Pg 10

keep track of which functions called which other functions, and what
data was changed. To make sense of this potentially confusing
situation, structured programming was created.

The principle idea behind Structured Programming is as simple
as the idea of divide and conquers. A computer program can be
thought of as consisting of a set of tasks. Any task that is too
complex to be described simply would be broken down into a set of
smaller component tasks, until the tasks were sufficiently small and
self-contained enough that they were easily understood.
Structured programming remains an enormously successful
approach for dealing with complex problems. By the late 1980s,
however, some of the deficiencies of structured programming had
became all too clear.
- First, it is natural to think of your data (employee records, for

example) and what you can do with your data (sort, edit, and
so on) as related ideas.

- Second, programmers found themselves constantly
reinventing new solutions to old problems. This is often called
"reinventing the wheel," and is the opposite of reusability.

The idea behind reusability is to build components that have known
properties, and then to be able to plug them into your program as
you need them. This is modelled after the hardware world--when an
engineer needs a new transistor, he doesn't usually invent one, he
goes to the big bin of transistors and finds one that works the way
he needs it to, or perhaps modifies it. There was no similar option
for a software engineer. The way we are now using computers--with
menus and buttons and windows--fosters a more interactive, event-
driven approach to computer programming. Event-driven means
that an event happens--the user presses a button or chooses from a
menu--and the program must respond. Programs are becoming
increasingly interactive, and it has become important to design for
that kind of functionality. Old-fashioned programs forced the user to
proceed step-by-step through a series of screens. Modern event-
driven programs present all the choices at once and respond to the
user's actions.
Object-Oriented Programming (OOP) attempts to respond to
these needs, providing techniques for managing enormous
complexity, achieving reuse of software components, and coupling
data with the tasks that manipulate that data.
The essence of object-oriented programming is to treat data and
the procedures that act upon the data as a single "object"--a self-
contained entity with an identity and certain characteristics of its
own.

Pg 11

The Pillars of OOP Development

When working with computers, it is very important to be
fashionable! In the 1960s, the new fashion was what were called
high-level languages such as FORTRAN and COBOL, in which the
programmer did not have to understand the machine instructions.
In the 1970s, people realized that there were better ways to
program than with a jumble of GOTO statements, and the
structured programming languages such as COBOL were invented.
In the 1980s, much time was invested in trying to get good results
out of fourth-generation languages (4Gls), in which complicated
programming structures could be coded in a few words (if you could
find the right words with so many words to choose from). There
were also schemes such as Analyst Workbenches, which made
systems analysts into highly paid and overqualified programmers.
The fashion of the 1990s is most definitely object-oriented
programming.

Importance of OOP

Definition: Object-oriented programming is a productivity tool.
Each of these features is a step on the road to reliable and
productive programming. By using pre-built libraries of code, you
can save time and still have the flexibility of altering the way that
they work to suit your own needs. With OOP there are lots of extra
features that encourage putting thought into structuring programs
so that they are more maintainable. By gathering code into
CLASSES, large programs are divided into small manageable
sections, in the same way that you divide small programs into
functions. This is very important, because the difficulty of
understanding pieces of code increases exponentially.

Pg 12

WEEK Two

UNIFIED MODELLING LANGUAGE (UML) – The General Overview

Introduction

The Unified Modelling Language (UML) is a graphical language for
visualizing, specifying and constructing the artifacts of a software-
intensive system. The Unified Modelling Language offers a standard
way to write a system's blueprints, including conceptual things such
as business processes and system functions as well as concrete
things such as programming language statements, database
schemas, and reusable software components. One of the purposes
of UML was to provide the development community with a stable
and common design language that could be used to develop and
build computer applications. UML brought forth a unified standard
modelling notation that IT professionals had been wanting for years.
Using UML, IT professionals could now read and disseminate system
structure and design plans -- just as construction workers have
been doing for years with blueprints of buildings.
It is now the twenty-first century and UML has gained traction in
our profession.

UML combines the best practice from data modelling concepts such
as entity relationship diagrams, business modelling (work flow),
object modelling and component modelling. It can be used with all
processes, throughout the software development life cycle, and
across different implementation technologies.

Standardization

UML is officially defined by the Object Management Group (OMG) as
the UML metamodel, a Meta-Object Facility metamodel (MOF). Like
other MOF-based specifications, UML has allowed software
developers to concentrate more on design and architecture.
UML models may be automatically transformed to other
representations (e.g. Java) by means of QVT-like transformation
languages, supported by the OMG.

History
History of Object Oriented methods and notation.

Pg 13

 Before UML 1.x

After Rational Software Corporation hired James Rumbaugh from
General Electric in 1994, the company became the source for the
two most popular object-oriented modeling approaches of the day:
Rumbaugh's OMT, which was better for object-oriented analysis
(OOA), and Grady Booch's Booch method, which was better for
object-oriented design (OOD). Together Rumbaugh and Booch
attempted to reconcile their two approaches and started work on a
Unified Method.
They were soon assisted in their efforts by Ivar Jacobson, the
creator of the object-oriented software engineering (OOSE) method.
Jacobson joined Rational in 1995, after his company, Objectory, was
acquired by Rational. The three methodologists were collectively
referred to as the Three Amigos, since they were well known to
argue frequently with each other regarding methodological
preferences.

In 1996 Rational concluded that the abundance of modeling
languages was slowing the adoption of object technology, so
repositioning the work on a Unified Method, they tasked the Three
Amigos with the development of a non-proprietary Unified Modeling
Language. Representatives of competing Object Technology
companies were consulted during OOPSLA '96, and chose boxes for
representing classes over Grady Booch's Booch method's notation
that used cloud symbols.
Under the technical leadership of the Three Amigos, an international
consortium called the UML Partners was organized in 1996 to
complete the Unified Modeling Language (UML) specification, and
propose it as a response to the OMG RFP. The UML Partners' UML
1.0 specification draft was proposed to the OMG in January 1997.
During the same month the UML Partners formed a Semantics Task
Force, chaired by Cris Kobryn and administered by Ed Eykholt, to
finalize the semantics of the specification and integrate it with other
standardization efforts. The result of this work, UML 1.1, was
submitted to the OMG in August 1997 and adopted by the OMG in
November 1997[3].

 UML 1.x
As a modeling notation, the influence of the OMT notation
dominates (e. g., using rectangles for classes and objects). Though
the Booch "cloud" notation was dropped, the Booch capability to
specify lower-level design detail was embraced. The use case
notation from Objectory and the component notation from Booch
were integrated with the rest of the notation, but the semantic
integration was relatively weak in UML 1.1, and was not really fixed
until the UML 2.0 major revision.

Pg 14

Concepts from many other OO methods were also loosely integrated
with UML with the intent that UML would support all OO methods.
For example CRC Cards (circa 1989 from Kent Beck and Ward
Cunningham), and OORam were retained. Many others contributed
too with their approaches flavoring the many models of the day
including: Tony Wasserman and Peter Pircher with the "Object-
Oriented Structured Design (OOSD)" notation (not a method), Ray
Buhr's "Systems Design with Ada", Archie Bowen's use case and
timing analysis, Paul Ward's data analysis and David Harel's
"Statecharts", as the group tried to ensure broad coverage in the
real-time systems domain. As a result, UML is useful in a variety of
engineering problems, from single process, single user applications
to concurrent, distributed systems, making UML rich but large.
The Unified Modeling Language is an international standard:

Development toward UML 2.0
UML has matured significantly since UML 1.1. Several minor
revisions (UML 1.3, 1.4, and 1.5) fixed shortcomings and bugs with
the first version of UML, followed by the UML 2.0 major revision that
was adopted by the OMG in 2005. There are four parts to the UML
2.x specification: the Superstructure that defines the notation and
semantics for diagrams and their model elements; the
Infrastructure that defines the core metamodel on which the
Superstructure is based; the Object Constraint Language (OCL) for
defining rules for model elements; and the UML Diagram
Interchange that defines how UML 2 diagram layouts are
exchanged. The current versions of these standards follow: UML
Superstructure version 2.1.2, UML Infrastructure version 2.1.2, OCL
version 2.0, and UML Diagram Interchange version 1.0.

Although many UML tools support some of the new features of UML
2.x, the OMG provides no test suite to objectively test compliance
with its specifications.

 Unified Modeling Language topics

Methods
UML is not a method by itself; however, it was designed to be
compatible with the leading object-oriented software development
methods of its time (for example OMT, Booch method, Objectory).
Since UML has evolved, some of these methods have been recast to
take advantage of the new notations (for example OMT), and new
methods have been created based on UML. The best known is IBM
Rational Unified Process (RUP). There are many other UML-based
methods like Abstraction Method, Dynamic Systems Development

Pg 15

Method, and others, designed to provide more specific solutions, or
achieve different objectives.

Modelling
It is very important to distinguish between the UML model and the
set of diagrams of a system. A diagram is a partial graphical
representation of a system's model. The model also contains a
"semantic backplane" — documentation such as written use cases
that drive the model elements and diagrams.
UML diagrams represent three different views of a system model:

• Functional requirements view: Emphasizes the functional
requirements of the system from the user's point of view. And
includes use case diagrams.

• Static structural view: Emphasizes the static structure of the
system using objects, attributes, operations and relationships.
And includes class diagrams and composite structure
diagrams.

• Dynamic behavior view: Emphasizes the dynamic behavior of
the system by showing collaborations among objects and
changes to the internal states of objects. And includes
sequence diagrams, activity diagrams and state machine
diagrams.

UML models can be exchanged among UML tools by using the XMI
interchange format.

Diagrams overview
UML 2.0 has 13 types of diagrams divided into three categories: Six
diagram types represent structure application structure, three
represent general types of behavior, and four represent different
aspects of interactions. These diagrams can be categorized
hierarchically as shown in the following Class diagram:

Pg 16

UML does not restrict UML element types to a certain diagram type.
In general, every UML element may appear on almost all types of
diagrams. This flexibility has been partially restricted in UML 2.0.
In keeping with the tradition of engineering drawings, a comment or
note explaining usage, constraint, or intent is always allowed in a
UML diagram.

 Structure diagrams

Structure diagrams emphasize what things must be in the system
being modeled:

• Class diagram: describes the structure of a system by
showing the system's classes, their attributes, and the
relationships among the classes.

• Component diagram: depicts how a software system is split
up into components and shows the dependencies among
these components.

• Composite structure diagram: describes the internal structure
of a class and the collaborations that this structure makes
possible.

• Deployment diagram serves to model the hardware used in
system implementations, the components deployed on the
hardware, and the associations among those components.

• Object diagram: shows a complete or partial view of the
structure of a modeled system at a specific time.

• Package diagram: depicts how a system is split up into logical
groupings by showing the dependencies among these
groupings.

Class diagram

Component
diagram

Composite
structure diagrams

Deployment
diagram

Object
diagram

Package
diagram

Pg 17

 Behavior diagrams
Behavior diagrams emphasize what must happen in the system
being modeled:

• Activity diagram: represents the business and operational
step-by-step workflows of components in a system. An
activity diagram shows the overall flow of control.

• State diagram: standardized notation to describe many
systems, from computer programs to business processes.

• Use case diagram: shows the functionality provided by a
system in terms of actors, their goals represented as use
cases, and any dependencies among those use cases.

UML Activity Diagram

State Machine diagram

Use case diagram

 Interaction diagrams

Interaction diagrams, a subset of behavior diagrams, emphasize the
flow of control and data among the things in the system being
modelled:

• Communication diagram shows the interactions between
objects or parts in terms of sequenced messages. They
represent a combination of information taken from Class,
Sequence, and Use Case Diagrams describing both the static
structure and dynamic behavior of a system.

• Interaction overview diagram: a type of activity diagram in
which the nodes represent interaction diagrams.

• Sequence diagram: shows how objects communicate with
each other in terms of a sequence of messages. Also indicates
the lifespans of objects relative to those messages.

• Timing diagrams: are a specific type of interaction diagram,
where the focus is on timing constraints.

Communication
diagram

Interaction overview
diagram

Sequence
diagram

The Protocol State Machine is a sub-variant of the State Machine. It
may be used to model network communication protocols.

Pg 18

The Relevance of UML to Software
People all over the world use common notations usually pictorial to
depict events, actions, operations or activities. Example is in the
fields of mathematics where signs such as +, =, - etc are common
and generally accepted arithmetic notations. With little or no
explanation everyone can easily understand what they mean.
Another mathematic example is diagram such as the one below;

Now this triangle is unambiguously a right angle triangle, because
the little square attached is a worldwide convention meaning "right
angle." Furthermore, the sides of the triangle can be labelled A, B,
and C:

And, immediately, we can write down that
A2 + B2 = C2

Now this has a few very endearing properties. First, it is once again
an example of a universal notation. Right angles, right triangles,
and the symbols representing them are the same all over the world;
someone from ancient Egypt could in principle reason about right
triangles with a modern Peruvian by drawing such diagrams. What's
more, once the diagram for the right triangle has been written
down, the relationship of A, B, and C is defined. A, B, and C can no
longer have completely arbitrary values; once any two of them are
specified, the third is determined as well. The diagram implies the
Pythagorean Theorem. One could even go so far as to say that the
diagram has some "semantics," that there is a well-understood
relationship between the picture and the values implied by the
letters.

Pg 19

What is truly amazing about this example is that anyone with a high
school education can understand it. If the person has seen any
geometry at all, they have seen triangles and right triangles, and if
they remember anything at all from their geometry, it is good old
Pythagoras.

We can say that not only in mathematics but in all other fields
progress is made by having a common notation that can be used to
express concepts, and how diagrams begin to take on precision and
meaning once we attach semantics to the pictures. The most useful
of these notations are understood the world over.

But before 1996 there was no common notation for software. Before
the UML became an international standard, two software engineers,
even if they spoke the same language, had no way to talk about
their software. There were no conventions that were universally
accepted around the world for describing software. No wonder
progress was slow!

With the advent of the UML, however, software engineers have a
common graphic vocabulary for talking about software. They can
draw progressively complex diagrams to represent their software,
just the way electrical engineers can draw progressively complex
diagrams to represent their circuits.

An electrical circuit

Things like nested diagrams become possible, so different levels of
abstraction can now be expressed.
Rational's contribution in this area is huge. By formulating the UML
and bringing the world's most influential companies -- IBM,
Microsoft, HP, Oracle, etc.-- to agree on it was a major step.
Getting an international standards body -- the Object Management
Group – (OMG) to ratify it as a standard was the formal process

Pg 20

that irreversibly cast the die. Everyone agreed to end the Tower of
Babel approach and also agreed about how to talk about software.
The significance of the UML is now established, and we can move
on.

Pg 21

WEEK Three

THE STRUCTURE DIAGRAM –

Introduction

The structure diagrams show the static structure of the system
being modelled; focusing on the elements of a system, irrespective
of time. Static structure is conveyed by showing the types and their
instances in the system. Besides showing system types and their
instances, structure diagrams also show at least some of the
relationships among and between these elements and potentially
even show their internal structure.
Structure diagrams are useful throughout the software lifecycle for
a variety of team members. In general, these diagrams allow for
design validation and design communication between individuals
and teams. For example, business analysts can use class or object
diagrams to model a business's current assets and resources, such
as account ledgers, products, or geographic hierarchy. Architects
can use the component and deployment diagrams to test/verify that
their design is sound. Developers can use class diagrams to design
and document the system's coded (or soon-to-be-coded) classes.

The Structure diagrams and its various components are highlighted
as below.

The class diagram

Pg 22

The Class diagram describes the structure of a system by showing
the system's classes, their attributes, and the relationships among
the classes.

UML 2 considers structure diagrams as a classification; there is no
diagram itself called a "Structure Diagram." However, the class
diagram offers a prime example of the structure diagram type, and
provides us with an initial set of notation elements that all other
structure diagrams use. And because the class diagram is so
foundational, the remainder of this article will focus on the class
diagram's notation set. By the end of this article you should have an
understanding of how to draw a UML 2 class diagram and have a
solid footing for understanding other structure diagrams when we
cover them in later articles.

The basics of Class Diagram
It is more important than ever in UML 2 to understand the basics of
the class diagram. This is because the class diagram provides the
basic building blocks for all other structure diagrams, such as the
component or object diagrams.

As mentioned earlier, the purpose of the class diagram is to show
the types being modelled within the system. In most UML models
these types include:

• a class

• an interface

• a data type

• a component.

UML uses a special name for these types: "classifiers." Generally,
you can think of a classifier as a class, but technically a classifier is
a more general term that refers to the other three types above as
well.

Class name
The UML representation of a class is a rectangle containing three
compartments stacked vertically, as shown in Figure 3.1. The top
compartment shows the class's name. The middle compartment lists
the class's attributes. The bottom compartment lists the class's
operations. When drawing a class element on a class diagram, you
must use the top compartment, and the bottom two compartments

Pg 23

are optional. (The bottom two would be unnecessary on a diagram
depicting a higher level of detail in which the purpose is to show
only the relationship between the classifiers.) Figure 3.1 shows an
airline flight modelled as a UML class. As we can see, the name is
Flight, and in the middle compartment we see that the Flight class
has three attributes: flightNumber, departureTime, and
flightDuration. In the bottom compartment we see that the Flight
class has two operations: delayFlight and getArrivalTime.

Figure 1: Class diagram for the class Flight

Class attribute list
The attribute section of a class (the middle compartment) lists each
of the class's attributes on a separate line. The attribute section is
optional, but when used it contains each attribute of the class
displayed in a list format. The line uses the following format:

name : attribute type

flightNumber : Integer

Continuing with our Flight class example, we can describe the
class's attributes with the attribute type information, as shown in
Table 3.1.

Table 3.1: The Flight class's attribute names with their associated
types

Attribute Name Attribute Type

flightNumber Integer

departureTime Date

flightDuration Minutes

Pg 24

In business class diagrams, the attribute types usually correspond
to units that make sense to the likely readers of the diagram (i.e.,
minutes, dollars, etc.). However, a class diagram that will be used
to generate code needs classes whose attribute types are limited to
the types provided by the programming language, or types included
in the model that will also be implemented in the system.
Sometimes it is useful to show on a class diagram that a particular
attribute has a default value. (For example, in a banking account
application a new bank account would start off with a zero balance.)
The UML specification allows for the identification of default values
in the attribute list section by using the following notation:

name : attribute type = default value

For example:

balance : Dollars = 0

Showing a default value for attributes is optional; Figure 3.2 shows
a Bank Account class with an attribute called balance, which has a
default value of 0.

Figure 3.2: A Bank Account class diagram showing the balance attribute's

value defaulted to zero dollars.

Class operations list
The class's operations are documented in the third (lowest)
compartment of the class diagram's rectangle, which again is
optional. Like the attributes, the operations of a class are displayed
in a list format, with each operation on its own line. Operations are
documented using the following notation:

name(parameter list) : type of value returned

The Flight class's operations are mapped in Table 2 below.

Pg 25

Table 3.2: Flight class's operations mapped from Figure 3.2

Operation Name Parameters Return Value Type

delayFlight Name Type

numberOfMinutes Minutes

N/A

getArrivalTime N/A Date

Figure 3.3 shows that the delayFlight operation has one input
parameter -- numberOfMinutes -- of the type Minutes. However, the
delayFlight operation does not have a return value. When an
operation has parameters, they are put inside the operation's
parentheses; each parameter uses the format "parameter name :
parameter type".

Figure 3.3: The Flight class operations parameters include the optional

"in" marking.

When documenting an operation's parameters, you may use an
optional indicator to show whether or not the parameter is input to,
or output from, the operation. This optional indicator appears as an
"in" or "out" as shown in the operations compartment in Figure 2.
Typically, these indicators are unnecessary unless an older
programming language such as Fortran will be used, in which case
this information can be helpful. However, in C++ and Java, all
parameters are "in" parameters and since "in" is the parameter's
default type according to the UML specification, most people will
leave out the input/output indicators.

Inheritance

Pg 26

A very important concept in object-oriented design, inheritance,
refers to the ability of one class (child class) to inherit the identical
functionality of another class (super class), and then add new
functionality of its own. (In a very non-technical sense, imagine that
I inherited my mother's general musical abilities, but in my family
I'm the only one who plays electric guitar.) To model inheritance on
a class diagram, a solid line is drawn from the child class (the class
inheriting the behavior) with a closed, unfilled arrowhead (or
triangle) pointing to the super class. Consider types of bank
accounts: Figure 3.4 shows how both CheckingAccount and
SavingsAccount classes inherit from the BankAccount class.

Figure 3.4: Inheritance is indicated by a solid line with a closed, unfilled

arrowhead pointing at the super class.

In Figure 3.4, the inheritance relationship is drawn with separate
lines for each subclass, which is the method used in IBM Rational
Rose and IBM Rational XDE. However, there is an alternative way to
draw inheritance called tree notation. You can use tree notation
when there are two or more child classes, as in Figure 3.4, except
that the inheritance lines merge together like a tree branch. Figure
3.5 is a redrawing of the same inheritance shown in Figure 3.4, but
this time using tree notation.

Pg 27

Figure 3.5: An example of inheritance using tree notation

Abstract classes and operations
The observant reader will notice that the diagrams in Figures 3.4
and 3.5 use italicized text for the BankAccount class name and
withdrawal operation. This indicates that the BankAccount class is
an abstract class and the withdrawal method is an abstract
operation. In other words, the BankAccount class provides the
abstract operation signature of withdrawal and the two child classes
of CheckingAccount and SavingsAccount each implement their own
version of that operation.
However, super classes (parent classes) do not have to be abstract
classes. It is normal for a standard class to be a super class.

Associations
When you model a system, certain objects will be related to each
other, and these relationships themselves need to be modelled for
clarity. There are five types of associations. -- bi-directional, uni-
directional associations, Association class, Aggregation, and
Reflexive associations --

Bi-directional (standard) association
An association is a linkage between two classes. Associations are
always assumed to be bi-directional; this means that both classes
are aware of each other and their relationship, unless you qualify
the association as some other type. Going back to our Flight
example, Figure 3.6 shows a standard kind of association between
the Flight class and the Plane class.

Pg 28

Figure 3.6: An example of a bi-directional association between a Flight

class and a Plane class

A bi-directional association is indicated by a solid line between the
two classes. At either end of the line, you place a role name and a
multiplicity value. Figure 3.6 shows that the Flight is associated with
a specific Plane, and the Flight class knows about this association.
The Plane takes on the role of "assignedPlane" in this association
because the role name next to the Plane class says so. The
multiplicity value next to the Plane class of 0..1 means that when
an instance of a Flight exists, it can either have one instance of a
Plane associated with it or no Planes associated with it (i.e., maybe
a plane has not yet been assigned). Figure 3.6 also shows that a
Plane knows about its association with the Flight class. In this
association, the Flight takes on the role of "assignedFlights"; the
diagram in Figure 3.6 tells us that the Plane instance can be
associated either with no flights (e.g., it's a brand new plane) or
with up to an infinite number of flights (e.g., the plane has been in
commission for the last five years).
For those wondering what the potential multiplicity values are for
the ends of associations, Table 3.3 below lists some example
multiplicity values along with their meanings.

Table 3.3: Multiplicity values and their indicators

Potential Multiplicity Values

Indicator Meaning

0..1 Zero or one

1 One only

0..* Zero or more

* Zero or more

1..* One or more

3 Three only

0..5 Zero to Five

Pg 29

5..15 Five to Fifteen

Uni-directional association
In a uni-directional association, two classes are related, but only
one class knows that the relationship exists. Figure 3.7 shows an
example of an overdrawn accounts report with a uni-directional
association.

Figure 3.7: An example of a uni-directional association:

The OverdrawnAccountsReport class knows about the
BankAccount class, but the BankAccount class does not know

about the association.
A uni-directional association is drawn as a solid line with an open
arrowhead (not the closed arrowhead, or triangle, used to indicate
inheritance) pointing to the known class. Like standard associations,
the uni-directional association includes a role name and a
multiplicity value, but unlike the standard bi-directional association,
the uni-directional association only contains the role name and
multiplicity value for the known class. In our example in Figure 3.7,
the OverdrawnAccountsReport knows about the BankAccount class,
and the BankAccount class plays the role of "overdrawnAccounts."
However, unlike a standard association, the BankAccount class has
no idea that it is associated with the OverdrawnAccountsReport.

Association class
In modeling an association, there are times when you need to
include another class because it includes valuable information about
the relationship. For this you would use an association class that
you tie to the primary association. An association class is
represented like a normal class. The difference is that the
association line between the primary classes intersects a dotted line
connected to the association class. Figure 3.8 shows an association
class for our airline industry example.

Pg 30

Figure 3.8: Adding the association class MileageCredit

In the class diagram shown in Figure 11, the association between
the Flight class and the FrequentFlyer class results in an association
class called MileageCredit. This means that when an instance of a
Flight class is associated with an instance of a FrequentFlyer class,
there will also be an instance of a MileageCredit class.

Aggregation
Aggregation is a special type of association used to model a "whole
to its parts" relationship. In basic aggregation relationships, the
lifecycle of a part class is independent from the whole class's
lifecycle.
For example, we can think of Car as a whole entity and Car Wheel
as part of the overall Car. The wheel can be created weeks ahead of
time, and it can sit in a warehouse before being placed on a car
during assembly. In this example, the Wheel class's instance clearly
lives independently of the Car class's instance. However, there are
times when the part class's lifecycle is not independent from that of
the whole class -- this is called composition aggregation. Consider,
for example, the relationship of a company to its departments. Both
Company and Departments are modelled as classes, and a
department cannot exist before a company exists. Here the
Department class's instance is dependent upon the existence of the
Company class's instance.
Let's explore basic aggregation and composition aggregation
further.

Basic aggregation
An association with an aggregation relationship indicates that one
class is a part of another class. In an aggregation relationship, the
child class instance can outlive its parent class. To represent an
aggregation relationship, you draw a solid line from the parent class
to the part class, and draw an unfilled diamond shape on the parent
class's association end. Figure 3.9 shows an example of an
aggregation relationship between a Car and a Wheel.

Pg 31

Figure 3.9: Example of an aggregation association

Composition aggregation
The composition aggregation relationship is just another form of the
aggregation relationship, but the child class's instance lifecycle is
dependent on the parent class's instance lifecycle. In Figure 3.10,
which shows a composition relationship between a Company class
and a Department class, notice that the composition relationship is
drawn like the aggregation relationship, but this time the diamond
shape is filled.

Figure 3.10: Example of a composition relationship

In the relationship modelled in Figure 3.10, a Company class
instance will always have at least one Department class instance.
Because the relationship is a composition relationship, when the
Company instance is removed/destroyed, the Department instance
is automatically removed/destroyed as well. Another important
feature of composition aggregation is that the part class can only be
related to one instance of the parent class (e.g. the Company class
in our example).

Reflexive associations
We have now discussed all the association types. As you may have
noticed, all our examples have shown a relationship between two
different classes. However, a class can also be associated with itself,
using a reflexive association. This may not make sense at first, but
remember that classes are abstractions. Figure 3.11 shows how an
Employee class could be related to itself through the
manager/manages role. When a class is associated to itself, this
does not mean that a class's instance is related to itself, but that an
instance of the class is related to another instance of the class.

Pg 32

Figure 3.11: Example of a reflexive association relationship

The relationship drawn in Figure 3.12 means that an instance of
Employee can be the manager of another Employee instance.
However, because the relationship role of "manages" has a
multiplicity of 0..*; an Employee might not have any other
Employees to manage.

Pg 33

WEEK Four

Packages
Inevitably, if you are modelling a large system or a large area of a
business, there will be many different classifiers in your model.
Managing all the classes can be a daunting task; therefore, UML
provides an organizing element called a package. Packages enable
modellers to organize the model's classifiers into namespaces,
which is sort of like folders in a filing system. Dividing a system into
multiple packages makes the system easier to understand,
especially if each package represents a specific part of the system.
There are two ways of drawing packages on diagrams. There is no
rule for determining which notation to use, except to use your
personal judgement regarding which is easiest to read for the class
diagram you are drawing. Both ways begin with a large rectangle
with a smaller rectangle (tab) above its upper left corner, as seen in
Figure 3.13. But the modeller must decide how the package's
membership is to be shown, as follows:

• If the modeller decides to show the package's members within
the large rectangle, then all those members need to be placed
within the rectangle. Also the package's name needs to be
placed in the package's smaller rectangle (as shown in Figure
3.12).

• If the modeller decides to show the package's members
outside the large rectangle then all the members that will be
shown on the diagram need to be placed outside the
rectangle. To show what classifiers belong to the package, a
line is drawn from each classifier to a circle that has a plus
sign inside the circle attached to the package (Figure 3.13).

Pg 34

Figure 3.12: An example package element that shows its members inside

the package's rectangle boundaries

Pg 35

Figure 3.13: An example package element showing its membership via

connected lines

Interfaces
Earlier in this article, it is suggested that you think of classifiers
simply as classes. In fact, a classifier is a more general concept,
which includes data types and interfaces.
So why do I mention data types and interfaces here? There are
times when you might want to model these classifier types on a
structure diagram, and it is important to use the proper notation in
doing so, or at least be aware of these classifier types. Drawing
these classifiers incorrectly will likely confuse readers of your
structure diagram, and the ensuing system will probably not meet
requirements.

Pg 36

A class and an interface differ: A class can have an actual instance
of its type, whereas an interface must have at least one class to
implement it. In UML 2, an interface is considered to be a
specialization of a class modelling element. Therefore, an interface
is drawn just like a class, but the top compartment of the rectangle
also has the text "«interface»", as shown in Figure 3.14

Figure 3.14: Example of a class diagram in which the Professor and

Student classes implement the Person interface

In the diagram shown in Figure 3.14, both the Professor and
Student classes implement the Person interface and do not inherit
from it. We know this for two reasons:
1) The Person object is defined as an interface -- it has the
"«interface»" text in the object's name area, and we see that the
Professor and Student objects are class objects because they are
labelled according to the rules for drawing a class object (there is
no additional classification text in their name area).
2) We know inheritance is not being shown here, because the line
with the arrow is dotted and not solid. As shown in Figure 3.15, a
dotted line with a closed, unfilled arrow means realization (or
implementation); as we saw in Figure 3.4, a solid arrow line with a
closed, unfilled arrow means inheritance.

Visibility
In object-oriented design, there is a notation of visibility for
attributes and operations. UML identifies four types of visibility:
public, protected, private, and package.

Pg 37

The UML specification does not require attributes and operations
visibility to be displayed on the class diagram, but it does require
that it be defined for each attribute or operation. To display visibility
on the class diagram, you place the visibility mark in front of the
attribute's or operation's name. Though UML specifies four visibility
types, an actual programming language may add additional
visibilities, or it may not support the UML-defined visibilities. Table
3.4 displays the different marks for the UML-supported visibility
types.

Table 3.4: Marks for UML-supported visibility types

Mark Visibility type

+ Public

Protected

- Private

~ Package

Now, let's look at a class that shows the visibility types indicated for
its attributes and operations. In Figure 3.15, all the attributes and
operations are public, with the exception of the updateBalance
operation. The updateBalance operation is protected.

Figure 3.15: A BankAccount class that shows the visibility of its

attributes and operations

Instances
When modelling a system's structure it is sometimes useful to show
example instances of the classes. To model this, UML 2 provides the

Pg 38

instance specification element, which shows interesting information
using example (or real) instances in the system.
The notation of an instance is the same as a class, but instead of
the top compartment merely having the class's name, the name is
an underlined concatenation of:

For example:

Donald : Person

Because the purpose of showing instances is to show interesting or
relevant information, it is not necessary to include in your model
the entire instance's attributes and operations. Instead it is
completely appropriate to show only the attributes and their values
that are interesting as depicted in Figure 3.16.

Figure 3.16: An example instance of a Plane class (only the interesting

attribute values are shown)

However, merely showing some instances without their relationship
is not very useful; therefore, UML 2 allows for the modelling of the
relationships/associations at the instance level as well. The rules for
drawing associations are the same as for normal class relationships,
although there is one additional requirement when modelling the
associations. The additional restriction is that association
relationships must match the class diagram's relationships and
therefore the association's role names must also match the class
diagram. An example of this is shown in Figure 3.17. In this
example the instances are example instances of the class diagram
found in Figure 3.6.

Instance Name : Class Name

Pg 39

Figure 3.17: An example of Figure 3.6 using instances instead of classes

Figure 3.17 has two instances of the Flight class because the class
diagram indicated that the relationship between the Plane class and
the Flight class is zero-to-many. Therefore, our example shows the
two Flight instances that the NX0337 Plane instance is related to.

Roles
Modelling the instances of classes is sometimes more detailed than
one might wish. Sometimes, you may simply want to model a
class's relationship at a more generic level. In such cases, you
should use the role notation. The role notation is very similar to the
instances notation. To model a class's role, you draw a box and
place the class's role name and class name inside as with the
instances notation, but in this case you do not underline the words.
Figure 3.18 shows an example of the roles played by the Employee
class described by the diagram at Figure 3.11. In Figure 3.18, we
can tell, even though the Employee class is related to itself, that the
relationship is really between an Employee playing the role of
manager and an Employee playing the role of team member.

Figure 3.18: A class diagram showing the class in Figure 14 in its

different roles

Note that you cannot model a class's role on a plain class diagram,
even though Figure 18 makes it appear that you can. In order to
use the role notation you will need to use the Internal Structure
notation, discussed next.

Pg 40

Internal Structures
One of the more useful features of UML 2 structure diagrams is the
new internal structure notation. It allows you to show how a class or
another classifier is internally composed. This was not possible in
UML 1.x, because the notation set limited you to showing only the
aggregation relationships that a class had. Now, in UML 2, the
internal structure notation lets you more clearly show how that
class's parts relate to each other.

Let's look at an example. In Figure 3.18 we have a class diagram
showing how a Plane class is composed of four engines and two
control software objects. What is missing from this diagram is any
information about how airplane parts are assembled. From the
diagram in Figure 3.18, you cannot tell if the control software
objects control two engines each, or if one control software object
controls three engines and the other controls one engine.

Figure 3.19: A class diagram that only shows relationships between the

objects

Drawing a class's internal structure will improve this situation. You
start by drawing a box with two compartments. The top
compartment contains the class name, and the lower compartment
contains the class's internal structure, showing the parent class's
part classes in their respective roles, as well as how each particular
class relates to others in that role. Figure 3.19 shows the internal
structure of Plane class; notice how the internal structure clears up
the confusion.

Pg 41

Figure3. 20: An example internal structure of a Plane class.

In Figure 3.20 the Plane has two ControlSoftware objects and each
one controls two engines. The ControlSoftware on the left side of
the diagram (control1) controls engines 1 and 2. The
ControlSoftware on the right side of the diagram (control2) controls
engines 3 and 4.

Conclusion
There are at least two important reasons for understanding the
class diagram.

The first is that it shows the static structure of classifiers in a
system; the second reason is that the diagram provides the basic
notation for other structure diagrams prescribed by UML.

Developers will think the class diagram was created specially for
them; but other team members will find them useful, too.

Business analysts can use class diagrams to model systems from
the business perspective.

Pg 42

WEEK Five

COMPOSITE DIAGRAM

Introduction

A composite structure diagram is a diagram that shows the internal
structure of a classifier, including its interaction points to other
parts of the system. It shows the configuration and relationship of
parts, that together, perform the behavior of the containing
classifier.

Class elements have been described in great detail in the section on
class diagrams. This section describes the way classes can be
displayed as composite elements exposing interfaces and containing
ports and parts.

Part

A part is an element that represents a set of one or more instances
which are owned by a containing classifier instance. So for example,
if a diagram instance owned a set of graphical elements, then the
graphical elements could be represented as parts; if it were useful
to do so, to model some kind of relationship between them. Note
that a part can be removed from its parent before the parent is
deleted, so that the part isn't deleted at the same time.

A part is shown as an unadorned rectangle contained within the
body of a class or component element.

Pg 43

Port
A port is a typed element that represents an externally visible part
of a containing classifier instance. Ports define the interaction
between a classifier and its environment. A port can appear on the
boundary of a contained part, a class or a composite structure. A
port may specify the services a classifier provides as well as the
services that it requires of its environment.

A port is shown as a named rectangle on the boundary edge of its
owning classifier.

Pg 44

Interfaces
An interface is similar to a class but with a number of restrictions.
All interface operations are public and abstract, and do not provide
any default implementation. All interface attributes must be
constants. However, while a class may only inherit from a single
super-class, it may implement multiple interfaces.

An interface, when standing alone in a diagram, is either shown as
a class element rectangle with the «interface» keyword and with its
name italicized to denote it is abstract, or it is shown as a circle.

Note that the circle notation does not show the interface operations.
When interfaces are shown as being owned by classes, they are
referred to as exposed interfaces. An exposed interface can be
defined as either provided or required. A provided interface is an
affirmation that the containing classifier supplies the operations
defined by the named interface element and is defined by drawing a
realization link between the class and the interface. A required
interface is a statement that the classifier is able to communicate
with some other classifier which provides operations defined by the
named interface element and is defined by drawing a dependency
link between the class and the interface.

A provided interface is shown as a "ball on a stick" attached to the
edge of a classifier element. A required interface is shown as a "cup
on a stick" attached to the edge of a classifier element.

Pg 45

Delegate
A delegate connector is used for defining the internal workings of a
component's external ports and interfaces. A delegate connector is
shown as an arrow with a «delegate» keyword. It connects an
external contract of a component as shown by its ports to the
internal realization of the behavior of the component's part.

Collaboration
A collaboration defines a set of co-operating roles used collectively
to illustrate a specific functionality. A collaboration should only show
the roles and attributes required to accomplish its defined task or
function. Isolating the primary roles is an exercise in simplifying the
structure and clarifying the behavior, and also provides for re-use. A

Pg 46

collaboration often implements a pattern.

A collaboration element is shown as an ellipse.

Role Binding
A role binding connector is drawn from a collaboration to the
classifier that fulfils the role. It is shown as a dashed line with the
name of the role at the classifier end.

Represents
A represents connector may be drawn from a collaboration to a
classifier to show that a collaboration is used in the classifier. It is
shown as a dashed line with arrowhead and the keyword
«represents».

Pg 47

Occurrence
An occurrence connector may be drawn from a collaboration to a
classifier to show that a collaboration represents (sic) the classifier.
It is shown as a dashed line with arrowhead and the keyword
«occurrence».

Pg 48

WEEK Six

THE COMPONENT DIAGRAM
Component Diagram depicts how a software system is split up into
components and shows the dependencies among these
components.

Introduction

The component diagram's main purpose is to show the structural
relationships between the components of a system. In UML 1.1, a
component represented implementation items, such as files and
executables. Unfortunately, this conflicted with the more common
use of the term component," which refers to things such as COM
components. Over time and across successive releases of UML, the
original UML meaning of components was mostly lost. UML 2
officially changes the essential meaning of the component concept;
in UML 2, components are considered autonomous, encapsulated
units within a system or subsystem that provide one or more
interfaces. Although the UML 2 specification does not strictly state
it, components are larger design units that represent things that will
typically be implemented using replaceable" modules. But, unlike
UML 1.x, components are now strictly logical, design-time
constructs. The idea is that you can easily reuse and/or substitute a
different component implementation in your designs because a
component encapsulates behavior and implements specified
interfaces.

In component-based development (CBD), component diagrams
offer architects a natural format to begin modelling a solution.
Component diagrams allow an architect to verify that a system's
required functionality is being implemented by components, thus
ensuring that the eventual system will be acceptable.
In addition, component diagrams are useful communication tools for
various groups. The diagrams can be presented to key project
stakeholders and implementation staff. While component diagrams
are generally geared towards a system's implementation staff,
component diagrams can generally put stakeholders at ease
because the diagram presents an early understanding of the overall
system that is being built.

Developers find the component diagram useful because it provides
them with a high-level, architectural view of the system that they
will be building, which helps developers begin formalizing a
roadmap for the implementation, and make decisions about task
assignments and/or needed skill enhancements. System

Pg 49

administrators find component diagrams useful because they get an
early view of the logical software components that will be running
on their systems. Although system administrators will not be able to
identify the physical machines or the physical executables from the
diagram, a component diagram will nevertheless be welcomed
because it provides early information about the components and
their relationships (which allows sys-admins to loosely plan ahead).

The notation
The component diagram notation set now makes it one of the
easiest UML diagrams to draw. Figure 6.1 shows a simple
component diagram using the former UML 1.4 notation; the
example shows a relationship between two components: an Order
System component that uses the Inventory System component. As
you can see, a component in UML 1.4 was drawn as a rectangle
with two smaller rectangles protruding from its left side.

Figure 5.1: This simple component diagram shows the Order System's

general dependency using UML 1.4 notation

The above UML 1.4 notation is still supported in UML 2. However,
the UML 1.4 notation set did not scale well in larger systems. For
that reason, UML 2 dramatically enhances the notation set of the
component diagram, as we will see throughout the rest of this
article. The UML 2 notation set scales better, and the notation set is
also more informative while maintaining its ease of understanding.
Let's step through the component diagram basics according to UML
2.

Pg 50

The basics of Component Diagram
Drawing a component in UML 2 is now very similar to drawing a
class on a class diagram. In fact, in UML 2 a component is merely a
specialized version of the class concept. Which means that the
notation rules that apply to the class classifier also apply to the
component classifier.

In UML 2, a component is drawn as a rectangle with optional
compartments stacked vertically. A high-level, abstracted view of a
component in UML 2 can be modelled as just a rectangle with the
component's name and the component stereotype text and/or icon.
The component stereotype's text is «component»" and the
component stereotype icon is a rectangle with two smaller
rectangles protruding on its left side (the UML 1.4 notation element
for a component). Figure 6.2 shows three different ways a
component can be drawn using the UML 2 specification.

Figure 6.2: The different ways to draw a component's name compartment

When drawing a component on a diagram, it is important that you
always include the component stereotype text (the word
"component" inside double angle brackets, as shown in Figure 6.2)
and/or icon. The reason? In UML, a rectangle without any
stereotype classifier is interpreted as a class element. The
component stereotype and/or icon distinguishes this rectangle as a
component element.

Modelling a component's interfaces

Provided/Required
The Order components drawn in Figure 6.2 all represent valid
notation elements; however, a typical component diagram includes
more information. A component element can have additional
compartments stacked below the name compartment. As mentioned
earlier, a component is an autonomous unit that provides one or
more public interfaces. The interfaces provided represent the formal
contract of services the component provides to its
consumers/clients. Figure 6.3 shows the Order component having a
second compartment that denotes what interfaces the Order
component provides and requires.

Pg 51

Figure 6.3: The additional compartment here shows the interfaces that

the Order component provides and requires.

In the example Order component shown in Figure 6.3, the
component provides the interfaces of OrderEntry and
AccountPayable. Additionally, the component also requires another
component that provides the Person interface.

Another approach to modelling a component's

interfaces
UML 2 has also introduced another way to show a component's
provided and required interfaces. This second way builds off the
single rectangle, with the component's name in it, and places what
the UML 2 specification calls interface symbols" connected to the
outside of the rectangle. This second approach is illustrated in
Figure 6.4.

Figure 6.4: An alternative approach (compare with Figure 6.3) to

showing a component's provided/required interfaces using interface

symbols

Pg 52

In this second approach the interface symbols with a complete circle
at their end represent an interface that the component provides --
this lollipop" symbol is shorthand for a realization relationship of an
interface classifier. Interface symbols with only a half circle at their
end (a.k.a. sockets) represent an interface that the component
requires (in both cases, the interface's name is placed near the
interface symbol itself). Even though Figure 6.4 looks much
different from Figure 6.3, both figures provide the same information
-- i.e., the Order component provides two interfaces: OrderEntry
and AccountPayable, and the Order component requires the Person
interface.

Modelling a component's relationships
When showing a component's relationship with other components,
the lollipop and socket notation must also include a dependency
arrow (as used in the class diagram). On a component diagram with
lollipops and sockets, note that the dependency arrow comes out of
the consuming (requiring) socket and its arrow head connects with
the provider's lollipop, as shown in Figure 6.5.

Figure 6.5: A component diagram that shows how the Order System

component depends on other components

Figure 6.5 shows that the Order System component depends both
on the Customer Repository and Inventory System components.
Notice in Figure 6.5 the duplicated names of the interfaces
CustomerLookup" and ProductAccessor." While this may seem
unnecessarily repetitive in this example, the notation actually allows
for different interfaces (and differing names) on each component
depending on the implementation differences (e.g., one component
provides an interface that is a subclass of a smaller required
interface).

Subsystems

Pg 53

In UML 2 the subsystem classifier is a specialized version of a
component classifier. Because of this, the subsystem notation
element inherits all the same rules as the component notation
element. The only difference is that a subsystem notation element
has the keyword of subsystem" instead of component," as shown in
Figure 6.6.

Figure 6.6: An example of a subsystem element

The UML 2 specification is quite vague on how a subsystem is
different from a component. The specification does not treat a
component or a subsystem any differently from a modelling
perspective. Compared with UML 1.x, this UML 2 modelling
ambiguity is new. But there's a reason. In UML 1.x, a subsystem
was considered a package, and this package notation was confusing
to many UML practitioners; hence UML 2 aligned subsystems as a
specialized component, since this is how most UML 1.x users
understood it. This change did introduce fuzziness into the picture,
but this fuzziness is more of a reflection of reality versus a mistake
in the UML 2 specification.

The UML 2 specification says that the decision on when to use a
component versus a subsystem is up to the methodology of the
modeller.

Showing a Component's Internal Structure
There will be times when it makes sense to display a component's
internal structure. To show a component's inner structure, you
merely draw the component larger than normal and place the inner
parts inside the name compartment of the encompassing
component. Figure 6.7 show's the Store's component inner
structure.

Pg 54

Figure 6.7: This component's inner structure is composed of other

components.

Using the example shown in Figure 6.7, the Store component
provides the interface of OrderEntry and requires the interface of
Account. The Store component is made up of three components:
Order, Customer, and Product components. Notice how the Store's
OrderEntry and Account interface symbols have a square on the
edge of the component. This square is called a port. In a simplistic
sense, ports provide a way to model how a component's
provided/required interfaces relate to its internal parts. By using a
port, our diagram is able to de-couple the internals of the Store
component from external entities. In Figure 6.7, the OrderEntry
port delegates to the Order component's OrderEntry interface for
processing. Also, the internal Customer component's required
Account interface is delegated to the Store component's required
Account interface port. By connecting to the Account port, the
internals of the Store component (e.g. the Customer component)
can have a local representative of some unknown external entity
which implements the port's interface. The required Account
interface will be implemented by a component outside of the Store
component.

You will also notice in Figure 6.7 that the interconnections between
the inner components are different from those shown in Figure 6.5.
This is because these depictions of internal structures are really
collaboration diagrams nested inside the classifier (a component, in
our case), since collaboration diagrams show instances or roles of
classifiers. The relationship modelled between the internal

Pg 55

components is drawn with what UML calls an assembly connector."
An assembly connector ties one component's provided interface
with another component's required interface. Assembly connectors
are drawn as lollipop and socket symbols next to each other.
Drawing these assembly connectors in this manner makes the
lollipop and socket symbols very easy to read.

Conclusion
The component diagram is a very important diagram that architects
will often create early in a project. However, the component
diagram's usefulness spans the life of the system. Component
diagrams are invaluable because they model and document a
system's architecture. Because component diagrams document a
system's architecture, the developers and the eventual system
administrators of the system find this work product-critical in
helping them understand the system.

Component diagrams also serve as input to a software system's
deployment diagram.

Pg 56

WEEK Seven

OBJECT AND PACKAGE DIAGRAM

Object Diagrams

Object diagram: shows a complete or partial view of the structure of
a modelled system at a specific time. An object diagram may be
considered a special case of a class diagram. Object diagrams use a
subset of the elements of a class diagram in order to emphasize the
relationship between instances of classes at some point in time. They are
useful in understanding class diagrams. They don’t show anything
architecturally different to class diagrams, but reflect multiplicity and
roles.

Class and Object Elements

The following diagram shows the differences in appearance between
a class element and an object element. Note that the class element
consists of three parts, being divided into name, attribute and
operation compartments; by default, object elements don’t have
compartments. The display of names is also different: object names
are underlined and may show the name of the classifier from which
the object is instantiated.

Run Time State

A classifier element can have any number of attributes and
operations. These aren’t shown in an object instance. It is possible,
however, to define an object’s run time state, showing the set
values of attributes in the particular instance.

Pg 57

Example Class and Object Diagrams

The following diagram shows an object diagram with its defining
class diagram inset, and it illustrates the way in which an object
diagram may be used to test the multiplicities of assignments in
class diagrams. The car class has a 1-to-many multiplicity to the
wheel class, but if a 1-to-4 multiplicity had been chosen instead,
that wouldn’t have allowed for the three-wheeled car shown in the
object diagram.

Pg 58

Package Diagrams

Package diagram depicts how a system is split up into logical
groupings by showing the dependencies among these groupings.
Package diagrams are used to reflect the organization of packages
and their elements. When used to represent class elements,
package diagrams provide a visualization of the namespaces. The
most common use for package diagrams is to organize use case
diagrams and class diagrams, although the use of package
diagrams is not limited to these UML elements.

The following is an example of a package diagram.

Elements contained in a package share the same namespace.
Therefore, the elements contained in a specific namespace must
have unique names.
Packages can be built to represent either physical or logical
relationships. When choosing to include classes in specific packages,
it is useful to assign the classes with the same inheritance hierarchy
to the same package. There is also a strong argument for including
classes that are related via composition, and classes that
collaborate with them, in the same package.

Pg 59

Packages are represented in UML 2.1 as folders and contain the elements
that share a namespace; all elements within a package must be
identifiable, and so have a unique name or type. The package must show
the package name and can optionally show the elements within the
package in extra compartments.

Package Merge
A «merge» connector between two packages defines an implicit
generalization between elements in the source package, and elements
with the same name in the target package. The source element definitions
are expanded to include the element definitions contained in the target.
The target element definitions are unaffected, as are the definitions of
source package elements that don't match names with any element in the
target package.

Package Import
The «import» connector indicates that the elements within the target
package, which in this example is a single class, use unqualified names
when being referred to from the source package. The source package's
namespace gains access to the target classes; the target's namespace is
not affected.

Nesting Connectors
The nesting connector between the target package and source packages
shows that the source package is fully contained in the target package.

Pg 60

WEEK Eight

DEPLOYMENT

Deployment Diagrams

Deployment diagram serves to model the hardware used in system
implementations, the components deployed on the hardware, and
the associations among those components.

A deployment diagram models the run-time architecture of a
system. It shows the configuration of the hardware elements
(nodes) and shows how software elements and artifacts are mapped
onto those nodes.

Node

A Node is either a hardware or software element. It is shown as a
three-dimensional box shape, as shown below.

Node Instance
A node instance can be shown on a diagram. An instance can be
distinguished from a node by the fact that its name is underlined and has
a colon before its base node type. An instance may or may not have a
name before the colon. The following diagram shows a named instance of
a computer.

Pg 61

Node Stereotypes
A number of standard stereotypes are provided for nodes, namely
«cdrom», «cd-rom», «computer», «disk array», «pc», «pc client», «pc
server», «secure», «server», «storage», «unix server», «user pc». These
will display an appropriate icon in the top right corner of the node symbol

Artifact
An artifact is a product of the software development process. That may
include process models (e.g. use case models, design models etc), source
files, executables, design documents, test reports, prototypes, user
manuals, etc.
An artifact is denoted by a rectangle showing the artifact name, the
«artifact» keyword and a document icon, as shown below.

Pg 62

Association
In the context of a deployment diagram, an association represents a
communication path between nodes. The following diagram shows a
deployment diagram for a network, depicting network protocols as
stereotypes, and multiplicities at the association ends.

Node as Container
A node can contain other elements, such as components or artifacts. The
following diagram shows a deployment diagram for part of an embedded
system, depicting an executable artifact as being contained by the
motherboard node.

Pg 63

Pg 64

WEEK Nine

THE BEHAVIOUR DIAGRAM
The Behavior diagrams emphasize what must happen in the system
being modelled:

Activity Diagrams

In UML, an activity diagram is used to display the sequence of activities.

Activity diagrams show the workflow from a start point to the finish point

detailing the many decision paths that exist in the progression of events

contained in the activity. They may be used to detail situations where

parallel processing may occur in the execution of some activities. Activity

diagrams are useful for business modelling where they are used for

detailing the processes involved in business activities.

Pg 65

An Example of an activity diagram is shown below.

The following sections describe the elements that constitute an
activity diagram.

Activities

An activity is the specification of a parameterized sequence of behaviour.

An activity is shown as a round-cornered rectangle enclosing all the

actions, control flows and other elements that make up the activity.

Pg 66

Actions
An action represents a single step within an activity. Actions are denoted
by round-cornered rectangles.

Action Constraints
Constraints can be attached to an action. The following diagram shows an
action with local pre- and post-conditions.

Control Flow
A control flow shows the flow of control from one action to the next. Its
notation is a line with an arrowhead.

Pg 67

Initial Node
An initial or start node is depicted by a large black spot, as shown below.

Final Node
There are two types of final node: activity and flow final nodes. The
activity final node is depicted as a circle with a dot inside.

The flow final node is depicted as a circle with a cross inside.

Pg 68

The difference between the two node types is that the flow final
node denotes the end of a single control flow; the activity final node
denotes the end of all control flows within the activity.

Objects and Object Flows
An object flow is a path along which objects or data can pass. An
object is shown as a rectangle.

An object flow is shown as a connector with an arrowhead denoting
the direction the object is being passed.

An object flow must have an object on at least one of its ends. A
shorthand notation for the above diagram would be to use input and
output pins.

A data store is shown as an object with the «datastore» keyword.

Pg 69

Decision and Merge Nodes
Decision nodes and merge nodes have the same notation: a
diamond shape. They can both be named. The control flows coming
away from a decision node will have guard conditions which will
allow control to flow if the guard condition is met. The following
diagram shows use of a decision node and a merge node.

Fork and Join Nodes
Forks and joins have the same notation: either a horizontal or
vertical bar (the orientation is dependent on whether the control
flow is running left to right or top to bottom). They indicate the
start and end of concurrent threads of control. The following
diagram shows an example of their use.

Pg 70

A join is different from a merge in that the join synchronizes two
inflows and produces a single outflow. The outflow from a join
cannot execute until all inflows have been received. A merge passes
any control flows straight through it. If two or more inflows are
received by a merge symbol, the action pointed to by its outflow is
executed two or more times.

Expansion Region
An expansion region is a structured activity region that executes
multiple times. Input and output expansion nodes are drawn as a
group of three boxes representing a multiple selection of items. The
keyword "iterative", "parallel" or "stream" is shown in the top left
corner of the region.

Exception Handlers
Exception Handlers can be modelled on activity diagrams as in the
example below.

Pg 71

Interruptible Activity Region
An interruptible activity region surrounds a group of actions that
can be interrupted. In the very simple example below, the "Process
Order" action will execute until completion, when it will pass control
to the "Close Order" action, unless a "Cancel Request" interrupt is
received, which will pass control to the "Cancel Order" action.

Partition
An activity partition is shown as either a horizontal or vertical
swimlane. In the following diagram, the partitions are used to
separate actions within an activity into those performed by the
accounting department and those performed by the customer.

Pg 72

Pg 73

WEEK Ten

THE USE CASE MODEL

The use case model captures the requirements of a system. Use
cases are a means of communicating with users and other
stakeholders what the system is intended to do.

Use case diagram shows the functionality provided by a system in
terms of actors, their goals represented as use cases, and any
dependencies among those use cases.

Use Case Model Actors

A use case diagram shows the interaction between the system and
entities external to the system. These external entities are referred
to as actors. Actors represent roles which may include human users,
external hardware or other systems. An actor is usually drawn as a
named stick figure, or alternatively as a class rectangle with the
«actor» keyword.

Pg 74

Actors can generalize other actors as detailed in the following
diagram:

Use Cases
A use case is a single unit of meaningful work. It provides a high-level
view of behavior observable to someone or something outside the system.
The notation for a use case is an ellipse.

The notation for using a use case is a connecting line with an
optional arrowhead showing the direction of control. The following
diagram indicates that the actor "Customer" uses the "Withdraw"
use case.

Pg 75

The uses connector can optionally have multiplicity values at each
end, as in the following diagram, which shows a customer may only
have one withdrawal session at a time, but a bank may have any
number of customers making withdrawals concurrently.

Use Case Definition
A use case typically Includes:

• Name and description
• Requirements
• Constraints
• Scenarios
• Scenario diagrams
• Additional information.

Name and Description
A use case is normally named as a verb-phrase and given a brief informal
textual description.

Requirements
The requirements define the formal functional requirements that a use
case must supply to the end user. They correspond to the functional
specifications found in structured methodologies. A requirement is a
contract or promise that the use case will perform an action or provide
some value to the system.

Pg 76

Constraints
A constraint is a condition or restriction that a use case operates under
and includes pre-, post- and invariant conditions. A precondition specifies
the conditions that need to be met before the use case can proceed. A
post-condition is used to document the change in conditions that must be
true after the execution of the use case. An invariant condition specifies

the conditions that are true throughout the execution of the use case.

Scenarios
A Scenario is a formal description of the flow of events that occur during
the execution of a use case instance. It defines the specific sequence of
events between the system and the external actors. It is normally
described in text and corresponds to the textual representation of the
sequence diagram.

Including Use Cases
Use cases may contain the functionality of another use case as part of
their normal processing. In general it is assumed that any included use
case will be called every time the basic path is run. An example of this is
to have the execution of the use case <Card Identification> to be run as
part of a use case <Withdraw>.

Use Cases may be included by one or more Use Case, helping to
reduce the level of duplication of functionality by factoring out
common behavior into Use Cases that are re-used many times.

Extending Use Cases
One use case may be used to extend the behavior of another; this
is typically used in exceptional circumstances. For example, if
before modifying a particular type of customer order, a user must
get approval from some higher authority, then the <Get Approval>
use case may optionally extend the regular <Modify Order> use
case.

Pg 77

Extension Points
The point at which an extending use case is added can be defined
by means of an extension point.

System Boundary
It is usual to display use cases as being inside the system and
actors as being outside the system.

Pg 78

Pg 79

WEEK Eleven

THE STATE MACHINE MODEL

A state machine diagram models the behaviour of a single object,
specifying the sequence of events that an object goes through
during its lifetime in response to events.

State diagram standardized notation to describe many systems,
from computer programs to business processes.

As an example, the following state machine diagram shows the
states that a door goes through during its lifetime.

The door can be in one of three states: "Opened", "Closed" or
"Locked". It can respond to the events Open, Close, Lock and
Unlock. Notice that not all events are valid in all states; for
example, if a door is opened, you cannot lock it until you close it.
Also notice that a state transition can have a guard condition
attached: if the door is Opened, it can only respond to the Close
event if the condition doorWay->isEmpty is fulfilled. The syntax and
conventions used in state machine diagrams will be discussed in full
in the following sections.

States

A state is denoted by a round-cornered rectangle with the name of
the state written inside it.

Pg 80

Initial and Final States
The initial state is denoted by a filled black circle and may be
labelled with a name. The final state is denoted by a circle with a
dot inside and may also be labelled with a name.

Transitions

Transitions from one state to the next are denoted by lines with
arrowheads. A transition may have a trigger, a guard and an effect,
as below.

"Trigger" is the cause of the transition, which could be a signal, an
event, a change in some condition, or the passage of time. "Guard"
is a condition which must be true in order for the trigger to cause
the transition. "Effect" is an action which will be invoked directly on
the object that owns the state machine as a result of the transition.

Pg 81

State Actions
In the transition example above, an effect was associated with the
transition. If the target state had many transitions arriving at it, and
each transition had the same effect associated with it, it would be
better to associate the effect with the target state rather than the
transitions. This can be done by defining an entry action for the
state. The diagram below shows a state with an entry action and an
exit action.

It is also possible to define actions that occur on events, or actions
that always occur. It is possible to define any number of actions of
each type.

Self-Transitions
A state can have a transition that returns to itself, as in the
following diagram. This is most useful when an effect is associated
with the transition.

Pg 82

Compound States
A state machine diagram may include sub-machine diagrams, as in
the example below.

The alternative way to show the same information is as follows.

Pg 83

The notation in the above version indicates that the details of the
Check PIN sub-machine are shown in a separate diagram.

Entry Point
Sometimes you won’t want to enter a sub-machine at the normal
initial state. For example, in the following sub-machine it would be
normal to begin in the "Initializing" state, but if for some reason it
wasn’t necessary to perform the initialization, it would be possible
to begin in the "Ready" state by transitioning to the named entry
point.

Pg 84

The following diagram shows the state machine one level up.

Exit Point
In a similar manner to entry points, it is possible to have named
alternative exit points. The following diagram gives an example
where the state executed after the main processing state depends
on which route is used to transition out of the state.

Pg 85

Choice Pseudo-State
A choice pseudo-state is shown as a diamond with one transition
arriving and two or more transitions leaving. The following diagram
shows that whichever state is arrived at, after the choice pseudo-
state, is dependent on the message format selected during
execution of the previous state.

Junction Pseudo-State
Junction pseudo-states are used to chain together multiple

Pg 86

transitions. A single junction can have one or more incoming, and
one or more outgoing, transitions; a guard can be applied to each
transition. Junctions are semantic-free. A junction which splits an
incoming transition into multiple outgoing transitions realizes a
static conditional branch, as opposed to a choice pseudo-state
which realizes a dynamic conditional branch.

Terminate Pseudo-State
Entering a terminate pseudo-state indicates that the lifeline of the
state machine has ended. A terminate pseudo-state is notated as a
cross.

History States
A history state is used to remember the previous state of a state

Pg 87

machine when it was interrupted. The following diagram illustrates
the use of history states. The example is a state machine belonging
to a washing machine.

In this state machine, when a washing machine is running, it will
progress from "Washing" through "Rinsing" to "Spinning". If there is
a power cut, the washing machine will stop running and will go to
the "Power Off" state. Then when the power is restored, the
Running state is entered at the "History State" symbol meaning that
it should resume where it last left-off.

Concurrent Regions

A state may be divided into regions containing sub-states that exist
and execute concurrently. The example below shows that within the
state "Applying Brakes", the front and rear brakes will be operating
simultaneously and independently. Notice the use of fork and join
pseudo-states, rather than choice and merge pseudo-states. These
symbols are used to synchronize the concurrent threads.

Pg 88

Pg 89

WEEK Twelve

THE INTERACTION DIAGRAM

Interaction diagrams, a subset of behavior diagrams, emphasize the
flow of control and data among the things in the system being
modelled: It comprise of Communication, Interaction, Sequence and
Timing diagrams.

Communication Diagrams

A communication diagram, formerly called a collaboration diagram, is an

interaction diagram that shows similar information to sequence diagrams

but its primary focus is on object relationships.

Communication diagram shows the interactions between objects or
parts in terms of sequenced messages. They represent a
combination of information taken from Class, Sequence, and Use
Case Diagrams describing both the static structure and dynamic
behavior of a system.

On communication diagrams, objects are shown with association

connectors between them. Messages are added to the associations and

show as short arrows pointing in the direction of the message flow. The

sequence of messages is shown through a numbering scheme.

The following two diagrams show a communication diagram and the

sequence diagram that shows the same information. Although it is

possible to derive the sequencing of messages in the communication

diagram from the numbering scheme, it isn’t immediately visible. What

the communication diagram does show quite clearly though, is the full set

of messages passed between adjacent objects.

Pg 90

Pg 91

SEQUENCE DIAGRAMS

A sequence diagram is a form of interaction diagram which shows objects

as lifelines running down the page, with their interactions over time

represented as messages drawn as arrows from the source lifeline to the

target lifeline.

The diagram's purpose

The sequence diagram is used primarily to show the interactions between objects in
the sequential order that those interactions occur. Much like the class diagram,
developers typically think sequence diagrams were meant exclusively for them.
However, an organization's business staff can find sequence diagrams useful to
communicate how the business currently works by showing how various business
objects interact. Besides documenting an organization's current affairs, a business-
level sequence diagram can be used as a requirements document to communicate
requirements for a future system implementation. During the requirements phase of a
project, analysts can take use cases to the next level by providing a more formal level
of refinement. When that occurs, use cases are often refined into one or more
sequence diagrams.

equence of messages. Also indicates the lifespans of objects relative
to those messages.

Sequence diagrams are good at showing which objects communicate with

which other objects; and what messages trigger those communications.

Sequence diagrams are not intended for showing complex procedural

logic.

Lifelines

A lifeline represents an individual participant in a sequence diagram. A

lifeline will usually have a rectangle containing its object name. If its name

is "self", that indicates that the lifeline represents the classifier which

owns the sequence diagram.

Pg 92

Sometimes a sequence diagram will have a lifeline with an actor
element symbol at its head. This will usually be the case if the
sequence diagram is owned by a use case. Boundary, control and
entity elements from robustness diagrams can also own lifelines.

Messages

Messages are displayed as arrows. Messages can be complete, lost or

found; synchronous or asynchronous; call or signal. In the following

diagram, the first message is a synchronous message (denoted by the

solid arrowhead) complete with an implicit return message; the second

message is asynchronous (denoted by line arrowhead), and the third is

the asynchronous return message (denoted by the dashed line).

Pg 93

Execution Occurrence

A thin rectangle running down the lifeline denotes the execution

occurrence, or activation of a focus of control. In the previous diagram,

there are three execution occurrences. The first is the source object

sending two messages and receiving two replies; the second is the target

object receiving a synchronous message and returning a reply; and the

third is the target object receiving an asynchronous message and

returning a reply.

Self Message

A self message can represent a recursive call of an operation, or one

method calling another method belonging to the same object. It is shown

as creating a nested focus of control in the lifeline’s execution occurrence.

Pg 94

Lost and Found Messages

Lost messages are those that are either sent but do not arrive at the

intended recipient, or which go to a recipient not shown on the current

diagram. Found messages are those that arrive from an unknown sender,

or from a sender not shown on the current diagram. They are denoted

going to or coming from an endpoint element.

Lifeline Start and End

A lifeline may be created or destroyed during the timescale represented

Pg 95

by a sequence diagram. In the latter case, the lifeline is terminated by a

stop symbol, represented as a cross. In the former case, the symbol at

the head of the lifeline is shown at a lower level down the page than the

symbol of the object that caused the creation. The following diagram

shows an object being created and destroyed.

Duration and Time Constraints

By default, a message is shown as a horizontal line. Since the lifeline

represents the passage of time down the screen, when modelling a real-

time system, or even a time-bound business process, it can be important

to consider the length of time it takes to perform actions. By setting a

duration constraint for a message, the message will be shown as a sloping

line.

Pg 96

Combined Fragments

It was stated earlier that sequence diagrams are not intended for showing
complex procedural logic. While this is the case, there are a number of
mechanisms that do allow for adding a degree of procedural logic to
diagrams and which come under the heading of combined fragments. A
combined fragment is one or more processing sequence enclosed in a
frame and executed under specific named circumstances. The fragments
available are:

• Alternative fragment (denoted “alt”) models if…then…else
constructs.

• Option fragment (denoted “opt”) models switch constructs.
• Break fragment models an alternative sequence of events that

is processed instead of the whole of the rest of the diagram.
• Parallel fragment (denoted “par”) models concurrent

processing.
• Weak sequencing fragment (denoted “seq”) encloses a

number of sequences for which all the messages must be
processed in a preceding segment before the following
segment can start, but which does not impose any sequencing
within a segment on messages that don’t share a lifeline.

Pg 97

• Strict sequencing fragment (denoted “strict”) encloses a
series of messages which must be processed in the given
order.

• Negative fragment (denoted “neg”) encloses an invalid series
of messages.

• Critical fragment encloses a critical section.
• Ignore fragment declares a message or message to be of no

interest if it appears in the current context.
• Consider fragment is in effect the opposite of the ignore

fragment: any message not included in the consider fragment
should be ignored.

• Assertion fragment (denoted “assert”) designates that any
sequence not shown as an operand of the assertion is invalid.

• Loop fragment encloses a series of messages which are
repeated.

The following diagram shows a loop fragment.

Pg 98

There is also an interaction occurrence, which is similar to a
combined fragment. An interaction occurrence is a reference to
another diagram which has the word "ref" in the top left corner of
the frame, and has the name of the referenced diagram shown in
the middle of the frame.

Gate

A gate is a connection point for connecting a message inside a fragment

with a message outside a fragment. EA shows a gate as a small square on

a fragment frame. Diagram gates act as off-page connectors for sequence

diagrams, representing the source of incoming messages or the target of

outgoing messages. The following two diagrams show how they might be

used in practice. Note that the gate on the top level diagram is the point

at which the message arrowhead touches the reference fragment - there

is no need to render it as a box shape.

Pg 99

Part Decomposition

An object can have more than one lifeline coming from it. This allows for

inter- and intra-object messages to be displayed on the same diagram.

Pg 100

State Invariant / Continuations

A state invariant is a constraint placed on a lifeline that must be true at

run-time. It is shown as a rectangle with semi-circular ends.

A continuation has the same notation as a state invariant, but is
used in combined fragments and can stretch across more than one
lifeline.

Pg 101

WEEK Thirteen

THE INTERACTION OVERVIEW DIAGRAM
An interaction overview diagram is a form of activity diagram in
which the nodes represent interaction diagrams.

Interaction diagrams can include sequence, communication,
interaction overview and timing diagrams. Most of the notation for
interaction overview diagrams is the same for activity diagrams. For
example, initial, final, decision, merge, fork and join nodes are all
the same. However, interaction overview diagrams introduce two
new elements: interaction occurrences and interaction elements.

Interaction Occurrence

Interaction occurrences are references to existing interaction
diagrams. An interaction occurrence is shown as a reference frame;
that is, a frame with "ref" in the top-left corner. The name of the
diagram being referenced is shown in the center of the frame.

Interaction Element

Interaction elements are similar to interaction occurrences, in that
they display a representation of existing interaction diagrams within
a rectangular frame. They differ in that they display the contents of
the references diagram inline.

Pg 102

Putting it all Together

All the same controls from activity diagrams (fork, join, merge,
etc.) can be used on interaction overview diagrams to put the
control logic around the lower level diagrams. The following
example depicts a sample sale process, with sub-processes
abstracted within interaction occurrences.

Pg 103

Pg 104

THE TIMING DIAGRAM

These are a specific type of interaction diagram, where the focus is
on timing constraints.

UML timing diagrams are used to display the change in state or
value of one or more elements over time. It can also show the
interaction between timed events and the time and duration
constraints that govern them.

State Lifeline

A state lifeline shows the change of state of an item over time. The
X-axis displays elapsed time in whatever units are chosen, while the
Y-axis is labelled with a given list of states. A state lifeline is shown
below.

Value Lifeline
A value lifeline shows the change of value of an item over time. The X-
axis displays elapsed time in whatever units are chosen, the same as for
the state lifeline. The value is shown between the pair of horizontal lines
which cross over at each change in value. A value lifeline is shown below.

Pg 105

Putting it all Together
State and value Lifelines can be stacked one on top of another in any
combination. They must have the same X-axis. Messages can be passed
from one lifeline to another. Each state or value transition can have a
defined event, a time constraint which indicates when an event must
occur, and a duration constraint which indicates how long a state or value
must be in effect for. Once these have all been applied, a timing diagram
may look like the following.

Pg 106

WEEK Fourteen

THE UML TOOLS

Introduction
So far we have defined and gained an overview of what the Unified
Modelling Language stands for and what all the diagrams that make
up UML mean. Because UML is essentially a set of diagrams, you
can simply draw them by hand on a piece of paper. But, drawing
UML diagrams on a piece of paper is certainly not a best practice to
design systems. Software applications simplify the task of drawing
diagrams of software designs. In addition, because the design is in
an electronic format, archiving the design for future use,
collaborating on the design becomes much easier. Also, routine
tasks can be automated by using a UML tool. Hence, using a UML
tool is by far the most preferred way for designing software
applications.

Features in UML Tools
This takes us to an important question—what exactly should we
look for in a UML tool?

Because the primary use of a UML tool is to enable you to draw
diagrams, first and foremost, we need to see what types of UML
diagrams the tool supports. But, is drawing UML diagrams all that
you would expect from a UML tool? For example, wouldn't it be
great if the class diagrams that you draw in the tool can somehow
be used to generate the source code for actual Java classes or C++
classes?

Let us take a look at another scenario. Suppose you were given a
large set of source code files with lots and lots of classes. Wouldn't
it be a nightmare wading through the code trying to figure out how
all the classes are interconnected? This is where UML tools step in
to make things a lot easier by providing support for such features.

Now, let's define these features in technical terms:

• UML diagram support: The UML tool should support all the
diagrams that make up UML. You should look for a tool that
supports drawing use cases, designing the static view
diagrams such as class diagrams and object diagrams,
defining the dynamic view diagrams such as sequence,

Pg 107

activity, state, and collaboration diagrams and the component
and deployment diagrams that form the implementation view
of the system.

• Forward engineering: A UML tool should not have its use
limited to just a pictorial depiction of diagrams. Because the
structure of the system defined by the diagram is translated
by a developer into actual source code (classes), the UML tool
should bridge this step by generating the source code of the
classes with the methods stubbed out. Developers can take
up this stub code and fill in with the actual code. This
characteristic of automating the generation of source code is
called forward engineering. Forward engineering support by a
UML tool is normally for a specific language or a set of
languages. If you are a Java developer, verify that the UML
tool that you want to use has forward engineering support for
Java. Similarly, if you are a C++ developer, the UML tool
should provide you forward engineering support for C++.

• Reverse engineering: Reverse engineering is exactly the

opposite of forward engineering. In reverse engineering, the
UML tool loads all the files of the application/system, identifies
dependencies between the various classes, and essentially
reconstructs the entire application structure along with all the
relationships between the classes. Reverse engineering is a
feature normally provided by sophisticated and high-end UML
tools.

• Round-trip engineering: Another useful feature apart from

forward and reverse engineering is round-trip engineering.
Forward and reverse engineering are essentially one-off
activities that take input and generate the required output.
Round-trip engineering extends these features.

An important rule in software design is that no design remains
unchanged. This is as true for small systems as it is for large
systems. During development, the design structure defined in
the UML model does undergo changes to incorporate physical
differences in implementation that may not have been
envisaged during design. It becomes very difficult to keep the
design of the system updated with the changes in the source
code. The round-trip engineering feature enables the UML tool
to synchronize the model with the changes in the application
code.

• Documentation: Documentation is an integral aspect of a

UML tool. Software designing, by nature, is an abstract

Pg 108

process. Apart from a few syntax and semantic ground rules,
there are no other rules. The thought process of a software
architect who designs applications using UML can be lost if the
reasons behind certain design decisions are not captured and
well documented. This becomes painfully clear when large
systems are maintained and no one has a clue to why a
subsystem was designed in a certain way. Hence, a UML tool
must necessarily provide some way for the designer to
document design decisions in the diagrams by using simple
things such as annotations or comments. In addition to this,
the UML tool should support the generation of reports/listings
of the different design elements of the diagram.
Apart from the above features, you should also identify a few
features that would definitely be useful to have in the UML
tool.

• Version control: A very important feature that we want to
have in the UML tool is either an integrated version control
mechanism or connectivity to a standard version control
system. Configuration management is an integral part in the
building of software systems. Considering that the design of a
system is a very important artefact of the software lifecycle,
maintaining versions and baselines of the system design is a
desirable feature to have in UML tools. In the absence of
direct support for version control, it is the responsibility of the
designer to maintain versions of the design.

• Collaborative modelling environment: Enterprise systems
are huge and their designs are quite complex. While designing
complex systems, there may be different teams involved and
may carry out design work on different subsystems in parallel.
This collaborative design effort needs to be properly
synchronized by the UML tool. The UML tool should provide
support for a collaborative modelling environment with
capability to compare different versions designs for
differences or even merge different versions of a design.
Collaborative modelling is always a nice feature to have in
UML tools.

• Integration with popular Integrated Development
Environments (IDE): With the increasing use of iterative
methodologies for building software systems, it becomes very
difficult to keep the design of the system in sync with the
developed code. Hence, it would be useful if the UML tool
provides integration with popular IDEs. This feature would
enable the UML tool to be updated with the changes in the
source code made in the IDE.

Pg 109

• Test script generation: The system or subsystem designed
in a UML tool may represent a set of functional aspects as
well. Hence, it would be really useful if, in addition to
generating stub code, the tool also generates test scripts that
can be used for testing how the generated class functions.

• Model View Controller (MVC) modelling: Enterprise
application architectures have increasingly begun to
standardize and are based on the Model View Controller
architecture. Hence, if you design n-tier, Web-enabled
enterprise applications, you should look for a UML tool that
supports designing applications based on the MVC
architecture. Support for MVC modelling makes it easier to
organize and clearly distinguish the design elements along the
lines of the MVC layers. This will help in the long run in
improving the readability of the model.

Template-driven modelling

Re-usability is the key to improving productivity. An application
design may consist of several classes with relationships defined.
Quite a few times, while designing applications, you encounter the
same design problems or scenarios and end up defining the same
design again and again. By using a modelling tool, you can define
certain components or even subsystems that might potentially be
reusable in the future. For example, design elements of an
application used to define access to the database using, say, a
ConnectionPool class are potentially reusable. You might need to
define a similar database connection pool in another application as
well. Hence, it would benefit us in the long run if we design the
ConnectionPool class separately. We then can include the
ConnectionPool design in any future subsystems and avoid the need
of reinventing the wheel.
Such reusable designs or models are termed as templates and the
entire modeling process involving the identification and use of
templates is called template-driven modeling. The benefits of
template-driven modeling are apparent in the savings in design
time. You can consider model templates to be very similar to
reusable code libraries used in application development.

Popular UML Tools
We will list here a few of the "movers and shakers" of vendors of
UML tools.

• Rational Rose: No discussion of UML tools is complete
without the mention of the Rational Rose modelling tool from

Pg 110

Rational Software Corporation. Rational Rose (the Rose stands
for "Rational Object-oriented Software Engineering") is a
visual modelling tool for UML. It comes in different versions
suited to different requirements. Rational Rose provides
support for all the standard features that we discussed in the
previous section such as UML diagram support, forward and
reverse engineering support, and documentation and round-
trip engineering support. Apart from this, Rational Rose also
provides support for version control, IDE integration, design
pattern modelling, test script generation, and collaborative
modelling environment. In addition, Rational Rose also
supports the designing of data models within the same
environment. An interesting feature of Rational Rose is the
ability to publish the UML diagrams as a set of Web pages and
images. This enables you to share and distribute your
application design where the Rational Rose tool is not
installed.

• Together Control Center: Together Control Center (formerly
from Togethersoft) from Borland is an entire suite of visual
modelling tools for UML. Together Control Center supports
UML diagrams, MVC modelling, forward and reverse
engineering, and round-trip engineering, as well as
integration with IDEs such as IBM WebSphere Studio.
It supports comprehensive documentation and a powerful
collaborative modelling environment.
An added feature of Together Control Center is the pattern
repository. The pattern repository (similar to the template-
driven modelling concept discussed above) makes frequently
used diagrams and design patterns readily available for reuse
in modelling. Together Control Center supports the Rational
Unified Process as well as the eXtreme Programming
methodologies.

• Poseidon: Poseidon from Gentleware has its roots in the
ArgoUML open source project. The ArgoUML modeling tool
evolved as an open source effort and is a useful, full-featured
UML tool freely available under the Open Publication License.
Gentleware has taken ArgoUML a step further and turned it
into a good modelling tool. Poseidon comes in different flavors
suited to different requirements. Poseidon supports forward
and reverse engineering and documentation generation by
using special-purpose plug-ins.
Gentleware has not forgotten its open source moorings and
offers the Poseidon for UML Community Edition 1.5 free for
individual software developers.

Pg 111

Integration of UML Tools with Integrated Development

Environments (IDEs)
One interesting feature in UML tools that we discussed in the
previous section was round-trip engineering. For round-trip
engineering to be useful, we need to have the UML tool to be used
in conjunction with an IDE. This integration of a UML tool with the
IDE will help you to really benefit from round-trip engineering. Any
changes in the application code that you make in the IDE are
immediately reflected in the model in the UML tool and vice versa.
For our discussion, we will be considering IDEs for the Java
language.
Quite a few of the UML tools on the market can be integrated with
the popular IDEs such as IBM's WebSphere Studio, Borland's
JBuilder, WebGain's Visual Café, or Sun's Forte. For instance,
Rational Rose (Java edition) provides integration with all of these
popular IDEs. Together Control Center has a special version that
integrates with IBM's WebSphere Studio.
The downside of UML tool integration is that the integration solution
is proprietary to the UML tool vendor. Hence, you might not always
find a UML tool providing integration with popular IDEs in the
market. But all this is changing. (See box for details on the Eclipse
project.)

Eclipse

Eclipse is an open source effort that has tool integration as the
long-term goal. The interesting aspect of Eclipse is that the effort is
supported by major tool vendors. Eclipse aims to define across-the-
board integration standards that will enable vendors of different
tools to seamlessly work together and provide a cohesive and single
development environment. The beauty of Eclipse is that the
integration between tools is not a proprietary solution. In layman's
terms this means that, for example, you can buy an off-the-shelf
UML tool and integrate it into your development environment
without having to worry that you might be stuck with a particular
vendor or group of vendors. Eclipse is definitely an area to watch
out for in the near future! (www.eclipse.org)

Pg 112

WEEK Fourteen

 CASE TOOL APPLICATION
The Altova UModel (2008)
UModel® 2008 Enterprise Edition is an affordable UML modeling
application with a rich visual interface and superior usability
features to help level the UML learning curve, and includes many
high-end functions to empower users with the most practical
aspects of the UML 2.1.2 specification. UModel is a 32-bit Windows
application that runs on Windows 2000 / 2003, Windows XP and
Windows Vista.

UModel 2008 supports:

� all 13 UML 2.1.2 modeling diagrams
� Visual Studio .NET integration (Enterprise Edition only)
� Eclipse integration (Enterprise Edition only)
� XML Schema diagrams
� Business Process Modeling Notation (Enterprise Edition only)
� Multiple layers per UML diagram (Enterprise Edition only)
� import of Java, C# and Visual Basic binaries
� hyperlinking of diagrams and modeling elements
� syntax coloring in diagrams
� cascading styles
� unlimited Undo and Redo

�
sophisticated Java, C# and Visual Basic code generation from
models

�
reverse engineering of existing Java, C#, and Visual Basic source
code

� complete round-trip processing allowing code and model merging

�
XMI version 2.1.1 for UML 2.0, 2.1, & 2.1.2 - model import and
export

� generation of UModel project documentation

These capabilities allow developers, including those new to software
modeling, to quickly leverage UML to enhance productivity and
maximize their results.

Pg 113

The UModel Interface
UModel has a simplified development interface that present a
beginner in UML with a well streamlined way for achieving results.

Introducing UModel

The UML is a complete modeling language but does not discuss, or
prescribe, the methodology for the development, code generation
and round-trip engineering processes. UModel has therefore been
designed to allow complete flexibility during the modeling process:

�

UModel diagrams can be created in any order, and at any time;
there is no need to follow a prescribed sequence during
modeling.

�

Code, or model merging can be achieved at the project, package,
or even class level. UModel does not require that pseudo-code,
or comments in the generated code be present, in order to
accomplish round-trip engineering.

�
Code generation is customizable: the code-generation in UModel
is based on SPL templates and is, therefore, completely

Pg 114

customizable. Customizations are automatically recognized
during code generation.

�

Code generation and reverse-engineering currently support Java
versions 1.4.x, 5.0 and 1.6, C# versions 1.2, 2.0 and 3.0, and
Visual Basic versions 7.1, 8.0 and 9.0. A single project can
support Java, C#, or VB code simultaneously.

� Support for UML templates and generics.

�
XML Metadata Interchange (XMI version 2.1.1) for UML 2.0 /
2.1.1 / 2.1.2

�

When adding properties, or operations UModel provides in-place
entry helpers to choose types, protection levels, and all other
manner of properties that are also available in industrial-strength
IDEs such as XMLSpy, Visual Studio .Net or Eclipse.

�
Syntax-coloring in diagrams makes UML diagrams more
attractive and intuitive.

�

Modeling elements and their properties (font, colors, borders
etc.) are completely customizable in an hierarchical fashion at
the project, node/line, element family and element level.

�
Customizable actors can be defined in use-case diagrams to
depict terminals, or any other symbols.

�
Modeling elements can be searched for by name in the Diagram
tab, Model Tree pane, Messages and Documentation windows.

�

Class, or object associations, dependencies, generalizations etc.
can be found/highlighted in model diagrams through the context
menu.

�
The unlimited levels of Undo/Redo track not only content
changes, but also all style changes made to any model element.

What's new in UModel 2008 Release 2

The 2008 Release 2 version of UModel includes the following major
and minor enhancements:

� Support for OMG Business Process Modeling Notation.

� Support for Visual Basic .NET 9.0 and C# 3.0 as well as Visual

Pg 115

Studio .NET 2008, Java 1.6

� Multiple Layers per UModel diagram

� Merging of projects is now supported

� User-defined Stereotype styles and how to define them

� Enhanced Autocompletion capabilities

� Automatic generation of ComponentRealizations

� Importing multiple XML Schemas from a directory

�
Automatic generation of namespace directories for generated
code

� Support for ObjectNodes on Activity diagrams

� Ability to generate relative links for UML documentation

� UML conformant visibility icons in class diagrams

� Support for Collection Associations

What's new in UModel 2008

The 2008 version of UModel includes the following major and minor
enhancements:

�
Visual Basic code generation from models, and reverse
engineering of Visual Basic code.

� Visual Studio .NET integration (Enterprise Edition only).

� Eclipse integration (Enterprise Edition only).

� Abilty to save all project diagrams as images in one go.

�
Multiline lifeline titles in sequence, communication and timing
diagrams.

�
Support for event subelements in State Machine Diagrams:
ReceiveSignalEvent, SignalEvent, SendSignalEvent,

Pg 116

ReceiveOperationEvent, SendOperationEvent and ChangeEvent.

�
New 'go to operation' option for call messages on Sequence and
Communication Diagrams.

� Signals can now have generalizations and own attributes.

� Enhanced tagged value support

� Ability to Find & Replace modeling elements.

Sequence diagrams:

�
Automatic generation of (syntactically correct) replies when
adding messages to sequence diagrams.

� Static operation names are underlined in Sequence diagrams.

Ehanced "Override/Implement Operations" dialog.

�
Operations from bound templates can be made visible and also
be overridden

� Show which operations are abstract or undefined

	Cover
	Table of Contents
	WEEK One
	WEEK Two
	WEEK Three
	WEEK Four
	WEEK Five
	WEEK Six
	WEEK Seven
	WEEK Eight
	WEEK Nine
	WEEK Ten
	WEEK Eleven
	WEEK Twelve
	WEEK Thirteen
	WEEK Fourteen
	WEEK Fifteen
	Return to Table

